首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 0 毫秒
1.
In this synthesis we apply coevolutionary models to the interactions between socially parasitic ants and their hosts. Obligate social parasite systems are ideal models for coevolution, because the close phylogenetic relationship between these parasites and their hosts results in similar evolutionary potentials, thus making mutual adaptations in a stepwise fashion especially likely to occur. The evolutionary dynamics of host-parasite interactions are influenced by a number of parameters, for example the parasite's transmission mode and rate, the genetic structure of host and parasite populations, the antagonists' migration rates, and the degree of mutual specialisation. For the three types of obligate ant social parasites, queen-tolerant and queen-intolerant inquilines and slavemakers, several of these parameters, and thus the evolutionary trajectory, are likely to differ. Because of the fundamental differences in lifestyle between these social parasite systems, coevolution should further select for different traits in the parasites and their hosts. Queen-tolerant inquilines are true parasites that exert a low selection pressure on their host, because of their rarity and the fact that they do not conduct slave raids to replenish their labour force. Due to their high degree of specialisation and the potential for vertical transmission, coevolutionary theory would predict interactions between these workerless parasites and their hosts to become even more benign over time. Queen-intolerant inquilines that kill the host queen during colony take-over are best described as parasitoids, and their reproductive success is limited by the existing worker force of the invaded host nest. These parasites should therefore evolve strategies to best exploit this fixed resource. Slavemaking ants, by contrast, act as parasites only during colony foundation, while their frequent slave raids follow a predator prey dynamic. They often exploit a number of host species at a given site, and theory predicts that their associations are best described in terms of a highly antagonistic coevolutionary arms race.  相似文献   

2.
Caterpillars of the parasitic lycaenid butterfly are often adopted by host ants. It has been proposed that this adoption occurs because the caterpillars mimic the cuticular hydrocarbons of the host ant. This study aimed to examine whether caterpillars of the Japanese lycaenid butterfly Niphanda fusca induce adoption by mimicking their host ant Camponotus japonicus. Behavioral observations conducted in the laboratory showed that most second‐instar caterpillars were not adopted, whereas most third‐instar caterpillars were successfully adopted by host workers. A chemical comparison detected no characteristic differences in the cuticular hydrocarbon profiles between second‐ and third‐instar caterpillars. However, morphological features of the caterpillars differed between the second and third instars; third‐instar caterpillars developed exocrine glands (ant organs) such as tentacle organs and a dorsal nectary organ. These results suggest that multiple chemical signatures, not only cuticular hydrocarbons, may be important for invasion of the host ant nest.  相似文献   

3.
4.
The evolutionary interactions between permanently social parasiticspecies and their hosts are of special interest because socialparasites are not only closely dependent on, but are also closelyrelated to, their hosts. The small European slavemaker Harpagoxenussublaevis has evolved several characters that help manipulateits host. In this study we investigated adaptations of thissocial parasite to its local hosts and the geographic patternof host resistance in two main host species from three differentpopulations. In behavioral experiments, we examined whetherhost colonies from three geographically distant Leptothoraxacervorum populations varied in their ability to defend thenest against social parasites. Naive colonies from the unparasitizedEnglish population killed attacking slavemakers more often thandid host colonies from two parasitized populations. We alsofound strong interpopulation variation in the ability of theslavemaker to manipulate host behavior. H. sublaevis uses theDufour gland secretion to induce intracolonial fights and, ingeneral, this "propaganda" substance was most effective againstlocal hosts. Our results suggest that the social parasite isleading the arms race in this aspect. Similar experiments uncovereddifferences between two populations of the second host speciesL. muscorum and could demonstrate that nest defense in bothhost species is similarly efficient. In L. acervorum, monogynouscolonies were more successful in nest defense, whereas socialstructure had no impact in L. muscorum. Colony size did notaffect the efficacy of nest defense in either host species.The caste of the slavemaker had a strong influence on the successof an attack.  相似文献   

5.
Insect cuticular hydrocarbons (CHC) play a role as semiochemicals in many host–parasite systems and chemical mimicry or camouflage is a well-known mechanism of parasites to evade detection by the host. The cuckoo wasp Hedychrum rutilans (Hymenoptera, Chrysididae) is a parasitoid of larvae of the European beewolf Philanthus triangulum (Hymenoptera, Crabronidae). Females chemically mimic the cuticular hydrocarbons of their hosts to avoid detection and countermeasures when entering the host nest for oviposition. Here we report on a possible second mechanism of the chrysidid wasp H. rutilans to evade detection: the amount of CHC/mm2 of cuticle is only approximately one-fifth compared to its beewolf host. Furthermore, we show that surprisingly large amounts of CHC of beewolf females can be found on the walls of the underground nest. Potentially, these hydrocarbons might constitute a background odor against which the cuckoo wasps or their chemical traces have to be perceived by the beewolf. The reduction in the amount of CHC of the cuckoo wasps might be equivalent to a dilution of recognition cues, especially against the background odor of the nest walls, and might provide a means to escape detection within the nest due to "chemical insignificance".  相似文献   

6.
Cleptoparasitic wasps and bees smuggle their eggs into the nest of a host organism. Here the larvae of the cleptoparasite feed upon the food provision intended for the offspring of the host. As cleptoparasitism incurs a loss of fitness for the host organism (offspring of the host fail to develop), hosts of cleptoparasites are expected to exploit cues that alert them to potential cleptoparasite infestation. Cuticular hydrocarbons (CHCs) could serve as such cues, as insects inevitably leave traces of them behind when entering a nest. By mimicking the host''s CHC profile, cleptoparasites can conceal their presence and evade detection by their host. Previous studies have provided evidence of cleptoparasites mimicking their host''s CHC profile. However, the impact of this strategy on the evolution of the host''s CHC profile has remained unexplored. Here, we present results from our investigation of a host–cleptoparasite system consisting of a single mason wasp species that serves syntopically as the host to three cuckoo wasp species. We found that the spiny mason wasp (Odynerus spinipes) is able to express two substantially different CHC profiles, each of which is seemingly mimicked by a cleptoparasitic cuckoo wasp (i.e. Chrysis mediata and Pseudospinolia neglecta). The CHC profile of the third cuckoo wasp (Chrysis viridula), a species not expected to benefit from mimicking its host''s CHC profile because of its particular oviposition strategy, differs from the two CHC profiles of its host. Our results corroborate the idea that the similarity of the CHC profiles between cleptoparasitic cuckoo wasps and their hosts are the result of chemical mimicry. They further suggest that cleptoparasites may represent a hitherto unappreciated force that drives the evolution of their hosts'' CHCs.  相似文献   

7.
Animals such as social insects that live in colonies can recognizeintruders from other colonies of the same or different speciesusing colony-specific odors. Such colony odors usually haveboth a genetic and an environmental origin. When within-colonyrelatedness is high (i.e., one or very few reproductive queens),colonies comprise genetically distinct entities, and recognitionbased on genetic cues is reliable. However, when nests containmultiple queens and colonies comprise multiple nests (polydomy),the use of purely genetically determined recognition labelsmay become impractical. This is due to high within-colony geneticheterogeneity and low between-colony genetic heterogeneity.This may favor the use of environmentally determined recognitionlabels. However, because nests within polydomous colonies maydiffer in their microenvironment, the use of environmental labelsmay also be impractical unless they are actively mixed amongthe nests. Using a laboratory experiment, we found that bothisolation per se and diet composition influenced the cuticularchemical profiles in workers of Formica aquilonia. In addition,the level of aggression increased when both the proportionsof dietary ingredients and the availability of food were altered.This suggests that increased aggression was mediated by changesin the chemical profile and that environmental cues can mediaterecognition between colonies. These results also suggest thatthe underlying recognition cues are mutable in response to extrinsicfactors such as the amount and the composition of food.  相似文献   

8.
In their invasive ranges, Argentine ant populations often form one geographically vast supercolony, genetically and chemically uniform within which there is no intraspecific aggression. Here we present regional patterns of intraspecific aggression, cuticular hydrocarbons (CHCs) and population genetics of 18 nesting sites across Corsica and the French mainland. Aggression tests confirm the presence of a third European supercolony, the Corsican supercolony, which exhibits moderate to high levels of aggression, depending on nesting sites, with the Main supercolony, and invariably high levels of aggression with the Catalonian supercolony. The chemical analyses corroborated the behavioural data, with workers of the Corsican supercolony showing moderate differences in CHCs compared to workers of the European Main supercolony and strong differences compared to workers of the Catalonian supercolony. Interestingly, there were also clear genetic differences between workers of the Catalonian supercolony and the two other supercolonies at both nuclear and mitochondrial markers, but only very weak genetic differentiation between nesting sites of the Corsican and Main supercolonies (F(ST) = 0.06). A detailed comparison of the genetic composition of supercolonies also revealed that, if one of the last two supercolonies derived from the other, it is the Main supercolony that derived from the Corsican supercolony rather than the reverse. Overall, these findings highlight the importance of conducting more qualitative and quantitative analyses of the level of aggression between supercolonies, which has to be correlated with genetic and chemical data.  相似文献   

9.
Camouflage strategies are common in insect social parasites. Being accepted into an alien colony as a dominant nestmate favours behavioural and morphological adaptations to mimic a specific odour. In Polistes social parasites, abdominal tegumental glands are involved in this camouflage strategy. These glands secreting cuticular hydrocarbons are connected with a modified cuticular area of the last gastral sternite of female wasps, named Van der Vecht's organ, whose secretion is involved in rank and dominance recognition. The size of this exocrine area has been demonstrated to be under selective pressure in Polistes, as a response to an efficient dominance recognition. Because chemical and behavioural integration differs between parasitic species, we carried out a comparison of Van der Vecht's organ size between the three Polistes social parasites and their respective hosts. The parasites Polistes sulcifer and Polistes semenowi, capable of a rapid chemical mimicry and specialized to exploit a lowland host, also show an enlarged Van der Vecht's organ. Conversely, the parasite Polistes atrimandibularis, specialized on a mountain species and showing a slow chemical integration, has a smaller organ. The time available for the parasite to tune up its chemical mimicry, before the emergence of workers to be accepted as a dominant nestmate, appears to be the most important selective pressure acting on the size of this abdominal organ. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013 , 109 , 313–319.  相似文献   

10.
In a coevolutionary arms race between the cuckoo (Cuculus canorus)and its host species, both sides should evolve adaptations thatwill ensure the survival of their own offspring. The appearanceof the eggs is central in this race. We investigated the occurrenceof a defense mechanism that has not previously been demonstrated:the evolution of an increase in the variation in egg appearance(color and markings) between clutches, and an increase in theuniformity of eggs within clutches. We quantified the degreeof homogeneity within and between clutches in the color andmarking pattern of eggs of two groups of species, those regardedas suitable and as unsuitable hosts. The results show that statisticallysignificant differences in the predicted direction existed atthe species level for the interclutch variation between thetwo groups, but not for the intraclutch variation. For 34 speciesfor which the rejection rates of artificial cuckoo eggs wereknown, the degree of variation was compared with the rejectionrates. We found a statistically significant positive relationshipbetween the rejection rate and the degree of interclutch variationin egg appearance, but not between the rejection rate and intraclutchvariation. These results support the idea that there has beena coevolutionary arms race between the cuckoo and its hostsin Europe, leading to a high degree of interclutch variationin egg appearance in passerines. The lack of a trend regardingintraclutch variation is discussed.  相似文献   

11.
Some myrmecophilous animals show myrmecomorphy, however, its adaptive significance is still controversial. We investigated a possible benefit of Batesianmimicry between a myrmecophilous staphylinid beetle, Pella comes, and its host ant, Lasius (Dendrolasius) spathepus, by using a common ant predator, the Japanese treefrog, Hyla japonica. In the field, H. japonica were found to feed on numerous ants and other insects, but in laboratory experiments they refused feeding on L. spathepus. L. spathepus was highly repellent to these frogs, while P. comes was potentially palatable. After repeated contacts with L. spathepus which led to its avoidance the treefrogs started to reject P. comes as well . This suggests that myrmecomorphy is beneficial to P. comes, reducing the risk of predation, and that it , may represent a case of Batesian mimicry. may represent a case of Batesian mimicry. Received 15 February 2005; revised 12 April 2005; accepted 18 April 2005.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号