首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stem cells ensure the maintenance of tissue homeostasis throughout life by tightly regulating their self‐renewal and differentiation. In a recent study published in Nature, Nakada et al, 2014 unveil an unexpected endocrine mechanism that regulates hematopoietic stem cell (HSC) self‐renewal.  相似文献   

2.
The haemopoietic stem cell (HSC) has long been regarded as an archetypal, tissue specific, stem cell, capable of completely regenerating haemopoiesis after myeloablation. It has proved relatively easy to harvest HSC, from bone marrow or peripheral blood. In turn, isolation of these cells has allowed therapeutic stem cell transplantation protocols to be developed, that capitalise on their prodigious self renewal and proliferative capabilities. Ex vivo approaches have been described to isolate, genetically manipulateand expand pluripotent stem cell subsets. These techniques have been crucial to the development of gene therapy, and may allow adults to enjoy the potential advantages of cord blood transplantation. Recently, huge conceptual changes have occurred in stem cell biology. In particular, the dogma that, in adults, stem cells are exclusively tissue restricted has been questioned and there is great excitement surrounding the potential plasticity of these cells, with the profound implications that this has, for developing novel cellular therapies. Mesenchymal stem cells, multipotent adult progenitor cells and embryonic stem cells are potential sources of cells for transplantation purposes. These cells may be directed toproduce HSC, in vitro and in the future may be used for therapeutic, or drug development, purposes. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
The age‐dependent decline in the self‐renewal capacity of stem cells plays a critical role in aging, but the precise mechanisms underlying this decline are not well understood. By limiting proliferative capacity, senescence is thought to play an important role in age‐dependent decline of stem cell self‐renewal, although direct evidence supporting this hypothesis is largely lacking. We have previously identified the E3 ubiquitin ligase Smurf2 as a critical regulator of senescence. In this study, we found that mice deficient in Smurf2 had an expanded hematopoietic stem cell (HSC) compartment in bone marrow under normal homeostatic conditions, and this expansion was associated with enhanced proliferation and reduced quiescence of HSCs. Surprisingly, increased cycling and reduced quiescence of HSCs in Smurf2‐deficient mice did not lead to premature exhaustion of stem cells. Instead, HSCs in aged Smurf2‐deficient mice had a significantly better repopulating capacity than aged wild‐type HSCs, suggesting that decline in HSC function with age is Smurf2 dependent. Furthermore, Smurf2‐deficient HSCs exhibited elevated long‐term self‐renewal capacity and diminished exhaustion in serial transplantation. As we found that the expression of Smurf2 was increased with age and in response to regenerative stress during serial transplantation, our findings suggest that Smurf2 plays an important role in regulating HSC self‐renewal and aging.  相似文献   

4.
Stem cells resident in adult tissues are principally quiescent, yet harbor enormous capacity for proliferation to achieve self renewal and to replenish their tissue constituents. Although a single hematopoietic stem cell (HSC) can generate sufficient primitive progeny to repopulate many recipients, little is known about the molecular mechanisms that maintain their potency or regulate their self renewal. Here we have examined the gene expression changes that occur over a time course when HSCs are induced to proliferate and return to quiescence in vivo. These data were compared to data representing differences between naturally proliferating fetal HSCs and their quiescent adult counterparts. Bioinformatic strategies were used to group time-ordered gene expression profiles generated from microarrays into signatures of quiescent and dividing stem cells. A novel method for calculating statistically significant enrichments in Gene Ontology groupings for our gene lists revealed elemental subgroups within the signatures that underlie HSC behavior, and allowed us to build a molecular model of the HSC activation cycle. Initially, quiescent HSCs evince a state of readiness. The proliferative signal induces a preparative state, which is followed by active proliferation divisible into early and late phases. Re-induction of quiescence involves changes in migratory molecule expression, prior to reestablishment of homeostasis. We also identified two genes that increase in both gene and protein expression during activation, and potentially represent new markers for proliferating stem cells. These data will be of use in attempts to recapitulate the HSC self renewal process for therapeutic expansion of stem cells, and our model may correlate with acquisition of self renewal characteristics by cancer stem cells.  相似文献   

5.
6.
Homing and mobilization in the stem cell niche.   总被引:39,自引:0,他引:39  
All mature blood cells are derived from the haemopoietic stem cell (HSC). In common with all other haemopoietic cells, stem cells are mobile, and it is this property of mobility that has allowed bone marrow transplantation to become a routine clinical option. Successful transplantation requires haemopoietic stem cells to home to the bone marrow, leave the peripheral circulation and become stabilized in regulatory niches in the extravascular space of the bone marrow cavity. This homing and tethering process is reversible - haemopoietic stem cells can be released from their bone marrow tethering through changes in molecular interactions, which are also important in homing following transplantation. The molecular mechanisms regulating this two-way flow of stem cells are beginning to be elucidated, and much recent data has emerged that sheds light on the processes and molecules involved in these complex physiological events. This article reviews current knowledge of the adhesive, homing and proliferative influences acting on HSCs and progenitor cells.  相似文献   

7.
The enormous regenerative capacity of the blood system to sustain functionally mature cells are generated from highly proliferative, short‐lived progenitors, which in turn arise from a rare population of pluripotent and self‐renewing hematopoietic stem cells (HSC). In the bone marrow, these stem cells are kept in a low proliferative, relatively quiescent state in close proximity to stromal cells and osteoblasts, forming specialized niches. The interaction in particular to bone is crucial to prevent exhaustion of HSCs from uncontrolled cell‐cycle entry and to excessive proliferation. In addition, the niche and its components protect stem cells from stress, such as accumulation of reactive oxygen species and DNA damage. One of the key issues is to identify conditions to increase the number of HSCs, either in vivo or during ex vivo growth cultures. This task has been very difficult to resolve and most attempts have been unsuccessful. However, the mechanistic insights to HSC self‐renewal and preservation are gradually increasing and there is now hope that future research will enable scientists and clinicians to modulate the process. In this review, we will focus on the molecular mechanisms of self‐renewal and HSC maintenance in the light of novel findings that HSCs reside at the lowest end of an oxygen gradient. Hypoxia appears to regulate hematopoiesis in the bone marrow by maintaining important HSC functions, such as cell cycle control, survival, metabolism, and protection against oxidative stress. To improve the therapeutic expansion of HSCs we need to learn more about the molecular mechanisms of hypoxia‐mediated regulation. J. Cell. Physiol. 222:17–22, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
In most organ systems, regeneration is a coordinated effort that involves many stem cells, but little is known about whether and how individual stem cells compensate for the differentiation deficiencies of other stem cells. Functional compensation is critically important during disease progression and treatment. Here, we show how individual hematopoietic stem cell (HSC) clones heterogeneously compensate for the lymphopoietic deficiencies of other HSCs in a mouse. This compensation rescues the overall blood supply and influences blood cell types outside of the deficient lineages in distinct patterns. We find that highly differentiating HSC clones expand their cell numbers at specific differentiation stages to compensate for the deficiencies of other HSCs. Some of these clones continue to expand after transplantation into secondary recipients. In addition, lymphopoietic compensation involves gene expression changes in HSCs that are characterized by increased lymphoid priming, decreased myeloid priming, and HSC self‐renewal. Our data illustrate how HSC clones coordinate to maintain the overall blood supply. Exploiting the innate compensation capacity of stem cell networks may improve the prognosis and treatment of many diseases.  相似文献   

9.
MicroRNAs (miRs) are functionally important in spermatogenesis, which is the self‐renewal or differentiation of spermatogonial stem cells (SSCs). Here, we report a novel role for miR‐10b in regulating the self‐renewal of mouse SSCs. We showed that miR‐10b was highly expressed in mouse SSCs in vitro and enhanced SSC proliferation. Knockdown of miR‐10b significantly increased the apoptosis of SSCs compared with controls. Kruppel‐like factor 4 was found to be a target gene of miR‐10b in the enhancement of SSC proliferation. These findings further our understanding of the self‐renewal and differentiation of SSCs and provide a basis for the diagnosis, treatment, and prevention of male infertility.  相似文献   

10.
11.
12.
The presence of haemopoietic stem cells (HSC) in the foetal mouse thymus was assessed to determine whether all cells which enter the developing organ are precommitted to thymocyte differentiation, or if stem cell multipotentiality still exists. The Till and McCulloch spleen colony assay was used to delineate foetal-thymus derived HSC in lethally irradiated recipients. Of the range examined, between 13 days of gestation to birth, a peak of stem cell activity occurs in 15-day foetal thymus. The surface colonies produced by the thymus-derived HSC are small compared to colonies produced by the liver derived HSC, although well within the range of the latter. Histologically, five types of colonies were identifiable which were produced by the thymus-derived HSC, indicating that these cells retain the potential to form a wide range of differentiated colonies.  相似文献   

13.
14.
Haemopoietic stem cells   总被引:4,自引:0,他引:4  
  相似文献   

15.
Bone marrow is the main site for hematopoiesis in adults. It acts as a niche for hematopoietic stem cells (HSCs) and contains non‐hematopoietic cells that contribute to stem cell dormancy, quiescence, self‐renewal, and differentiation. HSC also exist in resting spleen of several species, although their contribution to hematopoiesis under steady‐state conditions is unknown. The spleen can however undergo extramedullary hematopoiesis (EMH) triggered by physiological stress or disease. With the loss of bone marrow niches in aging and disease, the spleen as an alternative tissue site for hematopoiesis is an important consideration for future therapy, particularly during HSC transplantation. In terms of harnessing the spleen as a site for hematopoiesis, here the remarkable regenerative capacity of the spleen is considered with a view to forming additional or ectopic spleen tissue through cell engraftment. Studies in mice indicate the potential for such grafts to support the influx of hematopoietic cells leading to the development of normal spleen architecture. An important goal will be the formation of functional ectopic spleen tissue as an aid to hematopoietic recovery following clinical treatments that impact bone marrow. For example, expansion or replacement of niches could be considered where myeloablation ahead of HSC transplantation compromises treatment outcomes.  相似文献   

16.
Lin28为一种保守的RNA结合蛋白质,在细胞代谢、细胞周期和多能性维持中具有重要调控作用。近年来,发现Lin28在哺乳动物原始生殖细胞形成和分化、精原干细胞的形成、自我更新和分化调控中具有不可替代的作用。本文对Lin28作用及其对哺乳动物干细胞和生殖细胞发育分化影响的研究进展作一简述。  相似文献   

17.
Hematopoietic stem cells provide an indispensible source for replenishing the blood with all its constituents throughout the organism''s lifetime. Mice with a compromised hematopoietic stem cell compartment cannot survive. p53, a major tumor suppressor gene, has been implicated in regulation of hematopoiesis. In particular, p53 plays a role in homeostasis by regulating HSC quiescence and self renewal. We recently utilized a hypomorphic p53515C allele in conjunction with Mdm2, a negative regulator of p53, to gain insights into the role of p53 in hematopoietic regulation. Our analyses revealed that p53515C/515CMdm2−/− double mutant mice die soon after birth due to hematopoietic failure. Further mechanistic studies revealed that in the absence of Mdm2, ROS-induced postnatal p53 activity depletes hematopoietic stem cells, progenitors and differentiated cells.Key words: HSC, reactive oxygen species, ROS, p53, Mdm2  相似文献   

18.
19.
Accumulating evidence demonstrates existence of cancer stem cells (CSCs), which are suspected of contributing to cancer cell self‐renewal capacity and resistance to radiation and/or chemotherapy. Including evasion of apoptosis and autophagic cell death, CSCs have revealed abilities to resist cell death, making them appealing targets for cancer therapy. Recently, molecular mechanisms of apoptosis and of autophagy in CSCs have been gradually explored, comparing them in stem cells and in cancer cells; distinct expression of these systems in CSCs may elucidate how these cells exert their capacity of unlimited self‐renewal and hierarchical differentiation. Due to their proposed ability to drive tumour initiation and progression, CSCs may be considered to be potentially useful pharmacological targets. Further, multiple compounds have been verified as triggering apoptosis and/or autophagy, suppressing tumour growth, thus providing new strategies for cancer therapy. In this review, we summarized regulation of apoptosis and autophagy in CSCs to elucidate how key proteins participate in control of survival and death; in addition, currently well‐studied compounds that target CSC apoptosis and autophagy are selectively presented. With increasing attention to CSCs in cancer therapy, researchers are now trying to find responses to unsolved questions as unambiguous as possible, which may provide novel insight into future anti‐cancer regimes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号