首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mitochondrial oxoglutarate carrier exchanges cytosolic malate for 2-oxoglutarate from the mitochondrial matrix. Orthologs of the carrier have a high degree of amino acid sequence conservation, meaning that it is impossible to identify residues important for function on the basis of this criterion alone. Therefore, each amino acid residue in the transmembrane alpha-helices H2 and H6 was replaced by a cysteine in a functional mitochondrial oxoglutarate carrier that was otherwise devoid of cysteine residues. The effects of the cysteine replacement and subsequent modification by sulfhydryl reagents on the initial uptake rate of 2-oxoglutarate were determined. The results were evaluated using a structural model of the oxoglutarate carrier. Residues involved in inter-helical and lipid bilayer interactions tolerate cysteine replacements or their modifications with little effect on transport activity. In contrast, the majority of cysteine substitutions in the aqueous cavity had a severe effect on transport activity. Residues important for function of the carrier cluster in three regions of the transporter. The first consists of residues in the [YWLF]- [KR]-G-X-X-P sequence motif, which is highly conserved in all members of the mitochondrial carrier family. The residues may fulfill a structural role as a helix breaker or a dynamic role as a hinge region for conformational changes during translocation. The second cluster of important residues can be found at the carboxy-terminal end of the even-numbered transmembrane alpha-helices at the cytoplasmic side of the carrier. Residues in H6 at the interface with H1 are the most sensitive to mutation and modification, and may be essential for folding of the carrier during biogenesis. The third cluster is at the midpoint of the membrane and consists of residues that are proposed to be involved in substrate binding.  相似文献   

2.
The mitochondrial oxoglutarate carrier belongs to the mitochondrial carrier family and exchanges oxoglutarate for malate and other dicarboxylates across the mitochondrial inner membrane. Here, single-cysteine mutant carriers were engineered for every residue in the amino- and carboxy-terminus, cytoplasmic loops, and matrix alpha-helices and their transport activity was measured in the presence and absence of sulfhydryl reagents. The analysis of the cytoplasmic side of the oxoglutarate carrier showed that the conserved and symmetric residues of the mitochondrial carrier motif [DE]XX[RK] localized at the C-terminal end of the even-numbered transmembrane alpha-helices are important for the function of the carrier, but the non-conserved cytoplasmic loops and termini are not. On the mitochondrial matrix side of the carrier most residues of the three matrix alpha-helices that are in the interface with the transmembrane alpha-helical bundle are important for function. Among these are the residues of the symmetric [ED]G motif present at the C-terminus of the matrix alpha-helices; the tyrosines of the symmetric YK motif at the N-terminus of the matrix alpha-helices; and the hydrophobic residues M147, I171 and I247. The functional role of these residues was assessed in the structural context of the homology model of OGC. Furthermore, in this study no evidence was found for the presence of a specific homo-dimerisation interface on the surface of the carrier consisting of conserved, asymmetric and transport-critical residues.  相似文献   

3.
To date, 22 mitochondrial carrier subfamilies have been functionally identified based on substrate specificity. Structural, functional and bioinformatics studies have pointed to the existence in the mitochondrial carrier superfamily of a substrate-binding site in the internal carrier cavity, of two salt-bridge networks or gates that close the cavity alternatively on the matrix or the cytosolic side of the membrane, and of conserved prolines and glycines in the transmembrane α-helices. The significance of these properties in the structural changes occurring during the catalytic substrate translocation cycle are discussed within the context of a transport mechanism model. Most experimentally produced and disease-causing missense mutations concern carrier regions corresponding to the substrate-binding site, the two gates and the conserved prolines and glycines.  相似文献   

4.
The topological model proposed for the Kir2.1 inward rectifier predicts that seven of the channel 13 cysteine residues are distributed along the N- and C-terminus regions, with some of the residues comprised within highly conserved domains involved in channel gating. To determine if cytosolic cysteine residues contribute to the gating properties of Kir2.1, each of the N- and C-terminus cysteines was mutated into either a polar (S, D, N), an aliphatic (A,V, L), or an aromatic (W) residue. Our patch-clamp measurements show that with the exception of C76 and C311, the mutation of individual cytosolic cysteine to serine (S) did not significantly affect the single-channel conductance nor the channel open probability. However, mutating C76 to a charged or polar residue resulted either in an absence of channel activity or a decrease in open probability. In turn, the mutations C311S (polar), C311R (charged), and to a lesser degree C311A (aliphatic) led to an increase of the channel mean closed time due to the appearance of long closed time intervals (T(c) >or= 500 ms) and to a reduction of the reactivation by ATP of rundown Kir2.1 channels. These changes could be correlated with a weakening of the interaction between Kir2.1 and PIP(2), with C311R and C311S being more potent at modulating the Kir2.1-PIP(2) interaction than C311A. The present work supports, therefore, molecular models whereby the gating properties of Kir2.1 depend on the presence of nonpolar or neutral residues at positions 76 and 311, with C311 modulating the interaction between Kir2.1 and PIP(2).  相似文献   

5.
The crystal structure of Escherichia coli NhaA determined at pH 4 has provided insights into the mechanism of activity of a pH-regulated Na+/H+ antiporter. However, because NhaA is active at physiological pH (pH 6.5-8.5), many questions related to the active state of NhaA have remained unanswered. Our Cys scanning of the highly conserved transmembrane VIII at physiological pH reveals that (1) the Cys replacement G230C significantly increases the apparent Km of the antiporter to both Na+ (10-fold) and Li+ (6-fold). (2) Variants G223C and G230C cause a drastic alkaline shift of the pH profile of NhaA by 1 pH unit. (3) Residues Gly223-Ala226 line a periplasmic funnel at physiological pH as they do at pH 4. Both were modified by membrane-impermeant negatively charged 2-sulfonatoethyl methanethiosulfonate and positively charged 2-(trimethyl ammonium)-ethylmethanethiosulfonate sulfhydryl reagents that could reach Cys replacements from the periplasm via water-filled funnels only, whereas other Cys replacements on helix VIII were not accessible/reactive to the reagents. (4) Remarkably, the modification of variant V224C by 2-sulfonatoethyl methanethiosulfonate or 2-(trimethyl ammonium)-ethylmethanethiosulfonate totally inhibited antiporter activity, while N-ethyl maleimide modification had a very small effect on NhaA activity. Hence, the size—rather than the chemical modification or the charge—of the larger reagents interferes with the passage of ions through the periplasmic funnel. Taken together, our results at physiological pH reveal that amino acid residues in transmembrane VIII contribute to the cation passage of NhaA and its pH regulation.  相似文献   

6.
During substrate translocation mitochondrial carriers cycle between the cytoplasmic-state (c-state) with substrate-binding site open to the intermembrane space and matrix-state (m-state) with the binding site open to the mitochondrial matrix. Here, the accessibility of Cys-58, Cys-136 and Cys-155 of the rat mitochondrial carnitine/acylcarnitine carrier (CAC) to membrane-impermeable SH reagents was examined as a function of the conformational state. Reconstituted mutant CACs containing the combinations Cys-58/Cys-136, Cys-58/Cys-155, and Cys-136/Cys-155 transport carnitine with a ping-pong mechanism like the wild-type, since increasing substrate concentrations on one side of the membrane decreased the apparent affinity for the substrate on the other side. In view of this mechanism, the effect of SH reagents on the transport activity of mutant CACs was tested by varying the substrate concentration inside or outside the proteoliposomes, keeping the substrate concentration on the opposite side constant. The reagents MTSES, MTSEA and fluorescein-5-maleimide did not affect the carnitine/carnitine exchange activity of the mutant carrier with only Cys-58 in contrast to mutant carriers with Cys-58/Cys-136, Cys-58/Cys-155 or Cys-136/Cys-155. In the latter, the inhibitory effect of the reagents was more pronounced when the intraliposomal carnitine concentration was increased, favouring the m-state of the carrier, whereas the effect was less when the concentration of carnitine was increased in the external compartment of the proteoliposomes, favouring the c-state. Moreover, the mutant carrier proteins with Cys-136/Cys-155, Cys-58/Cys-136 or Cys-58/Cys-155 were more fluorescent when extracted from fluorescein-5-maleimide-treated proteoliposomes containing 15 mM internal carnitine as compared to 2.5 mM. These results are discussed in terms of conformational changes of the carrier occurring during substrate translocation.  相似文献   

7.
Na+ dependent [3H]glutamine uptake was found in liposomes reconstituted with solubilized rat kidney brush border in the presence of intraliposomal K+. The reconstituted system was optimised with respect to the critical parameters of the cyclic detergent removal procedure, i.e., the detergent used for the solubilization, the protein concentration, the detergent/phospholipid ratio and the number of passages through a single Amberlite column. Time dependent [3H]glutamine accumulation in proteoliposomes occurred only in the presence of external Na+and internal K+. The transporter showed low if there is any tolerance towards the substitution of Na+ or K+ for other cations. Valinomycin strongly stimulated the transport indicating that it is electrogenic. Intraliposomal glutamine had no effect. From the dependence of the transport rate on the Na+ concentration cooperativity index close to 1 was derived, indicating that 1 Na+ should be involved in the cotransport with glutamine. The electrogenicity of the transport originated from the Na+ transport. Optimal rate of 0.1 mM [3H]glutamine uptake was found in the presence of 50 mM intraliposomal K-gluconate. At higher K-gluconate concentrations the transport rate decreased. The activity of the reconstituted transporter was pH dependent with optimal function in the range pH 6.5-7.0. [3H]glutamine (and [3H]leucine) uptake was inhibited by all the neutral but not by the positively or negatively charged amino acids. The sulfhydryl reagents HgCl2, mersalyl, p-hydroxymercuribenzoate and the substrate analogue 2-aminobicyclo[2,2,1]heptane-2-carboxylate strongly inhibited the transporter, whereas the amino acid analogue α-(methylamino)isobutyrate had no effect. The inhibition by mersalyl was protected by the presence of the substrate. On the basis of the Na+ dependence, the electrogenic transport mode and the specificity towards the amino acids, the reconstituted transporter was classified as B°-like.  相似文献   

8.
9.
We investigated the accessibility to protons and thiol-directed reagents of a cysteine substituted at position 338 in transmembrane segment 6 (TM6) of CFTR to test the hypothesis that T338 resides in the pore. Xenopus oocytes expressing T338C CFTR exhibited pH-dependent changes in gCl and I-V shape that were specific to the substituted cysteine. The apparent pKa of T338C CFTR was more acidic than that expected for a cysteine or similar simple thiols in aqueous solution. The pKa was shifted toward alkaline values when a nearby positive charge (R334) was substituted with neutral or negatively charged residues, consistent with the predicted influence of the positive charge of R334, and perhaps other residues, on the titration of a cysteine at 338. The relative rates of chemical modification of T338C CFTR by MTSET+ and MTSES- were also altered by the charge at 334. These observations support a model for CFTR that places T338 within the anion conduction path. The apparent pKa of a cysteine substituted at 338 and the relative rates of reaction of charged thiol-directed reagents provide a crude measure of a positive electrostatic potential that may be due to R334 and other residues near this position in the pore.  相似文献   

10.
The glutamine/amino acid transporter was solubilized from rat renal apical plasma membrane (brush-border membrane) with C12E8 and reconstituted into liposomes by removing the detergent from mixed micelles by hydrophobic chromatography on Amberlite XAD-4. The reconstitution was optimised with respect to the protein concentration, the detergent/phospholipid ratio and the number of passages through a single Amberlite column. The reconstituted glutamine/amino acid transporter catalysed a first-order antiport reaction stimulated by external, not internal, Na+. Optimal activity was found at pH 7.0. The sulfhydryl reagents HgCl2, mersalyl and p-hydroxymercuribenzoate and the amino acids alanine, serine, threonine, cysteine, asparagine, methionine and valine strongly inhibited the transport, whereas the amino acid analogue methylaminoisobutyrate had no effect. Glutamine, alanine, serine, asparagine, threonine were efficiently translocated from outside to inside and from inside to outside the proteoliposomes as well. Cysteine and valine were translocated preferentially from outside to inside. The Km for glutamine on the external and internal side of the transporter was 0.47 and 11 mM, respectively; the values were not influenced by the type of the counter substrate. The transporter is functionally asymmetrical and it is unidirectionally inserted into the proteoliposomal membrane with an orientation corresponding to that of the native membrane. By a bisubstrate kinetic analysis of the glutamine antiport, a random simultaneous mechanism was found. The glutamine antiport was strongly stimulated by internal nucleoside triphosphates and, to a lower extent, by pyrophoshate. The reconstituted glutamine/amino acid transporter functionally corresponds to the ASCT2 protein.  相似文献   

11.
The mitochondrial carnitine/acylcarnitine carrier (CAC) of Rattus norvegicus contains two His, His-29 and His-205. Only the first residue is conserved in all the members of the CAC subfamily and is positioned before the first of the three conserved motifs. In the homology model of CAC, His-29 is located in H1 close to the bottom of the central cavity. His-205 is the first amino acid of H5 and it is exposed towards the cytosol. The effect of substitution of the His residues on the transport function of the reconstituted mutant CACs has been analysed, in comparison with the wild-type. H29A showed very low activity, H29K and H29D were nearly inactive, whereas H205A, H205K and H205D showed activities similar to that of the wild-type. His-29 has also been substituted with Gln, Asn, Phe and Tyr. All the mutants showed very low transport function and, similarly to H29A, higher Km, reduced Vmax and altered selectivity towards (n)acylcarnitines, with the exception of H29Q, which exhibited functional properties similar to those of the wild-type. The experimental data, together with a comparative analysis of the carnitine acyltranferase active sites, indicated that His-29 forms an H-bond with the β-OH of carnitine. The substitution of His-205 led to a change of response of the CAC to the pH. The results are discussed in terms of relationships of His-29 with the molecular mechanism of translocation of the CAC.  相似文献   

12.
We have identified the Schizosaccharomyces pombe SPBC3E7.06c gene (fnx2(+)) from a homology search with the fnx1(+) gene involving in G(0) arrest upon nitrogen starvation. Green fluorescent protein-fused Fnx1p and Fnx2p localized exclusively to the vacuolar membrane. Uptake of histidine or isoleucine by S. pombe cells was inhibited by concanamycin A, a specific inhibitor of the vacuolar H(+)-ATPase. Amino acid uptake was also defective in the vacuolar ATPase mutant, suggesting that vacuolar compartmentalization is critical for amino acid uptake by whole cells. In both Deltafnx1 and Deltafnx2 mutant cells, uptake of lysine, isoleucine or asparagine was impaired. These results suggest that fnx1(+) and fnx2(+) are involved in vacuolar amino acid uptake in S. pombe.  相似文献   

13.
1. 1. Genetically obese mice (C5 7BL/6J-ob/ob, Jackson Laboratories) have much higher levels of hepatic acetyl-CoA carboxylase activity than their lean siblings, under a variety of nutritional states. However, when these mice are fasted for 48 h and then refed a fat-free diet for 48 h, the activity of this enzyme in the lean group shows about a 9-fold increase over the measured under normal dietary conditions, while obese mice show only 1 2-fold increase. The acetyl-CoA carboxylase activity observed under the dietary conditions is thus comparable in both lean and obese animals. Oil feeding or fasting for 48 h markedly depresses the activity of this enzyme in both groups and seems to be an effective means of reducing acetyl-CoA carboxylase activity in the obese mice, particularly, to far below the values found under normal dietary conditions.
2. 2. Both acetyl-CoA carboxylase and fatty acid synthetase purified from livers of obese and lean mice show comparable specific activities and no demonstrable differences with respect to their kinetic properties. Acetyl-CoA carboxylase from the two sources is also identical with respect to sensitivity to reagents and other inhibitors (such as malonyl-CoA, palmitoyl-CoA, etc.), to heat inactivation and in its sedimentation properties.
These results suggest quantitative differences rather than differences in the catalytic and regulatory properties of the obese and lean enzymes.  相似文献   

14.
A survey of leaf surface constituents in the family Lamiaceae using HPLC with diode array detection revealed the presence of two characteristic phenolic compounds in many species. The distribution of these phenolics in the Lamiaceae was found to be of taxonomic significance, as they were present in the great majority of species investigated for the subfamily Nepetoideae, including representatives of the well-known genera of culinary herbs, mint, rosemary, sage, thyme and basil. In contrast, they were absent from species of the other subfamilies of Lamiaceae studied and from the related families Verbenaceae, Scrophulariaceae, Acanthaceae and Buddlejaceae. The compounds were isolated from Plectranthus crassus and identified by NMR spectroscopy as the known caffeic acid esters (Z,E)-[2-(3,5-dihydroxyphenyl)ethenyl] 3-(3,4-dihydroxyphenyl)-2-propenoate and (Z,E)-[2-(3,4-dihydroxyphenyl)ethenyl] 3-(3,4-dihydroxyphenyl)-2-propenoate, for which the trivial names nepetoidins A and B are proposed. The presence of this pair of caffeic acid esters adds another character to the chemical, palynological and embryological features distinguishing the Nepetoideae from the other subfamilies of Lamiaceae and related families, and supports the view that the Nepetoideae are a specialised and monophyletic group within the family. Nepetoidin B was shown to have a greater antioxidant activity than gallic, rosmarinic and caffeic acids, and showed activity as an insect phagostimulant. Both compounds were antifungal.  相似文献   

15.
We performed a docking study followed by a 500-ps molecular dynamics simulation of R-state human adult hemoglobin (HbA) complexed to different heterotropic effectors [2,3-diphosphoglycerate (DPG), inositol hexaphosphate (IHP), and 2-[4-[(3,5-dichlorophenylcarbamoyl)-]methyl]-phenoxy]-2-methylpropionic acid (RSR13)) to propose a molecular basis for recently reported interactions of effectors with oxygenated hemoglobin. The simulations were carried out with counterions and explicit solvation. As reported for T-state HbA, the effector binding sites are also located in the central cavity of the R-state and differ depending on effector anionic character. DPG and IHP bind between the alpha-subunits and the RSR13 site spans the alpha1-, alpha2- and beta2-subunits. The generated models provide the first report of the molecular details of R-state HbA bound to heterotropic effectors.  相似文献   

16.
Maurocalcine (MCa) is a 33-amino acid residue peptide that was initially identified in the Tunisian scorpion Scorpio maurus palmatus. This peptide triggers interest for three main reasons. First, it helps unravelling the mechanistic basis of Ca2+ mobilization from the sarcoplasmic reticulum because of its sequence homology with a calcium channel domain involved in excitation-contraction coupling. Second, it shows potent pharmacological properties because of its ability to activate the ryanodine receptor. Finally, it is of technological value because of its ability to carry cell-impermeable compounds across the plasma membrane. Herein, we characterized the molecular determinants that underlie the pharmacological and cell-penetrating properties of maurocalcine. We identify several key amino acid residues of the peptide that will help the design of cell-penetrating analogues devoid of pharmacological activity and cell toxicity. Close examination of the determinants underlying cell penetration of maurocalcine reveals that basic amino acid residues are required for an interaction with negatively charged lipids of the plasma membrane. Maurocalcine analogues that penetrate better have also stronger interaction with negatively charged lipids. Conversely, less effective analogues present a diminished ability to interact with these lipids. These findings will also help the design of still more potent cell penetrating analogues of maurocalcine.  相似文献   

17.
The addition of n-octylamine to microsomes prepared from the midgut of tobacco hornworm (Manduca sexta) larvae causes an unusual spectral interaction. The initial optical difference spectrum appears to be the sum of reduced cytochrome b5 and a type II difference spectrum of cytochrome P-450. This initial spectrum is unstable and diminishes in size, with a concurrent shift in peak (424 to 428 nm) and trough (409 and 392 to approx. 400 nm) positions, to yield a stable spectrum identical to the type II spectrum of cytochrome P-450. Thus, in addition to its interaction with cytochrome P-450, n-octylamine causes a reduction of cytochrome b5 which subsequently becomes reoxidized.The casual factor for this unusual spectral interaction occurs in the cytoplasm and appears to be protein-bound. It was also present in similar preparations from the tobacco budworm (Heliothis virescens) but not in those from rat or mouse liver or abdomens from insecticide-resistant or susceptible houseflies (Musca domestica).Microsomes from rat and mouse liver, but not those from housefly abdomens, exhibit similar unusual spectral interactions with n-octylamine when supplemented with the soluble factor from the hornworm.  相似文献   

18.
The hydrogen bonding of polar side-chains has emerged as an important theme for membrane protein interactions. The crystal structure of the dimeric state of the transmembrane beta-barrel protein outer membrane phospholipase A (OMPLA) revealed an intermolecular hydrogen bond mediated by a highly conserved glutamine side-chain (Q94). It has been shown that the introduction of a polar residue can drive the association of model helices, and by extension it was presumed that the glutamine hydrogen bond played a key role in stabilizing the OMPLA dimer. However, a thermodynamic investigation using sedimentation equilibrium ultracentrifugation in detergent micelles reveals that the hydrogen bond plays only a very modest role in stabilizing the dimer. The Q94 side-chain is hydrogen bonded intramolecularly to residues Y92 and S96, but amino acid substitutions at these positions suggest these intramolecular interactions are not responsible for attenuating the strength of the intermolecular Q94 hydrogen bond. Other substitutions suggested that hydration of the local environment around Q94 may be responsible for the modest strength of the hydrogen bond. Heat inactivation experiments with the variants suggest that the Y92-Q94-S96 network may instead be important for thermal stability of the monomer. These results highlight the context dependence and broad range of interactions that can be mediated by polar residues in membrane proteins.  相似文献   

19.
Megumi Hirono 《BBA》2007,1767(7):930-939
The H+-translocating inorganic pyrophosphatase is a proton pump that hydrolyzes inorganic pyrophosphate. It consists of a single polypeptide with 14−17 transmembrane domains, and is found in a range of organisms. We focused on the second quarter region of Streptomyces coelicolor A3(2) H+-pyrophosphatase, which contains long conserved cytoplasmic loops. We prepared a library of 1536 mutants that were assayed for pyrophosphate hydrolysis and proton translocation. Mutant enzymes with low substrate hydrolysis and proton-pump activities were selected and their DNAs sequenced. Of these, 34 were single-residue substitution mutants. We generated 29 site-directed mutant enzymes and assayed their activity. The mutation of 10 residues in the fifth transmembrane domain resulted in low coupling efficiencies, and a mutation of Gly198 showed neither hydrolysis nor pumping activity. Four residues in cytoplasmic loop e were essential for substrate hydrolysis and efficient H+ translocation. Pro189, Asp281, and Val351 in the periplasmic loops were critical for enzyme function. Mutation of Ala357 in periplasmic loop h caused a selective reduction of proton-pump activity. These low-efficiency mutants reflect dysfunction of the energy-conversion and/or proton-translocation activities of H+-pyrophosphatase. Four critical residues were also found in transmembrane domain 6, three in transmembrane domain 7, and five in transmembrane domains 8 and 9. These results suggest that transmembrane domain 5 is involved in enzyme function, and that energy coupling is affected by several residues in the transmembrane domains, as well as in the cytoplasmic and periplasmic loops. H+-pyrophosphatase activity might involve dynamic linkage between the hydrophilic and transmembrane domains.  相似文献   

20.
It was assumed that salt-induced redox changes affect amino acid metabolism in maize (Zea mays L.), and this influence may be modified by NO. The applied NaCl treatment reduced the fresh weight of shoots and roots. This decrease was smaller after the combined application of NaCl and an NO-donor ((Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate, DETA/NO) in the shoots, while it was greater after simultaneous treatment with NaCl and nitro-l-arginine (l-NNA, inhibitor of NO synthesis) in the roots. The quantum yield efficiency of photosystem II was not influenced by the treatments. NaCl had a significant effect on the redox environment in the leaves as it was shown by the increase in the amount of glutathione disulphide and in the redox potential of the glutathione/glutathione disulphide redox pair. This influence of NaCl was modified by DETA/NO and l-NNA. Pharmacological modification of NO levels affected salt-induced changes in both the total free amino acid content and in the free amino acid composition. NaCl alone increased the concentration of almost all amino acids which effect was strengthened by DETA/NO in the case of Pro. l-NNA treatment resulted in a significant increase in the Ala, Val, Gly and Tyr contents. The Ile, Lys and Val concentrations rose considerably after the combined application of NaCl and DETA/NO compared to NaCl treatment alone in the recovery phase. NaCl also increased the expression of several genes related to the amino acid and antioxidant metabolism, and this effect was modified by DETA/NO. In conclusion, modification of NO levels affected salt-induced, glutathione-dependent redox changes and simultaneously the free amino acid composition and the level of several free amino acids. The observed much higher Pro content in plants treated with both NaCl and DETA/NO during recovery may contribute to the protective effect of NO against salt stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号