首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Burnell JN 《Plant physiology》1979,63(6):1095-1097
l-Cysteinyl-tRNA synthetases (EC 6.1.1.16) from four Astragalus species were partially purified. The substrate specificities of the cysteinyl-tRNA synthetase from three selenium accumulator species (A. crotalariae, A bisulcatus, and A. racemosus) were compared with those from two nonaccumulator species (A. lentigenosus and Phaseolus aureus). All species had similar K(m) values for cysteine, selenocysteine, and alpha-aminobutyric acid except A. bisulcatus which failed to use selenocysteine as a substrate and which had a K(m) for cysteine four times greater than the K(m) values for other species.  相似文献   

2.
A subset of methanogenic archaea synthesize the cysteinyl-tRNA(Cys) (Cys-tRNA(Cys)) needed for protein synthesis using both a canonical cysteinyl-tRNA synthetase (CysRS) as well as a set of two enzymes that operate via a separate indirect pathway. In the indirect route, phosphoseryl-tRNA(Cys) (Sep-tRNA(Cys)) is first synthesized by phosphoseryl-tRNA synthetase (SepRS), and this misacylated intermediate is then converted to Cys-tRNA(Cys) by Sep-tRNA:Cys-tRNA synthase (SepCysS) via a pyridoxal phosphate-dependent mechanism. Here, we explore the function of all three enzymes in the mesophilic methanogen Methanosarcina mazei. The genome of M. mazei also features three distinct tRNA(Cys) isoacceptors, further indicating the unusual and complex nature of Cys-tRNA(Cys) synthesis in this organism. Comparative aminoacylation kinetics by M. mazei CysRS and SepRS reveals that each enzyme prefers a distinct tRNA(Cys) isoacceptor or pair of isoacceptors. Recognition determinants distinguishing the tRNAs are shown to reside in the globular core of the molecule. Both enzymes also require the S-adenosylmethione-dependent formation of (m1)G37 in the anticodon loop for efficient aminoacylation. We further report a new, highly sensitive assay to measure the activity of SepCysS under anaerobic conditions. With this approach, we demonstrate that SepCysS functions as a multiple-turnover catalyst with kinetic behavior similar to bacterial selenocysteine synthase and the archaeal/eukaryotic SepSecS enzyme. Together, these data suggest that both metabolic routes and all three tRNA(Cys) species in M. mazei play important roles in the cellular physiology of the organism.  相似文献   

3.
A cyclic sulfur compound, identified as cysteine thiolactone by several chemical and enzymatic tests, is formed from cysteine during in vitro tRNA(Cys) aminoacylation catalyzed by Escherichia coli cysteinyl-tRNA synthetase. The mechanism of cysteine thiolactone formation involves enzymatic deacylation of Cys-tRNA(Cys) (k = 0.017 s-1) in which nucleophilic sulfur of the side chain of cysteine in Cys-tRNA(Cys) attacks its carboxyl carbon to yield cysteine thiolactone. Nonenzymatic deacylation of Cys-tRNA(Cys) (k = 0.0006 s-1) yields cysteine, as expected. Inhibition of enzymatic deacylation of Cys-tRNA(Cys) by cysteine and Cys-AMP, but not by ATP, indicates that both synthesis of Cys-tRNA(Cys) and cyclization of cysteine to the thiolactone occur in a single active site of the enzyme. The cyclization of cysteine is mechanistically similar to the editing reactions of methionyl-tRNA synthetase. However, in contrast to methionyl-tRNA synthetase which needs the editing function to reject misactivated homocysteine, cysteinyl-tRNA synthetase is highly selective and is not faced with a problem in rejecting noncognate amino acids. Despite this, the present day cysteinyl-tRNA synthetase, like methionyl-tRNA synthetase, still retains an editing activity toward the cognate product, the charged tRNA. This function may be a remnant of a chemistry used by an ancestral cysteinyl-tRNA synthetase.  相似文献   

4.
The gene encoding the cysteinyl-tRNA synthetase of E. coli was cloned from an E. coli genomic library made in lambda 2761, a lambda vector which can integrate and which carries a chloramphenicol resistance gene. A thermosensitive cysS mutant of E. coli was lysogenised and chloramphenicol-resistant colonies able to grow at 42 degrees C were selected to isolate phages containing the wild-type cysS gene. The sequence of the gene was determined. It codes for a 461 amino-acid protein and includes the sequences HIGH and KMSK known to be involved in the ATP and tRNA binding respectively of class I synthetases. The cysteinyl enzyme has segments in common with the cytoplasmic leucyl-tRNA synthetase of Neurospora crassa, the tryptophanyl-tRNA synthetase of Bacillus stearothermophilus, and the phenylalanyl-tRNA synthetase of Saccharomyces cerevisiae. Sequence comparisons show that the amino end of the cysteinyl-tRNA synthetase has similarities with prokaryotic elongation factors Tu; this region is close to the equivalent acceptor binding domain of the glutaminyl-tRNA synthetase of E. coli. There is a further similarity with the seryl enzyme (a class II enzyme) which has led us to propose that both classes had a common origin and that this was the ancestor of the cysteinyl-tRNA synthetase.  相似文献   

5.
Cysteine is ligated to tRNA(Cys) by cysteinyl-tRNA synthetase in most organisms. However, in methanogenic archaea lacking cysteinyl-tRNA synthetase, O-phosphoserine is ligated to tRNA(Cys) by O-phosphoseryl-tRNA synthetase (SepRS), and the phosphoseryl-tRNA(Cys) is converted to cysteinyl-tRNA(Cys). In this study, we determined the crystal structure of the SepRS tetramer in complex with tRNA(Cys) and O-phosphoserine at 2.6-A resolution. The catalytic domain of SepRS recognizes the negatively charged side chain of O-phosphoserine at a noncanonical site, using the dipole moment of a conserved alpha-helix. The unique C-terminal domain specifically recognizes the anticodon GCA of tRNA(Cys). On the basis of the structure, we engineered SepRS to recognize tRNA(Cys) mutants with the anticodons UCA and CUA and clarified the anticodon recognition mechanism by crystallography. The mutant SepRS-tRNA pairs may be useful for translational incorporation of O-phosphoserine into proteins in response to the stop codons UGA and UAG.  相似文献   

6.
l-Cysteinyl-tRNA synthetase (EC 6.1.1.16) from Phaseolus aureus was purified approximately 300-fold and was free of contaminating aminoacyl-tRNA synthetases. Optimum assay conditions were determined and substrate specificity and inhibitor properties were investigated using the ATP-PPi exchange reaction. The Km values for l-cysteine, ATP, and PPi were 6.20 x 10(-5)m, 1.15 x 10(-3)m, and 1 x 10(-3)m, respectively. Both l-selenocysteine (Km = 5 x 10(-5)m) and alpha-l-aminobutyric acid (Km = 1 x 10(-2)m) acted as alternative substrates of the purified cysteinyl-tRNA synthetase. The enzyme was sensitive to sulfhydryl group reagents; it was inhibited by sulfide, 0-acetylserine, and reduced glutathione.  相似文献   

7.
Cysteinyl-tRNA synthetase catalyzes the addition of cysteine to its cognate tRNA. The available eukaryotic sequences for this enzyme contain several insertions that are absent from bacterial sequences. To gain insights into the differences between the bacterial and eukaryotic forms, we previously studied the E. coli cysteinyl-tRNA synthetase. In this study, we sought to clone and express the full-length gene for the human cytoplasmic cysteinyl-tRNA synthetase. Although a gene encoding the human enzyme has been described, the predicted protein sequence, consisting of 638 amino acids, lacks homology with other eukaryotic enzymes in the carboxyl-terminus. This suggested that a further investigation was necessary to obtain the definitive sequence for the human enzyme. Here we report the isolation of a full-length cDNA that encodes a protein of 748 amino acids. The predicted protein sequence shows considerable similarity to other eukaryotic cysteinyl-tRNA synthetases in the carboxyl-terminus. We also found that approximately 20% of the mRNA encoding the cytoplasmic cysteinyl-tRNA synthetase contained an insertion of 8 bases in the 3' coding region of the mRNA. This insertion arises from an alternative splicing between the last two exons of the gene. The alternative splicing alters the reading frame and results in the replacement of the carboxy-terminal 44 amino acids with a novel sequence of 22 amino acids. Expression of the full-length and alternative forms of the enzyme in E. coli generated functional proteins that were active in aminoacylation of human cytoplasmic tRNA(Cys) with cysteine.  相似文献   

8.
A procedure is described for the purification of cysteinyl-tRNA synthetase as a side product of a multi-enzyme isolation from Bacillus stearothermophilus. The native and denatured enzyme are both shown to have a molecular weight of 54000 by gel filtration and sodium dodecyl sulphate/polyacrylamide gel electrophoresis respectively. Fingerprinting and peptide counting indicate that the polypeptide chain has a nonrepeating primary structure. The enzyme has only one binding site for each of its substrates (cysteine, ATP and tRNACys) as judged by equilibrium dialysis, active-site titration and fluorescence quenching. No evidence for the dimerisation of the enzyme in the presence of these substrates could be found. We conclude that cysteinyl-tRNA synthetase, which is the smallest aminoacyl-tRNA synthetase yet described, is both structurally and functionally monomeric.  相似文献   

9.
The gene coding for E. coli cysteinyl-tRNA synthetase (cysS) was isolated by complementation of a strain deficient in cysteinyl-tRNA synthetase activity at high temperature (43 degrees C). Sequencing of a 2.1 kbp DNA fragment revealed an open reading frame of 1383 bp coding for a protein of 461 amino acid residues with a Mr of 52,280, a value in close agreement with that observed for the purified protein, which behaves as a monomer. The sequence of CysRS bears the canonical His-Ile- Gly -His (HIGH) and Lys-Met-Ser-Lys-Ser (KMSKS) motifs characteristic of the group of enzymes containing a Rossmann fold; furthermore, it shows striking homologies with MetRS (an homodimer of 677 residues) and to a lesser extent with Ile-, Leu-, and ValRS (monomers of 939, 860, and 951 residues respectively). With its monomeric state and smaller size, CysRS is probably more closely related to the primordial aminoacyl-tRNA synthetase from which all have diverged.  相似文献   

10.
The detailed pH and temperature kinetics of human term placenta cysteinyl-tRNA synthetase (EC 6.1.1.16) were studied. The ATP-PPi exchange reaction catalyzed by the cysteinyl-tRNA synthetase was highly dependent on temperature, pH, and ionic strength. The Arrhenius plot at temperatures between 5 degrees and 40 degrees was linear, giving an activation energy of 19 +/- 2.5 Kcal/mol. The pH dependence of the kinetic parameters Km and Vmax was investigated. Apparent pKa value of 6.4 was observed in the pH-dependence of Vmax/Km plot. The pH versus Vmax plot showed two apparent pKa values of about 5.8 and 7.8. Van't Hoff's enthalpies were used to differentiate the nature of the possible groups responsible for the ionization. These results are valuable for the selection of chemical modifying reagents in characterizing the amino acid residues involved in substrate (nucleotide) binding or catalysis.  相似文献   

11.
Lipman RS  Sowers KR  Hou YM 《Biochemistry》2000,39(26):7792-7798
Synthesis of cysteinyl-tRNA(Cys) by cysteine-tRNA synthetase is required for decoding cysteine codons in all known organisms. The genome of the archaeon Methanococcus jannaschii lacks the gene for a normal cysteine-tRNA synthetase. The activity of the enzyme, however, was identified recently, and it allowed the purification of the enzyme and cloning of its gene. Sequence analysis of the gene showed that it encodes proline-tRNA synthetase and, thus, raised the possibility of dual activities in a single aminoacyl-tRNA synthetase. Assays of aminoacyl-adenylate synthesis confirmed the ability of the enzyme to activate proline and cysteine and showed that both activities were independent of tRNA. Assays of tRNA aminoacylation established the specific attachment of proline to tRNA(Pro) and cysteine to tRNA(Cys). However, in contrast to a recent report of comparable activities with cysteine and proline, results here indicate that the adenylate synthesis and aminoacylation activities with cysteine are significantly lower than the respective activity with proline. In addition, there is evidence of overlapping amino acid-binding sites and tRNA-binding sites. These considerations, among others, raised the distinct possibility that the M. jannaschii proline-tRNA synthetase may recruit additional protein or RNA factors to facilitate the synthesis of cysteinyl-tRNA(Cys).  相似文献   

12.
Selenium Metabolism in Neptunia amplexicaulis   总被引:4,自引:0,他引:4       下载免费PDF全文
ATP sulfurylase (EC 2.7.7.4), cysteinyl-tRNA synthetase (EC 6.1.1.16), and methionyl-tRNA synthetase (EC 6.1.1.10) from Neptunia amplexicaulis have been purified approximately 162-, 140- and 185-fold, respectively. Purified ATP sulfurylase in the presence of purified inorganic pyrophosphatase catalyzed the incorporation of sulfate into adenosine 5′-phosphosulfate; evidence of an analogous reaction with selenate is presented. Crude extracts catalyzed both the sulfate- and the adenosine 5′-phosphosulfate-dependent NADH oxidation in the adenosine 5′-phosphosulfate kinase assay of Burnell and Whatley (1977 Biochim Biophys Acta 481: 266-278), but an analogous reaction with selenate could not be detected. Both purified cysteinyl-tRNA synthetase and methionyl-tRNA synthetase used selenium-containing analogs as substrates in both the ATP-pyrophosphate exchange and the aminoacylation assays.  相似文献   

13.
The effects of the SH-groups binding agent p-chloromercurybenzoate (rho CMB) and the SH-containing compounds dithiothreitol (DTT), beta-mercaptoethanol (ME) and reduced glutathione (GSH) on activation by Mg2+ and K+ of ATPase in plasma membrane preparations from corn sprout root cells were studied. Rho CMB inhibited the ATPase activity, the degree of inhibition being directly dependent on the increase of the inhibitor concentration (from 10(-6) up to 10(-4) M); the inhibition was eliminated by the SH-containing agents (25 mM). DTT and ME added to the homogenization medium and ME added to the reaction mixture produced different effects on the ATPase activity of the membranes depending on the nature of the cations added. In the absence of the additives the ATPase activity was somewhat decreased, showing a sharp rise in the presence of Mg2+; an addition of K+ to a Mg2+-containing medium further increased the enzyme activity. GSH had no effect on the ATPase activation by the cations.  相似文献   

14.
Methanocaldococcus jannaschii prolyl-tRNA synthetase (ProRS) was previously reported to also catalyze the synthesis of cysteinyl-tRNA(Cys) (Cys-tRNA(Cys)) to make up for the absence of the canonical cysteinyl-tRNA synthetase in this organism (Stathopoulos, C., Li, T., Longman, R., Vothknecht, U. C., Becker, H., Ibba, M., and S?ll, D. (2000) Science 287, 479-482; Lipman, R. S., Sowers, K. R., and Hou, Y. M. (2000) Biochemistry 39, 7792-7798). Here we show by acid urea gel electrophoresis that pure heterologously expressed recombinant M. jannaschii ProRS misaminoacylates M. jannaschii tRNA(Pro) with cysteine. The enzyme is unable to aminoacylate purified mature M. jannaschii tRNA(Cys) with cysteine in contrast to facile aminoacylation of the same tRNA with cysteine by Methanococcus maripaludis cysteinyl-tRNA synthetase. Although M. jannaschii ProRS catalyzes the synthesis of Cys-tRNA(Pro) readily, the enzyme is unable to edit this misaminoacylated tRNA. We discuss the implications of these results on the in vivo activity of the M. jannaschii ProRS and on the nature of the enzyme involved in the synthesis of Cys-tRNA(Cys) in M. jannaschii.  相似文献   

15.
Injection of 0.48 or 0.72 mg of selenium/100 g body weight (as Na2SeO3) into 3-week-old chicks depressed hepatic activity of fatty acid synthetase compared with saline-injected controls. In in vitro experiments with fatty acid synthetase purified to homogeneity, Na2SeO3 was a competitive inhibitor (Ki = ca. 70 μM). Dithiothreitol (DTT) at low concentrations increased the inhibition of the enzyme by Na2SeO3. At higher DTT concentrations the potentiating effect of DTT on selenium inhibition of the enzyme disappeared. At still higher DTT concentrations, selenium inhibition of fatty acid synthetase was partically relieved. If DTT and Na2SeO3 (2 : 1 molar ratio, respectively) in inhibitory concentrations, were reacted together prior to addition to enzyme and substrate, no inhibition was observed. Potentiation of selenium inhibition of fatty acid synthetase was observed with 2-mercaptoethanol but not with ascorbate. Several organic seleno-compounds were not inhibitory. The data suggest that selenium inhibits fatty acid synthetase by reversible bonding to the sulfhydryl (SH) groups (possibly at the active sites for acetyl-CoA and/or malonyl-CoA binding) of the enzyme. Selenotrisulfide formation involving selenium and the SH groups from the enzyme and thiol compounds is advanced as a possible explanation for the interaction among Se, DTT and enzyme observed in these experiments.  相似文献   

16.
Mutants of the Escherichia coli initiator tRNA (tRNA(fMet)) have been used to examine the role of the anticodon and discriminator base in in vivo aminoacylation of tRNAs by cysteinyl-tRNA synthetase. Substitution of the methionine anticodon CAU with the cysteine anticodon GCA was found to allow initiation of protein synthesis by the mutant tRNA from a complementary initiation codon in a reporter protein. Sequencing of the protein revealed that cysteine comprised about half of the amino acid at the N terminus. An additional mutation, converting the discriminator base of tRNA(GCAfMet) from A73 to the base present in tRNA(Cys) (U73), resulted in a 6-fold increase in the amount of protein produced and insertion of greater than or equal to 90% cysteine in response to the complementary initiation codon. Substitution of C73 or G73 at the discriminator position led to insertion of little or no cysteine, indicating the importance of U73 for recognition of the tRNA by cysteinyl-tRNA synthetase. Single base changes in the anticodon of tRNA(GCAfMet) containing U73 from GCA to UCA, GUA, GCC, and GCG (changes underlined) eliminated or dramatically reduced cysteine insertion by the mutant initiator tRNA indicating that all three cysteine anticodon bases are essential for specific aminoacylation of the tRNA with cysteine in vivo.  相似文献   

17.
林肯链霉菌谷氨酰胺合成酶活力调节的研究   总被引:1,自引:0,他引:1  
对不同氮源生长条件下林肯链霉菌无细胞粗提液中谷氨酰胺合成酶 (GS)的研究结果表明 ,高浓度NH+4阻遏了GS的生物合成。从不同氮源生长条件下林肯链霉菌中分离纯化了GS ,其性质没有差别。以受腺苷化调节的产气克雷伯氏菌GS作对照 ,林肯链霉菌GS没有明显的氨休克作用 ,经蛇毒磷酸二酯酶处理后 ,其活力没有变化。这些结果都说明林肯链霉菌GS不存在腺苷化共价修饰这一调节方式。反馈抑制作用是林肯链霉菌GS的一种重要的调节方式 ,这种抑制作用是以累积的方式进行的 ,这表明各种抑制剂对GS作用位点不同 ,各种抑制剂对GS的抑制作用是相互独立的。由此推测 ,林肯链霉菌GS是一种变构酶。  相似文献   

18.
Frog epidermis tyrosinase inactivation by dithiothreitol (DTT), both in the proenzyme and active forms, have been studied. Upon increasing DTT:enzyme-up to 1o(6):1 ratios and depending on the incubation period, two inactivation steps both in proenzyme and enzyme were observed. Enzyme lost its activity faster than proenzyme. Oxygen favoured inactivation. After dialysis of the DTT:protein (10(6):1) incubation medium, 20% of the original enzyme activity was recovered. However it decreased to 15% if the enzyme had been incubated with substrate. Conformational changes due to loss of activity were not shown on the fluorescence spectra.  相似文献   

19.
Ravi Sharma 《Luminescence》2012,27(6):501-504
Cadmium sulphide nanoparticles were grown using a wet chemical method, by dissolving the reactants, cadmium chloride and sodium sulphide in water, in the presence of mercaptoethanol (ME), which was used as a capping agent. Manganese chloride was used to dope the nanoparticles. It was found that the particle size varied with different concentrations of ME. At higher concentrations of ME, smaller sized nanoparticles were synthesized. This method also reveals the high stability of nanoparticles in water. Nanoparticle properties were investigated using UV–vis absorption, photoluminescence spectroscopy, X‐ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. The particle sizes were measured by the XRD technique, SEM and optical absorption spectra and were in the range 2–6 nm. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
Aminoacyl-tRNA (AA-tRNA) formation is a key step in protein biosynthesis. This reaction is catalyzed with remarkable accuracy by the AA-tRNA synthetases, a family of 20 evolutionarily conserved enzymes. The lack of cysteinyl-tRNA (Cys-tRNA) synthetase in some archaea gave rise to the discovery of the archaeal prolyl-tRNA (Pro-tRNA) synthetase, an enzyme capable of synthesizing Pro-tRNA and Cys-tRNA. Here we review our current knowledge of this fascinating process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号