首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
1. The reactions between chlorogenoquinone, the o-quinone formed during the oxidation of chlorogenic acid, and bovine serum albumin depend on the ratio of reactants. 2. When the serum albumin is in excess, oxygen is not absorbed and the products are colourless. This reaction probably involves the thiol group of bovine serum albumin; it does not occur with bovine serum albumin which has been treated with p-chloromercuribenzoate, iodoacetamide or Ellman's reagent. 3. When bovine serum albumin reacts with excess of chlorogenoquinone, oxygen is absorbed and the products are red. The red colour is probably formed by reaction of the lysine in-amino groups of bovine serum albumin, as it is prevented by treating the protein with formaldehyde, succinic anhydride or O-methylisourea. 4. Bovine serum albumin modified by a 1.5-fold (BSA-Q) and a fivefold (BSA-Q2) excess of chlorogenoquinone were separated by chromatography on DEAE-Sephadex A-50, and some of their properties observed. 5. Reaction of BSA-Q2 with fluorodinitrobenzene suggests that the terminal alpha-amino group, as well as lysine in-amino groups, are combined with chlorogenoquinone.  相似文献   

2.
Electron spin resonance (ESR) studies that on reaction with NADPH, alloxan was reduced forming labile anion radicals giving a 7-line signal with g = 2.005. These radicals were also produced on incubation of alloxan with rat liver subcellular fractions and their production was greatly enhanced by NADPH. Alloxan effectively scavenged superoxide anion generated by a xanthine-xanthine oxidase (XOD) system in association with its reduction to these anion radicals. These radicals were also formed during incubation of alloxan with rat pancreatic beta-cells. These results suggest that the cytotoxicity of alloxan is related to the formation of alloxan anion radicals.  相似文献   

3.
A simple method was developed for the controlled cleavage of protein disulfide bonds and the simultaneous blockage of the free sulfhydryl groups in the absence of a denaturant. The disulfide bonds of bovine serum albumin were cleaved unsymmetrically at pH 7.0 using 0.1 M sulfite in 0.1 M phosphate buffer and the free sulfhydryl groups formed were sulfonated in an oxidation-reduction cycle using molecular oxygen and 400 microM cupric sulfate as a catalyst. The reaction was affected by cupric ion concentration, sulfite concentration, reaction pH and temperature. The standardized method was successfully used to cleave the disulfide bonds of other proteins pepsin, trypsin, and chymotrypsin. The method is reliable and can be used for achieving progressive cleavage of disulfide bonds in proteins without employing a denaturant.  相似文献   

4.
S-Nitrosocompounds are formed when aqueous solutions of cysteine or glutathione are exposed to ultrasound (880 kHz) in air. The yield of the S-nitrosocompounds was as high as 10% for glutathione and 4% for cysteine of the initial thiol concentrations (from 0.1 to 10 mM) in the aqueous solutions. In addition to the formation of S-nitrosocompounds, thiol oxidation to disulfide forms was observed. After the oxidation of over 70% of the sulfhydryl groups, formation of peroxide compounds as well as cysteic acid derivatives was recorded. The formation of the peroxide compounds and peroxide radicals in the ultrasound field reduced the yield of S-nitrosocompounds. S-Nitrosocompounds were not formed when exposing low-molecular-weight thiols to ultrasound in atmospheres of N2 or CO. In neutral solutions, ultrasound-exposed cysteine or glutathione released NO due to spontaneous degradation of the S-nitrosocompounds. N2O3, produced due to the spontaneous degradation of the S-nitrosocompounds in air, nitrosylated sulfhydryl groups of glutathione manifested in the appearance of new absorption bands at 330 and 540 nm. The nitrogen compounds formed in an ultrasound field modified the sulfhydryl groups of apohemoglobin and serum albumin. The main target for ultrasound-generated oxygen free radicals were cystine residues oxidized to cysteic acid residues.  相似文献   

5.
The influence of alloxan diabetes, phenylbutazone (20 mg/kg), and D-penicillamine (30 mg/kg) on 6-sulfanilamidoindazole arthritis was investigated. Arthritis was not altered by the alloxan-diabetic stage neither by injecting alloxan during developing arthritis nor by injecting it before the beginning of 6-sulfanilamidoindazole administration. However, the arthritis was completely suppressed by phenylbutazone after both methods of administration. D-penicillamine was without significant effect. Decrease of serum sulfhydryl groups and increase of serum diphenylamine value occurring during arthritis were prevented by phenylbutazone whereas alloxan and D-penicillamine did not.  相似文献   

6.
Dopamine (DA) is an unstable neurotransmitter that readily oxidizes to the DA quinone and forms reactive oxygen species, such as superoxide and hydrogen peroxide. The oxidized dopamine also forms thiol conjugates with sulfhydryl groups on cysteine, glutathione, and proteins. In the present study, we determined the redox potential of the protein-bound DA and established a novel mechanism for the oxidative modification of the protein, in which the DA-cysteine adduct generated in the DA-modified protein causes oxidative modification of the DA-bound protein in the presence of Cu2+. Exposure of a sulfhydryl enzyme, glyceraldehyde-3-phosphate dehydrogenase, to DA resulted in a significant loss of sulfhydryl groups and the formation of the DA-cysteine adduct. When the DA-modified protein was incubated with Cu2+, we observed aggregation and degradation of the DA-bound protein and concomitant formation of a protein carbonyl, a marker of an oxidatively modified protein. Furthermore, we analyzed the carbonyl products generated during the Cu2+-catalyzed oxidation of the DA-modified protein and revealed the production of glutamic and aminoadipic semialdehydes, consisting of the protein carbonyls generated. The cysteinyl-DA residue generated in the DA-modified protein was suggested to represent a redox-active adduct, based on the observations that the cysteinyl-DA adduct, 5-S-cysteinyldopamine, produced by the reaction of cysteine with DA, gave rise to the oxidative modification of bovine serum albumin in the presence of Cu2+. These data suggest that the DA-modified protein may be involved in redox alteration under oxidative stress, whereby DA covalently binds to cysteine residues, generating the redox-active cysteinyl-DA adduct that causes the metal-catalyzed oxidation of protein.  相似文献   

7.
Antioxidant protection of human serum albumin by chitosan   总被引:1,自引:0,他引:1  
Inhibition of protein oxidation by reactive oxygen species (ROS) would confer benefit to living organisms exposed to oxidative stress, because oxidized proteins are associated with many diseases and can propagate ROS-induced damage. We measured the ability of 2800Da chitosan, D-glucosamine and N-acetyl glucosamine to protect human serum albumin from oxidation by peroxyl radicals derived from 2,2'-azobis(2-amidinopropane)dihydrochloride and N-centered radicals from 1,1'-diphenyl-2-picrylhydrazyl and from 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid). Comparison with the antioxidant action of vitamin C showed that, on a molar basis, chitosan was equally effective in preventing formation of carbonyl and hydroperoxide groups in human serum albumin exposed to peroxyl radicals. It was also a potent inhibitor of conformational changes in the protein, assessed by absorption spectrum and intrinsic fluorescence. D-glucosamine was much less effective and N-acetyl glucosamine was not a useful antioxidant. Protection of the albumin from peroxyl radicals was achieved by scavenging of peroxyl radical. Chitosan was also a good scavenger of N-centered radicals, with glucosamine and N-acetyl glucosamine much less effective. The results suggest that administration of low molecular weight chitosans may inhibit neutrophil activation and oxidation of serum albumin commonly observed in patients undergoing hemodialysis, resulting in reduction of oxidative stress associated with uremia.  相似文献   

8.
Modification of contractile proteins by oxygen free radicals in rat heart   总被引:2,自引:0,他引:2  
This study was undertaken to investigate the effects of oxygen free radicals on myofibrillar creatine kinase activity. Isolated rat heart myofibrils were incubated with xanthine+xanthine oxidase (a superoxide anion radical-generating system) or hydrogen peroxide and assayed for creatine kinase activity. To clarify the involvement of changes in sulfhydryl groups in causing alterations in myofibrillar creatine kinase activity, 1) effects of N-ethylmaleimide (sulfhydryl groups reagent) on myofibrillar creatine kinase activity, 2) effect of oxygen free radicals on myofibrillar sulfhydryl groups content, and 3) protective effects of dithiothreitol (sulfhydryl groups-reducing agent) on the changes in myofibrillar creatine kinase activity due to oxygen free radicals were also studied. Xanthine+xanthine oxidase inhibited creatine kinase activity both in a time-and a concentration-dependent manner. Superoxide dismutase (SOD) showed a protective effect on the depression in creatine kinase activity caused by xanthine+xanthine oxidase. Hydrogen peroxide inhibited creatine kinase activity in a concentration-dependent manner; this inhibition was prevented by the addition of catalase. N-ethylmaleimide reduced creatine kinase activity in a dose-dependent manner. The content of myofibrillar sulfhydryl groups was decreased by xanthine+xanthine oxidase; this reduction was protected by SOD. Furthermore, the depression in myofibrillar creatine kinase activity by xanthine+xanthine oxidase was protected by the addition of dithiothreitol. Oxygen free radicals may inhibit myofibrillar creatine kinase activity by modifying sulfhydryl groups in the enzyme protein. The reduction of myofibrillar creatine kinase activity may lead to a disturbance of energy utilization in the heart and may contribute to cardiac dysfunction due to oxygen free radicals.  相似文献   

9.
Preparation and use of N-iodoacetyltyramine in generation of 125I-labeled compounds is described. The kinetics of alkylation of N-acetylcysteine by N-iodoacetyltyramine (k2 = 3.0 M-1 s-1) and N-chloroacetyltyramine (k2 = 0.12 M-1 s-1) indicate that N-iodoacetyltyramine is more useful for labeling sulfhydryl-containing compounds to high specific activity with 125I. Conditions for preparation of carrier-free 125I-labeled N-iodoacetyl-3-monoiodotyramine in 50% yield based on starting iodide are described. The high degree of group specificity of N-iodoacetyl-3-monoiodotyramine reaction with sulfhydryl groups is demonstrated by the high reactivity toward sulfhydryl-containing bovine serum albumin and low reactivity toward N-ethylmaleimide-blocked bovine serum albumin and IgG. 125I-labeled N-iodoacetyl-3-monoiodotyramine was also used to prepare an 125I-labeled ACTH derivative that retains full biological activity, further demonstrating the selectivity toward reactions with sulfhydryl groups.  相似文献   

10.
Alloxan has been widely used to produce experimental diabetes mellitus syndrome. This compound causes necrosis of pancreatic beta-cells and, as is well known, induces oxidant free radicals which play a relevant role in the etiology and pathogenesis of both experimental and human diabetes mellitus. Previously we have reported hypoglycemic and antilipoperoxidative actions of silymarin in serum and pancreatic tissue respectively. The aim of this study was to test whether silymarin could reduce the hyperglycemia and revert the pancreatic damage in alloxan treated rats, tested with silymarin in two protocols: using both compounds simultaneously for four or eight doses, or using the compound 20 days after alloxan administration for 9 weeks. Serum glucose and insulin were determined, and pancreatic fragments were used for histology and insulin immunohistochemistry. Pancreatic islets were isolated to assess insulin and Pdx1 mRNA expression by RT-PCR. Our results showed that 72 hours after alloxan administration, serum glucose increased and serum insulin decreased significantly, whereas pancreatic tissue presented morphological abnormalities such as islet shrinkage, necrotic areas, loss of cell organization, widespread lipoid deposits throughout the exocrine tissue, and loss of beta cells, but insulin and glucagon immunoreactivity was scattered if any. In contrast the pancreatic tissue and both insulin and glucose serum levels of rats treated with silymarin were similar to those of control animals. In addition, insulin and glucagon immunoreactive cells patterns in Langerhans islets were also normal, and normal insulin and Pdx1 mRNA expression patterns were detected during pancreatic recovery in Langerhans islets. The overall results suggest that silymarin induces pancreatic function recovery demonstrated by insulin and glucagon expression protein and normoglycemia after alloxan pancreatic damage in rats.  相似文献   

11.
Alloxan is a diabetogenic drug and is known to induce diabetes through generation of free radicals. The toxic oxygen species can be detoxified by antioxidant enzyme system and thus reduce the deleterious effect of lipid peroxidation. Erythrocytes exposed to alloxan induced lipid peroxidationin vivo as well asin vitro. Although alloxan treatment produced a deleterious effect on antioxidant enzymes, pretreatment with glutathione and selenium led to a recovery of the activities of superoxide dismutase and glutathione peroxidase. However, catalase activity increased on alloxan treatment. Alloxan reduced blood glucose level significantly within 60 min but thereafter a slow and steady rise was observed.  相似文献   

12.
The specificity and biochemical basis of inactivation of calmodulin-dependent protein kinase II by alloxan was studied in dispersed rat brain cells and a partially purified kinase preparation from an insulin-secreting tumor-cell line, RINm5f. When mechanically dispersed rat brain cells were incubated with [32P]-phosphate to label endogenous ATP, depolarization with 44 mM KCl produced a significant (P = 0.03) increase in phosphorylation of endogenous synapsin (132 +/- 8% of basal). Pre-treatment of the brain cells with 1.5 mM alloxan reduced depolarization-sensitive synapsin phosphorylation (109 +/- 5%). Phosphopeptide mapping of depolarization-phosphorylated synapsin showed that alloxan pre-treatment reduced phosphorylation specifically at synapsin sites phosphorylated by calmodulin-dependent protein kinase II. The results demonstrate selective inactivation of calmodulin-dependent protein kinase II activity by alloxan in an intact cell system, which may be useful in the study of the Type II kinase in cells and tissues. Using a partially purified kinase preparation from RINm5f cells, alloxan (100 microM) inactivated 76 +/- 1% calmodulin-dependent protein kinase II activity in 5 min at 37 degrees C. Subsequent incubation with dithiothreitol restored most of the activity. 5,5'-Dithiobis (2-nitrobenzoic acid) (I50 = 2.5 microM) also inactivated the kinase. These results suggested that a sulfhydryl group was involved at the inactivation site. Iodoacetamide (1.0 mM) had no inhibitory effect; however, preincubation with iodoacetamide protected the kinase activity from subsequent inactivation by alloxan. Covalent binding of [14C]-alloxan to calmodulin-dependent protein kinase was demonstrated.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
This study was undertaken to examine the effects of oxygen free radicals on mitochondrial creatine kinase activity in rat heart. Xanthine plus xanthine oxidase (superoxide anion radical generating system) reduced mitochondrial creatine kinase activity both in a dose- and a time-dependent manner. Superoxide dismutase showed a protective effect on depression in creatine kinase activity due to xanthine plus xanthine oxidase. Hydrogen peroxide inhibited creatine kinase activity in a dose-dependent manner, this inhibition was protected by the addition of catalase. In order to understand the detailed mechanisms by which oxygen free radicals inhibit mitochondrial creatine kinase activity, the effects of oxygen free radicals on mitochondrial sulfhydryl groups were examined. Mitochondrial sulfhydryl groups contents were decreased by xanthine plus xanthine oxidase or hydrogen peroxide; this depression in sulfhydryl groups contents was prevented by the addition of superoxide dismutase or catalase. N-Ethylmaleimide (sulfhydryl group reagent) expressed inhibitory effects on the creatine kinase activity both in a dose- and a time-dependent manner; dithiothreitol or cysteine (sulfhydryl group reductant) showed protective effects on the creatine kinase activity depression induced by N-ethylmaleimide. Dithiothreitol or cysteine also blocked the depression of mitochondrial creatine kinase activity caused by xanthine plus xanthine oxidase or hydrogen peroxide. These results lead us to conclude that oxygen free radicals may inhibit mitochondrial creatine kinase activity by modifying sulfhydryl groups in the enzyme protein.  相似文献   

14.
Cytochrome c was reduced when superoxide was generated from xanthine oxidase in the presence of alloxan, and by the reaction of alloxan and with reduced glutathione. In each case, most of the reduction was inhibited by superoxide dismutase, but considerably more enzyme was required than with superoxide alone. This indicates that the superoxide dismutase-inhibitible cytochrome c reduction was mainly due to a direct reaction with the alloxan radical, and implies that other reactions that are inhibited by superoxide dismutase could be due to either alloxan radicals or superoxide.  相似文献   

15.
Acrolein, a representative carcinogenic aldehyde that could be ubiquitously generated in biological systems under oxidative stress, shows facile reactivity with the epsilon-amino group of lysine to form N(epsilon)-(3-formyl-3,4-dehydropiperidino)lysine (FDP-lysine) as the major product (Uchida, K., Kanematsu, M., Morimitsu, Y., Osawa, T., Noguchi, N., and Niki, E. (1998) J. Biol. Chem. 273, 16058-16066). In the present study, we determined the electrophilic potential of FDP-lysine and established a novel mechanism of protein thiolation in which the FDP-lysine generated in the acrolein-modified protein reacts with sulfhydryl groups to form thioether adducts. When a sulfhydryl enzyme, glyceraldehyde-3-phosphate dehydrogenase, was incubated with acrolein-modified bovine serum albumin in sodium phosphate buffer (pH 7.2) at 37 degrees C, a significant loss of sulfhydryl groups, which was accompanied by the loss of enzyme activity and the formation of high molecular mass protein species (>200 kDa), was observed. The FDP-lysine adduct generated in the acrolein-modified protein was suggested to represent a thiol-reactive electrophile based on the following observations. (i) N(alpha)-acetyl-FDP-lysine, prepared from the reaction of N(alpha)-acetyl lysine with acrolein, was covalently bound to glyceraldehyde-3-phosphate dehydrogenase. (ii) The FDP-lysine derivative reacted with glutathione to form a GSH conjugate. (iii) The acrolein-modified bovine serum albumin significantly reacted with GSH to form a glutathiolated protein. Furthermore, the observation that the glutathiolated acrolein-modified protein showed decreased immunoreactivity with an anti-FDP-lysine monoclonal antibody suggested that the FDP-lysine residues in the acrolein-modified protein served as the binding site of GSH. These data suggest that thiolation of the protein-bound acrolein may be involved in redox alteration under oxidative stress, whereby oxidative stress generates the increased production of acrolein and its protein adducts that further potentiate oxidative stress via the depletion of GSH in the cells.  相似文献   

16.
Reuber rat hepatoma cells (R-Y121B) cultured at 0.5% serum accumulated apoalkaline phosphatase in intact cells. When R-Y121B cells were cultured in the presence of bovine serum albumin, alkaline phosphatase activity increased in the cells, and the associated increase in enzyme activity differed amongst bovine serum albumin preparations. The treatment of bovine serum albumin with activated charcoal not only enhanced the effect of serum albumin on alkaline phosphatase activity, but also cancelled the differences due to different preparations of serum albumin. In contrast, no effect from serum albumin was observed in the increase of alkaline phosphatase activity in R-Y121B cell homogenates incubated at 37 degrees C. The activated-charcoal treatment of bovine serum albumin increased the amount of Zn2+ bound to the protein. When R-Y121B cells were cultured with bovine serum albumin, the concentration of Zn2+ in the cytosol fraction slightly increased. However, the effect of serum albumin on Zn2+ concentration in the cytosol fractions was independent of charcoal treatment. It was concluded that serum albumin with Zn2+ induces the activation of apoalkaline phosphatase due to Zn2+ binding.  相似文献   

17.
We have investigated the effect of alloxan on insulin secretion and glucose homeostasis in rats maintained on a 17% protein (normal protein, NP) or 6% protein (low protein, LP) diet from weaning (21 days old) to adulthood (90 days old). The incidence of alloxan diabetes was higher in the NP (3.5 times) than in the LP group. During an oral glucose tolerance test, the area under serum glucose curve was lower in LP (57%) than in NP rats while there were no differences between the two groups in the area under serum insulin curve. The serum glucose disappearance rate (Kitt) after exogenous insulin administration was higher in LP (50%) than in NP rats. In pancreatic islets isolated from rats not injected with alloxan, acute exposure to alloxan (0.05 mmol/L) reduced the glucose- or arginine-stimulated insulin secretion of NP islets by 78% and 56%, respectively, whereas for islets from LP rats, the reduction was 47% and 17% in the presence of glucose and arginine, respectively. Alloxan treatment reduced the glucose oxidation in islets from LP rats to a lesser extent than in NP islets (23% vs. 56%). In conclusion, alloxan was less effective in producing hyperglycemia in rats fed a low protein diet than in normal diet rats. This effect is attributable to an increased peripheral sensivity to insulin in addition to a better preservation of glucose oxidation and insulin secretion in islets from rats fed a low protein diet.  相似文献   

18.
When human diploid fibroblasts IMR-90 are cultured in routinely used medium (Eagle's basal medium supplemented with 10% fetal calf serum), sulfhydryl compounds appear in the medium. The major component of these sulfhydryl compounds is cysteine, and it is shown that a part of medium cystine is converted into cysteine by the cells. It is also shown that the sulfhydryl groups of serum albumin, which are masked and barely detectable before the culture, are restored. Probably cysteine formed by the cells reacts with serum albumin to give rise to the protein sulfhydryl groups via sulfhydryl–disulfide exchange reactions. Total sulfhydryl concentrations in the medium are maintained in a considerable level throughout the culture, and a possible physiological function of these sulfhydryl groups is discussed.  相似文献   

19.
Addition of bovine serum albumin to cholorplasts inhibited by prior addition of 1 μm dibromothymoquinone results in a time- and light-dependent restoration of electron transport activity. The kinetics of this reversal reaction are complex, and indicate that it is controlled by the degree to which the thylakoid membranes are energized. The presence of ADP and inorganic phosphate, or of uncouplers, serves to retard the rate of reversal, whereas an acceleration of reversal is observed if the thylakoid membranes have been intentionally unstacked by exposure to low-salt medium. The reversal reaction reported here is unique to bovine serum albumin, and does not require the function of the free sulfhydryl group on the protein. It is concluded that the site of DBMIB inhibition associated with chloroplast membranes is situated in a position whose access to contact by bovine serum albumin is regulated by the structural changes induced by illumination and energization.  相似文献   

20.
The diabetogenic agent alloxan is selectively accumulated in insulin-producing cells through uptake via the GLUT2 glucose transporter in the plasma membrane. In the presence of intracellular thiols, especially glutathione, alloxan generates "reactive oxygen species" (ROS) in a cyclic reaction between this substance and its reduction product, dialuric acid. The cytotoxic action of alloxan is initiated by free radicals formed in this redox reaction. Autoxidation of dialuric acid generates superoxide radicals (O(2)(*-)) and hydrogen peroxide (H(2)O(2)), and finally hydroxyl radicals ((*)OH). Thus, while superoxide dismutase (SOD) only reduced the toxicity, catalase, in particular in the presence of SOD, provided complete protection of insulin-producing cells against the cytotoxic action of alloxan and dialuric acid due to H(2)O(2) destruction and the prevention of hydroxyl radical ((*)OH) formation, indicating that it is the hydroxyl radical ((*)OH) which is the ROS ultimately responsible for cell death. After selective accumulation in pancreatic beta cells, which are weakly protected against oxidative stress, the cytotoxic glucose analogue alloxan destroys these insulin-producing cells and causes a state of insulin-dependent diabetes mellitus through ROS-mediated toxicity in rodents and in other animal species, which express this glucose transporter isoform in their beta cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号