首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The genotoxic carcinogen aflatoxin B1 (AFB1) inhibited the calmodulin-stimulated membrane-bound (Ca2+Mg2+)-ATPase. Using the purified enzyme, 12 nmoles per ml of AFB1 caused maximum inhibition of 28% and 50%, of the acidic phospholipid-stimulated and calmodulin-activated Ca2+-ATPase activity respectively. Treatment of red cell ghosts with increasing concentrations of Triton X-100, a non-ionic detergent caused a progressive loss of both the basal and calmodulin-stimulated Ca2+-ATPase activity. The activity of the phospholipid-free, detergent-solubilized enzyme was almost fully restored by phosphatidyl serine (PS) and its sensitivity to calmodulin was restored in the presence of phosphatidyl choline (PC). Analysis of the results obtained using varying concentrations of ATP shows that AFB1 did not affect the Km and Vmax of the unstimulated enzyme whereas these parameters were reduced by about 75% and 50%, respectively, in the presence of calmodulin. Using the product of limited proteolysis by trypsin i.e. the 90 kDa fragment which still retains its calmodulin binding-domain and the 76 kDa fragment which has lost this domain, kinetic studies on the enzyme activity revealed that AFB1 inhibited the calmodulin-activated 90 kDa fragment by about 50% while the 76 kDa was not affected at all by the toxin and calmodulin. The toxin had no significant affect on the basal activity of the 90 kDa limited proteolysis fragment of the enzyme. These observations suggest that AFB1 inhibits the activated Ca2+-ATPase by binding to an important site in the calmodulin-binding domain of the enzyme. It seems likely that the toxin binds to tryptophan in the calmodulin-binding domain, thus causing a reduction in the rate at which this domain can interact with Ca2+-calmodulin or acidic phospholipids. The implication of these observations is that Ca2+-extrusion and other calmodulin-activated enzymes and processes may be slowed down during prolonged exposure to AFB1 because of its anticalmodulin effect.Abbreviations ATP adenosine 5-triphosphate - EGTA ethylenglycolbis (-aminoethylether) N,N-tetraacetic acid - Hepes 4-(2 hydroxyethyl)-1-piperazine ethanesulphonic acid - AFB1 aflatoxin B1 - PMSF phenylmethylsulfonylfluoride - TLCK N--p-tosyl-L-lysine chloromethyl ketone - PC phosphatidycholine - PS phosphatidylserine - PI phosphatidyl inositol - DPG diphosphatidyl glycerol - SDS sodium dodecyl sulphate - Tris-HCl Tris (hydroxymethyl)aminomethane hydrochloride  相似文献   

2.
The steady-state levels of Ca2+ within the endoplasmic reticulum (ER) and the transport of 45Ca2+ into isolated ER of barley (Hordeum vulgare L. cv. Himalaya) aleurone layers were studied. The Ca2+-sensitive dye indo-1. Endoplasmic reticulum was isolated and purified from indo-1-loaded protoplasts, and the Ca2+ level in the ER was measured using the Ca2+-sensitive dye indo-1. Endoplasmic reticulum was isolated and purified from indo-1-loaded protoplasts, and the Ca2+ level in the lumen of the ER was determined by the fluorescence-ratio method to be at least 3 M. Transport of 45Ca2+ into the ER was studied in microsomal fractions isolated from aleurone layers incubated in the presence and absence of gibberellic acid (GA3) and Ca2+. Isopycinic sucrose density gradient centrifugation of microsomal fractions isolated from aleurone layers or protoplasts separates ER from tonoplast and plasma membranes but not from the Golgi apparatus. Transport of 45Ca2+ occurs primarily in the microsomal fraction enriched in ER and Golgi. Using monensin and heat-shock treatments to discriminate between uptake into the ER and Golgi, we established that 45Ca2+ transport was into the ER. The sensitivity of 45Ca2+ transport to inhibitors and the Km of 45Ca2+ uptake for ATP and Ca2+ transport in the microsomal fraction of barley aleurone cells. The rate of 45Ca2+ transport is stimulated several-fold by treatment with GA3. This effect of GA3 is mediated principally by an effect on the activity of the Ca2+ transporter rather than on the amount of ER.Abbreviations CCR cytochrome-c reductase - DCCD dicyclohexylcarbodiimide - EGTA ethylene glycol bis(-aminoethyl ether)-N,N,N,N-tetraacetic acid - ER endoplasmic reticulum - FCCP carbonylcyanide p-trifluoromethoxyphenyl hydrazone - GA3 gibberellic acid - IDPase inosine diphosphatase - Mon monensin  相似文献   

3.
The expression of protein kinase C (PKC) isoforms and the modulation of Ca2+ mobilization by PKC were investigated in the human submandibular duct cell line A253. Three new PKC (nPKC) isoforms (, , and ) and one atypical PKC (aPKC) isoform () are expressed in this cell line. No classical PKC (cPKC) isoforms were present. The effects of the PKC activator phorbol 12-myristate-13-acetate (PMA) and of the PKC inhibitors calphostin C (CC) and bisindolymaleimide I (BSM) on inositol 1,4,5-trisphosphate (IP3) and Ca2+ responses to ATP and to thapsigargin (TG) were investigated. Pre-exposure to PMA inhibited IP3 formation, Ca2+ release and Ca2+ influx in response to ATP. Pre-exposure to CC or BSM slightly enhanced IP3 formation but inhibited the Ca2+ release and the Ca2+ influx induced by ATP. In contrast, pre-exposure to PMA did not modify the Ca2+ release induced by TG, but reduced the influx of Ca2+ seen in the presence of this Ca2+-ATPase inhibitor. These results suggest that PKC modulates elements of the IP3/Ca2+ signal transduction pathway in A253 cells by (1) inhibiting phosphatidylinositol turnover and altering the sensitivity of the Ca2+ channels to IP3, (2) altering the activity, the sensitivity to inhibitors, or the distribution of the TG-sensitive Ca2+ ATPase, and (3) modulating Ca2+ entry pathways.  相似文献   

4.
Reetz  G.  Wiesinger  H.  Reiser  G. 《Neurochemical research》1997,22(5):621-628
Oscillations of cytosolic Ca2+ activity ([Ca2+]i) induced by stimulation with ATP in rat astrocytes in primary cultures were analysed. Astrocytes, prepared from the brains of newborn rats, loaded with the fluorescent Ca2+ indicator fura-2/AM, were continuously stimulated with ATP (10 M). ATP caused a large initial [Ca2+ peak, followed by regular [Ca2+]i oscillations (frequencies 1–5/min). Astrocytes were identified by glial fibrillary acidic protein staining of cells after [Ca2+]i recording. The oscillations were reversibly blocked by the P2 purinoceptor antagonist suramin (30 M). Influx of extracellular Ca2+ and mobilization of Ca2+ from intracellular stores both contributed to the oscillations. The effects of hypertonic and hypotonic superfusion medium on ATP-induced [Ca2+]i oscillations were examined. Hypertonic medium (430 mOsm) reversibly suppressed the ATP-induced oscillations. Hypotonic medium (250 mOsm), in spite of having heterogeneous effects, most frequently induced a rise in [Ca2+]i, or reversibly increased the frequency of the oscillations. Thus, a change in cell volume might be closely connected with [Ca2+]i oscillations in astrocytes indicating that [Ca2+]i oscillations in glial cells play an important role in regulatory volume regulation in the brain.  相似文献   

5.
Na+/Ca2+ exchange (NCX) is a major Ca2+ extrusion system in cardiac myocytes, but can also mediate Ca2+ influx and trigger sarcoplasmic reticulum Ca2+ release. Under conditions such as digitalis toxicity or ischemia/reperfusion, increased [Na+]i may lead to a rise in [Ca2+]i through NCX, causing Ca2+ overload and triggered arrhythmias. Here we used an agent which selectively blocks Ca2+ influx by NCX, KB-R7943 (KBR), and assessed twitch contractions and Ca2+ transients in rat and guinea pig ventricular myocytes loaded with indo-1. KBR (5 M) did not alter control steady-state twitch contractions or Ca2+ transients at 0.5 Hz in rat, but significantly decreased them in guinea pig myocytes. When cells were Na+-loaded by perfusion of strophanthidin (50 M), the addition of KBR reduced diastolic [Ca2+]i and abolished spontaneous Ca2+ oscillations. In guinea pig papillary muscles exposed to substrate-free hypoxic medium for 60 min, KBR (10 M applied 10 min before and during reoxygenation) reduced both the incidence and duration of reoxygenation-induced arrhythmias. KBR also enhanced the recovery of developed tension after reoxygenation. It is concluded that (1) the importance of Ca2+ influx via NCX for normal excitation-contraction coupling is species-dependent, and (2) Ca2+ influx via NCX may be critical in causing myocardial Ca2+ overload and triggered activities induced by cardiac glycoside or reoxygenation.  相似文献   

6.
Mitochondria from etiolated corn possess a much greater Ca2+ uptake capacity per mg protein than microsomes from the same source. Differences in energy requirements, sensitivity to specific inhibitors, and sedimentation properties enabled us to study both Ca2+ uptake mechanisms without mutual contamination. The microsomal Ca2+ uptake does not vary much among different plants as compared to the mitochondrial Ca2+ uptake; this is also true for different organs of the same plant. Mitochondrial Ca2+ uptake is more dependent on the age of the seedlings than microsomal uptake, because of changes in active Ca2+ uptake activity rather than of changes in efflux. Intactness and the oxidative and phosphorylative properties of the mitochondria remained unchanged during this time period. Na+ and Mg2+ do not induce Ca2+ release from mitochondria.Abbreviations ATP adenosine triphosphate - ADP adenosine diphosphate - NADH2 -nicotinamide adenin dinucleotide, reduced form - Mops 3-(N-morpholino)propane-sulfonic acid - Tris tris-(hydroxymethyl)-aminomethane - Hepes hydroxyethylpiperazine-N-2-ethanesulfonic acid - BSA bovine serum albumin - EDTA (ethylene-dinitrilo)-tetraacetic acid - EGTA ethylene glycol-bis(-aminoethylether)-N,N-tetraacetic acid - CCCP carbonyl cyanide m-chlorophenylhydrazone - DTE 1,4-dithiothreitol  相似文献   

7.
Summary This communication reports the kinetics of the Na+/ Ca2+ exchanger and of the plasma membrane (PM) Ca2+ pump of the intact human platelet. The kinetic properties of these two systems were deduced by studying the rate of Ca2+ extrusion and its Na+ dependence for concentrations of cytoplasmic free Ca2+ ([Ca2+]cyt) in the 1–10-m range. The PM Ca2+ATPase was previously characterized (Johansson, J.S. Haynes, D.H. 1988. J. Membrane Biol. 104:147–163) for [Ca2+]cyt] 1.5 m with the fluorescent Ca2+ indicator quin2 (K d= 115 nm). That study determined that the PM Ca2+ pump in the basal state has a V max = 0.098 mm/min, a K m= 80 nm and a Hill coefficient = 1.7. The present study extends the measurable range of [Ca2+]cyt with the intracellular Ca2+ probe, rhod2 (K d= 500 nm), which has almost a fivefold lower affinity for Ca2+. An Appendix also describes the Mg2+ and pH dependence of the K dand fluorescence characteristics of the commercially available dye, which is a mixture of two molecules. Rates of active Ca2+ extrusion were determined by two independent methods which gave good agreement: (i) by measuring Ca2+ extrusion into a Ca2+-free medium (above citation) or (ii) by the newly developed ionomycin short-circuit method, which determines the ionomycin concentration necessary to short circuit the PM Ca2+ extrusion systems. Absolute rates of extrusion were determined by knowledge of how many Ca2+ ions are moved by ionomycin per minute. The major findings are as follows: (i) The exchanger is saturable with respect to Ca2+ with a K m= 0.97 ± 0.31 m and Vmax = 1.0 ± 0.6 mm/ min. (ii) At high [Ca2+]cyt, the exchanger works at a rate 10 times as large as the basal V max of the PM Ca2+ extrusion pump. (iii) The exchanger can work in reverse after Na+ loading of the cytoplasm by monensin. (iv) The PM Ca2+ extrusion pump is activated by exposure to [Ca2+]cyt 1.5 m for 20–50 sec. Activation raises the pump V max to 1.6 ± 0.6 mm/min and the K mto 0.55 ± 0.24 m. (v) The Ca2+ buffering capacity of the cytoplasm is 3.6 mm in the 0.1 to 3 m range of [Ca2+]cyt. In summary, the results show that the human platelet can extrude Ca2+ very rapidly at high [Ca2+]cyt. Both the Na+/Ca2+ exchanger and Ca2+ pump activation may prevent inappropriate platelet activation by marginal stimuli.Abbreviations cAMP cyclic adenosine 3,5-monophosphate - cGMP cyclic guanosine 3,5,-monophosphate - Ca-CAM calcium calmodulin; - DT dense tubules - B intrinsic cytoplasmic Ca2+ binding sites - R rhod2 or 5-(3,6-bis(dimethylamino)xanth-9-yl)-1-(2-amino-4-hy droxy lphenoxy)-2-(2-amino-5-methylphen- oxy)ethane-N,N,NN-tetraacetic acid - [Ca2+]cyt cytoplasmic Ca2+ activity - quin2 2-[[2-bis[(carboxymethyl)amino]-5-methyl-phenoxy]methyl]-6-methoxy-8-[bis(carboxymethyl)amino]quinoline - V or Vextrusion true rate of Ca2+ extrusion - fura-2 1-[2-(5-carboxyoxazol-2-yl)-6-aminobenzofuran-5-oxy]-2-(2-amino-5-methylphenoxy)-ethane-N,N,NN-tetraacetic acid - AM acetoxymethyl ester - DMSO dimethylsulfoxide - CTC chlortetracycline - EGTA ethyleneglycol-bis(-aminoethyl ether) N,N,N,N- tetraacetic acid - HEPES 4-(2-hydroxyethyl)-1-piperazine ethanesulfonic acid - NMDG N-methyl-d-glucamine - PIPES 1,4-piperazine-bis-(ethanesulfonic acid) - HPLC high performance liquid chromatography - I fraction of high-affinity rhod2 complexed with Ca2+ - F the observed fluorescence - Fmin the minimal fluorescence observed in the absence of Ca2+ - Fmax the maximal fluorescence observed when the dye is saturated with Ca2+ - X1 the fraction of high-affinity dye - K d,1 dissociation constant of high-affinity dye - K d,2 dissociation constant of the low-affinity dye - -d1/dt rate of Ca2+ removal from the rhod2-Ca complex; - -dF/dt the slope representing the absolute rate of fluorescence decrease in a progress curve - Fmax (Fmax — Fmin)cyt difference between maximal and minimal fluorescence for cytoplasmic high affinity form of rhod2 - F50 fluorescence of the high-affinity form ofrhod2for[Ca2+]cyt=50 nM - [Ca2+]0 external Ca2+concentration - K p proportionality constant between the total number of Ca2+ ions moved and the change in high-affinity rhod2 complexation to Ca2 - (d[Ca2+]cyt, T)/dt rate of Ca2+ influx obtained with maximal levels of ionomycin - kleak rate constant for passive inward Ca2+ leakage - kinno rate constant for ionomycin-mediated Ca2+ influx - T total - [rhod2]cyt,T total intracellular rhod2 concentration - [quin2]cyt,T total intracellular quin2 concentration - [B]T total cytoplasmic buffering capacity - A[Ca2+]cyt,T total number of Ca2+ ions moved into the cytoplasm - [rhod2-Ca]cyt, T change in concentration of total intracellular high-affinity rhod2 complexed to Ca2+ - [B-Ca]T change in concentration of total cytoplasmic binding sites complexed to Ca2+ - [quin2]cyt, T change in concentration of total intracellular quinl complexed to Ca2+ - change in the degree of intracellular quin2 saturation - 1 change in degree of saturation of cytoplasmic high-affinity rhod2 - 1-/t rate of change in degree of saturation of cytoplasmic high affinityrhod2 - Vobs observed rate of Ca2+ removal from the rhod2-Ca complex - V8.3 m the rate of Ca2+ removal from the high affinity rhod2-Ca complex at [Ca2+]cyt = 8.3 m - /t rate of change in of the degree of quin2 saturation - [Ca2+]cytT/t initial linear rate of ionomycin-mediated Ca2+ influx - EC50 effective concentration giving a half-maximal effect - [Na+]cyt cytoplasmic Na+ activity - CAM calmodulin - ACN acetonitrile - TFA trifuloroacetic acid  相似文献   

8.
The chronic administration of disulfiram (DS) to rats resulted in significant decrease of synaptosomal Ca2+, Mg2+-ATPase activity. In vitro studies indicated that DS (ID50=20 M) produced a dose-dependent inhibition of Ca2+, Mg2+-ATPase. However, diethyldithio-carbamate, a metabolite of DS, failed to modify Ca2+, Mg2+-ATPase activity, implying that the decrease in ATPase activity in DS administered rats was due to the effect of parent compound. The DS-mediated inhibition (48%) of ATPase activity was comparable with a similar degree of inhibition (49%) achieved by treating the synaptosomal membranes with N-ethylmaleimide (ID50=20 M) in vitro. Furthermore, the inhibition by DS was neither altered by washing the membranes with EGTA nor reversed by treatment with sulfhydryl reagents such as GSH or dithiothreitol. About 74% and 68% decrease of synaptosomal Ca2+, Mg2+-ATPase specific activity was observed when treated with DS (30 M) and EGTA (100 M) respectively. The remaining 25–30% of total activity is suggested to be of Mg2+-dependent ATPase activity. This indicates that both these drugs may act on a common target, calmodulin component that represents 70–75% of total Ca2+, Mg2+-ATPase activity. Therefore, DS-mediated modulation of synaptosomal Ca2+, Mg2+-ATPase activity could affect its function of maintaining intracellular Ca2+ concentration. This could contribute to the deleterious effects on CNS.  相似文献   

9.
Summary We have measured Ca2+ uptake and Ca2+ release in isolated permeabilized pancreatic acinar cells and in isolated membrane vesicles of endoplasmic reticulum prepared from these cells. Ca2+ uptake into cells was monitored with a Ca2+ electrode, whereas Ca2+ uptake into membrane vesicles was measured with45Ca2+. Using inhibitors of known action, such as the H+ ATPase inhibitors NBD-Cl and NEM, the Ca2+ ATPase inhibitor vanadate as well as the second messenger inositol 1,4,5-trisphosphate (IP3) and its analog inositol 1,4,5-trisphosphorothioate (IPS3), we could functionally differentiate two non-mitochondrial Ca2+ pools. Ca2+ uptake into the IP3-sensitive Ca2+ pool (IsCaP) occurs by a MgATP-dependent Ca2+ uptake mechanism that exchanges Ca2+ for H+ ions. In the absence of ATP Ca2+ uptake can occur to some extent at the expense of an H+ gradient that is established by a vacuolar-type MgATP-dependent H+ pump present in the same organelle. The other Ca2+ pool takes up Ca2+ by a vanadate-sensitive Ca2+ ATPase and is insensitive to IP3 (IisCaP). The IsCaP is filled at higher Ca2+ concentrations (10–6 mol/liter) which may occur during stimulation. The low steady-state [Ca2+] of 10–7 mol/liter is adjusted by the IisCaP.It is speculated that both Ca2+ pools can communicate with each other, the possible mechanism of which, however, is at present unknown.  相似文献   

10.
Preparations of synaptosomes isolated in sucrose or in Na+-rich media were compared with respect to internal pH (pH1), internal Ca2+ concentration ([Ca2+]i), membrane potential and45Ca2+ uptake due to K+ depolarization and Na+/Ca2+ exchange. We found that synaptosomes isolated in sucrose media have a pHi of 6.77±0.04 and a [Ca2+]i of about 260 nM, whereas synaptosomes isolated in Na+-rich ionic media have a pHi of 6.96±0.07 and a [Ca2+]i of 463 nM, but both types of preparations have similar membrane potentials of about –50 mV when placed in choline media. The sucrose preparation takes up Ca2+ only by voltage sensitive calcium channels (VSCC'S) when K+-depolarized, while the Na+-rich synaptosomes take up45Ca2+ both by VSCC'S and by Na+/Ca2+ exchange. The amiloride derivative 2, 4 dimethylbenzamil (DMB), at 30 M, inhibits both mechanisms of Ca2+ influx, but 5-(N-4-chlorobenzyl)-2, 4 dimethylbenzamil (CBZ-DMB), at 30 M, inhibits the Ca2+ uptake by VSCC'S, but not by Na+/Ca2+ exchange. Thus, DMB and CBZ-DMB permit distinguishing between Ca2+ flux through channels and through Na+/Ca2+ exchange. We point out that the different properties of the two types of synaptosomes studied account for some of the discrepancies in results reported in the literature for studies of Ca2+ fluxes and neurotransmitter release by different types of preparations of synaptosomes.Abbreviations used BCECF 2,7-Biscarboxyethyl-5(6)-carboxyfluorescein - BCECF/AM acetoxymethyl ester of BCECF - [Ca2+]i Internal free calcium ion concentration - CBZ-DMB 5-(N-4-chlorobenzyl)-2,4-dimethylbenzamil - DMB 2, 4-dimethylbenzamil - DMSO dimethyl sulfoxide - Indo-1/AM acetoxymethyl ester of Indo-1 - MES 2-|N-Morpholino|ethanesulfonic acid - NMG N-methyl-D-glucamine - pHi internal pH - TPP+ tetraphenylphosphonium - p plasma membrane potential  相似文献   

11.
Activation of the human red cell calcium ATPase by calcium pretreatment   总被引:1,自引:0,他引:1  
Some kinetic parameters of the human red cell Ca2+-ATPase were studied on calmodulin-free membrane fragments following preincubation at 37°C. After 30 min treatment with EGTA(1 mm) plus dithioerythritol (1 mm), a V max of about 0.4 μmol Pi/mg × hr and a K s of 0.3 μm Ca2+ were found. When Mg2+ (10 mm) or Ca2+(10 μm) were also added during preincubation, V maxbut not Kwas altered. Ca2+ was more effective than Mg2+, thus increasing V max to about 1.3 μmol Pi/mg × hr. The presence of both Ca2+ and Mg2+ during pretreatment decreasedKto 0.15 μm, while having no apparent effect on V max. Conversely, addition of ATP (2 mm) with either Ca2+ or Ca2+ plus Mg2+increased Vmax without affecting K. Preincubation with Ca2+ for periods longer than 30 min further increased Vmaxand reduced Kto levels as low as found with calmodulin treatment. The Ca2+ activation was not prevented by adding proteinase inhibitors (iodoacetamide, 10 mm; leupeptin, 200 μm; pepstatinA, 100 μm; phenylmethanesulfonyl fluoride, 100 μm). The electrophoretic pattern of membranes preincubated with or without Mg2+, Ca2+ or Ca2+ plus Mg2+ did not differ significantly from each other. Moreover, immunodetection of Ca2+-ATPase by means of polyclonal antibodiesrevealed no mobility change after the various treatments. The above stimulation was not altered by neomycin (200 μm), washing with EGTA (5 mm) or by both incubating and washing with delipidized serum albumin (1 mg/ml), or omitting dithioerythritol from the preincubation medium. On the other hand, the activation elicited by Ca2+ plus ATP in the presence of Mg2+ was reduced 25–30% by acridine orange (100 μm), compound 48/80 (100 μm) or leupeptin (200 μm) but not by dithio-bis-nitrobenzoic acid (1 mm). The fluorescence depolarization of 1,6-diphenyl-and l-(4-trimethylammonium phenyl)-6-phenyl 1,3,5-hexatriene incorporated into membrane fragments was not affected after preincubating under the different conditions. The results show that proteolysis, fatty acid production, an increased phospholipid metabolism or alteration of membrane fluidity are not involved in the Ca2+ effect. Ca2+ preincubation may stimulate the Ca2+-ATPase activity by stabilizing or promoting the E1 conformation.  相似文献   

12.
Evidence for a primary role for intracellular Ca2+ in the stimulation of pancreatic enzyme secretion is reviewed. Measurements of cytoplasmic free Ca2+ concentration have allowed direct demonstration of its importance in triggering enzyme secretion and defined the concentration range over which membrane Ca2+ pumps must work to regulate intracellular Ca2+. Current evidence suggests a key role for the Ca2+ Mg-ATPase of rough endoplasmic reticulum in regulating intracellular Ca2+ and accumulating a Ca2+ store which is released by the action of inositol-l,4,5 trisphosphate following stimulation of secretion.Abbreviations Used EGTA (ethylene dioxy) diethylene-dinitrilotetraacetic acid - BAPTA 1,2-bis (2-aminophenoxy) ethane NNN,N-tetracetic acid - InsP3 inositol trisphosphate - Ins-1,4,5P3 and Ins-1,3,4P3 isomers of inositol trisphosphate with the position of phosphate groups assigned - Ins-1,3,4,5P4 inositol tetrakisphosphate  相似文献   

13.
Mitochondria in Ca2+ Signaling and Apoptosis   总被引:8,自引:0,他引:8  
Cellular Ca2+ signals are crucial in the control of most physiological processes, cell injuryand programmed cell death; mitochondria play a pivotal role in the regulation of such cytosolicCa2+ ([Ca2+]c) signals. Mitochondria are endowed with multiple Ca2+ transport mechanismsby which they take up and release Ca2+ across their inner membrane. These transport processesfunction to regulate local and global [Ca2+]c, thereby regulating a number of Ca2+-sensitivecellular mechanisms. The permeability transition pore (PTP) forms the major Ca2+ effluxpathway from mitochondria. In addition, Ca2+ efflux from the mitochondrial matrix occursby the reversal of the uniporter and through the inner membrane Na+/Ca2+ exchanger. Duringcellular Ca2+ overload, mitochondria take up [Ca2+]c, which, in turn, induces opening of PTP,disruption of mitochondrial membrane potential (m) and cell death. In apoptosis signaling,collapse of ;m and cytochrome c release from mitochondria occur followed by activationof caspases, DNA fragmentation, and cell death. Translocation of Bax, an apoptotic signalingprotein from the cytosol to the mitochondrial membrane, is another step during thisapoptosis-signaling pathway. The role of permeability transition in the context of cell death in relationto Bcl-2 family of proteins is discussed.  相似文献   

14.
This review will focus on the recent advance in the study of effect of transmembrane Ca2+ gradient on the function of membrane proteins. It consits of two parts: 1. Transmembrane Ca2+ gradient and sarcoplasmic reticulum Ca2+-ATPase; 2. Effect of transmembrane Ca2+ gradient on the components and coupling of cAMP signal transduction pathway. The results obtained indicate that a proper transmembrane Ca2+ gradient may play an important role in modulating the conformation and activity of SR Ca2+-ATPase and the function of membrane proteins involved in the cAMP signal transduction by mediating the physical state change of the membrane phospholipids.Abbreviations Cai Ca2+ inside vesicles - Ca0 Ca2+ outside vesicles - SR sarcoplasmic reticulum - PC phosphatidylcholine - PS phosphatidylserine - PG phosphatidylglycerol - PE phosphatidylethanolamine - DPH 1,6-diphenyl-1,3,5-hexatriene - n-AS n-(9-anthroyloxy) fatty acids - TMA-DPH 1-(4-trimethylammoniumphenyl)-6)-phenyl-1,3,5-hexatriene - FCCP carbonylcyanide-p-trifluoromethoxyphenylhydrazone - -AR -adrenergic receptors - DHA dihydroalprenolol - AC adenylate cyclase - AC·Lca+– higher Ca2+ inside vesicles - AC·Lca– – lower Ca2+ on both side of vesicles - AC·Lca++ higher Ca2+ on both side of vesicles - AC·Lca– + higher Ca2+ outside vesicles - cAMP cyclic adenosine monophosphate - Gs stimulatory GTP-binding protein - GTP guanosine triposphate - GTPS guanosine 50-(3-thiotriphosphate)  相似文献   

15.
We have examined the effect of the Ca2+ (Mg2+)-ATPase inhibitors thapsigargin (TG) and vanadate on ATP-dependent 45Ca2+ uptake into IP3-sensitive Ca2+ pools in isolated microsomes from rat pancreatic acinar cells. The inhibitory effect of TG was biphasic. About 40–50% of total Ca2+ uptake was inhibited by TG up to 10 nm (apparent Ki4.2 nm, Ca2+ pool I). An additional increase of inhibition up to 85–90% of total Ca2+ uptake could be achieved at 15 to 20 nm of TG (apparent Ki12.1 nm, Ca2+ pool II). The rest was due to TG-insensitive contaminating plasma membranes and could be inhibited by vanadate (apparent Ki10 m). In the absence of TG, increasing concentrations of vanadate also showed two phases of inhibition of microsomal Ca2+ uptake. About 30–40% of total Ca2+ uptake was inhibited by 100 m of vanadate (apparent Ki18 m, Ca2+ pool II). The remaining 60–70% could be inhibited either by vanadate at concentrations up to 1 mm (apparent Ki300 m) or by TG up to 10 nm (Ca2+ pool I). The amount of IP3-induced Ca2+ release was constant at 25% over a wide range of Ca2+ filling. About 10–20% remained unreleasable by IP3. Reduction of IP3 releasable Ca2+ in the presence of inhibitors showed similar dose-response curves as Ca2+ uptake (apparent Ki 3.0 nm for IP3-induced Ca2+ release as compared to 4.2 nm for Ca2+ uptake at TG up to 10 nm) indicating that the highly TG-sensitive Ca2+ pump fills the IP3-sensitive Ca2+ pool I. At TG concentrations >10 nm which blocked Ca2+ pool II the apparent Ki values were 11.3 and 12.1 nm, respectively. For inhibition by vanadate up to 100 m the apparent Ki values were 18 m for Ca2+ uptake and 7 m for Ca2+ release (Ca2+ pool II). At vanadate concentrations up to 1 mm the apparent Ki values were 300 and 200 m, respectively (Ca2+ pool I). Both Ca2+ pools I and II also showed different sensitivities to IP3. Dose-response curves for IP3 in the absence of inhibitors (control) showed an apparent Km value for IP3 at 0.6 m. In the presence of TG (inhibition of Ca2+ pool I) the curve was shifted to the left with an apparent Km for IP3 at 0.08 m. In the presence of vanadate (inhibition of Ca2+ pool II), the apparent Km for IP3 was 2.1 m. These data allow the conclusion that there are at least three different Ca2+ uptake mechanisms present in pancreatic acinar cells: TG- and IP3 insensitive but highly vanadate-sensitive Ca2+ uptake occurs into membrane vesicles derived from plasma membranes. Two Ca2+ pools with different TG-, vanadate- and IP3-sensitivities are most likely located in the endoplasmic reticulum at different cell sites, which could have functional implications for hormonal stimulation of pancreatic acinar cells.This work was supported by the Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 246. The authors wish to thank Dr. KlausDieter Preuß for valuable discussions and Mrs. Gabriele Mörschbächer for excellent secretarial help.  相似文献   

16.
Summary Basolateral plasma membranes from rat kidney cortex have been purified 40-fold by a combination of differential centrifugation, centrifugation in a discontinuous sucrose gradient followed by centrifugation in 8% percoll. The ratio of leaky membrane vesicles (L) versus right-side-out (RO) and inside-out (IO) resealed vesicles appeared to be LROIO=431. High-affinity Ca2+-ATPase, ATP-dependent Ca2+ transport and Na+/Ca2+ exchange have been studied with special emphasis on the relative transport capacities of the two Ca2+ transport systems. The kinetic parameters of Ca2+-ATPase activity in digitonin-treated membranes are:K m =0.11 m Ca2+ andV max=81±4 nmol Pi/min·mg protein at 37°C. ATP-dependent Ca2+ transport amounts to 4.3±0.2 and 7.4±0.3 nmol Ca2+/min·mg protein at 25 and 37°C, respectively, with an affinity for Ca2+ of 0.13 and 0.07 m at 25 and 37°C. After correction for the percentage of IO-resealed vesicles involved in ATP-dependent Ca2+ transport, a stoichiometry of 0.7 mol Ca2+ transported per mol ATP is found for the Ca2+-ATPase. In the presence of 75mm Na+ in the incubation medium ATP-dependent Ca2+ uptake is inhibited 22%. When Na+ is present at 5mm an extra Ca2+ accumulation is observed which amounts to 15% of the ATP-dependent Ca2+ transport rate. This extra Ca2+ accumulation induced by low Na+ is fully inhibited by preincubation of the vesicles with 1mm ouabain, which indicates that (Na+–K+)-ATPase generates a Na+ gradient favorable for Ca2+ accumulation via the Na+/Ca2+ exchanger. In the absence of ATP, a Na+ gradient-dependent Ca2+ uptake is measured which rate amounts to 5% of the ATP-dependent Ca2+ transport capacity. The Na+ gradient-dependent Ca2+ uptake is abolished by the ionophore monensin but not influenced by the presence of valinomycin. The affinity of the Na+/Ca2+ exchange system for Ca2+ is between 0.1 and 0.2 m Ca2+, in the presence as well as in the absence of ATP. This affinity is surprisingly close to the affinity measured for the ATP-dependent Ca2+ pump. Based on these observations it is concluded that in isolated basolateral membranes from rat kidney cortex the Ca2+-ATPase system exceeds the capacity of the Na+/Ca2+ exchanger four- to fivefold and it is therefore unlikely that the latter system plays a primary role in the Ca2+ homeostasis of rat kidney cortex cells.  相似文献   

17.
A high affinity Ca2+/Mg2+ ATPase has been identified and localized in synaptic membrane subfractions. This enzyme is stimulated by low concentrations of Ca2+ (1 M) believed to approximate the range of Ca2+ in the synaptosomal cytosol (0.1 to 5.0 M). The opiate agonist levorphanol, in a concentration-dependent fashion, inhibited Ca2+-stimulated ATP hydrolysis in lysed synaptic membranes. This inhibition was reversed by naloxone, while dextrorphan, the inactive opiate isomer, was without effect. Inhibition by levorphanol was most pronounced in a subfraction of synaptic membranes (SPM-1). The inhibition of Ca2+-stimulated ATP hydrolysis was characterized by a reduction inV max for Ca2+. Levorphanol pretreatment reduced the Hill coefficient (HN) of 1.5 to 0.7, suggesting cooperative interaction between the opiate receptor and the enzyme protein. Levorphanol, but not dextrorphan, also inhibited (28%) ATP-dependent Ca2+ uptake by synaptic membranes. Opiate ligand stereoisomers were tested for their effects on calmodulin stimulating of high affinity Ca2+/Mg2+ ATPase in synaptic membranes. Levorphanol (10 M), but not the inactive stereoisomer (+)dextrorphan, significantly inhibited (35%) the calmodulin-activated Ca2+-dependent ATP hydrolysis activity in a preparation of lysed synaptic membranes. Both Ca2+-dependent and calmodulin-dependent stimulation of the enzyme in the presence of optimal concentrations of the other co-substrate were inhibited by levorphanol (35–40%) but not dextrorphan. Inhibition of ATP hydrolysis was characterized by a reduction inV max for both Ca2+ and calmodulin stimulation of the enzyme. Calmodulin stimulation of enzyme activity was most pronounced in SPM-1, the membrane fraction which also exhibits the maximal opiate inhibition (40%) of the Ca2+-ATPase. The results demonstrate that opiate receptor activation inhibits a high affinity Ca2+/Mg2+ ATPase in synaptic plasma membranes in a stereospecific fashion. The inhibition of the enzyme may occur by a mechanism involving both Ca2+ and calmodulin. Inhibition of calmodulin activation may contribute to the mechanism by which opiate ligands disrupt synaptosomal Ca2+ buffering mechanisms. Changes in the cytosolic distribution of synaptosomal Ca2+ following inhibition of Ca2+/Mg2+ ATPase may underlie some of the pharmacological effects of opiate drugs.  相似文献   

18.
Summary Calcium signaling systems in nonexcitable cells involve activation of Ca2+ entry across the plasma membrane and release from intracellular stores as well as activation of Ca2+ pumps and inhibition of passive Ca2+ pathways to ensure exact regulation of free cytosolic Ca2+ concentration ([Ca2+] i ). A431 cells loaded with fura-2 cells were used as a model system to examine regulation of Ca2+ entry and intracellular release. Epidermal growth factor (EGF) and transforming growth factor alpha (TGF-) both stimulated Ca2+ entry and release while bradykinin appeared only to release Ca2+ from intracellular stores. The possible role of protein kinase C (PKC) in modulating the [Ca2+] i response to these agonists was examined by four methods. Low concentrations of TPA (2×10–10 m) had no effect on Ca2+ release due to EGF, TGR- or bradykinin but resulted in a rapid return of [Ca2+] i to baseline levels for EGF or TGF-. Addition of the PKC inhibitor staurosporine (1 and 10nm)_completely inhibited the action of TPA on EGF-induced [Ca2+] i changes. An inhibitor of diglyceride kinase (R59022) mimicked the action of TPA. Down-regulation of PKC by overnight incubation with 0.1 or 1 m TPA produced the converse effect, namely prolonged Ca2+ entry following stimulation with EGF or TGF-. To show that one effect of TPA was on Ca2+ entry, fura-2 loaded cells were suspended in Mn2+ rather than Ca2+ buffers. Addition of EGF or TGF- resulted in Ca2+ release and Mn2+ entry. TPA but not the inactive phorbol ester, 4--phorbol-12,13-didecanoate, inhibited the Mn2+ influx. Thus, PKC is able to regulate Ca2+ entry due to EGF or TGF- in this cell type. A431 cells treated with higher concentrations of TPA (5×10–8 m) inhibited not only Ca2+ entry but also Ca2+ release due to EGF/TGF- but had no effect on bradykinin-mediated Ca2+ release, suggesting differences in the regulation of the intracellular stores responsive to these two classes of agonists. Furthermore, sequential addition of EGF or TGF- gave a single transient of [Ca2+] i , showing a common pool of Ca2+ for these agonists. In contrast, sequential addition of EGF (or TGF-) and bradykinin resulted in two [Ca2+] i transients equal in size to those obtained with a single agonist. Ionomycin alone was able to fully deplete intracellular Ca2+ stores, whereas ionomycin following either EGF (or TGF-) or bradykinin gave an elevation of the [Ca2+] i signal equal to that of the second agonist. These data indicate that there are separate pools of intracellular Ca2+ for EGF-mediated Ca2+ release which also respond differently to TPA.  相似文献   

19.
Summary In reconstituted rabbit skeletal muscle (Ca2+ + Mg2+)-ATPase proteoliposomes, Ca2+-uptake is decreased by more than 90% with T2 cleavage (Arg-198). However, no difference in the ATP dependence of hydrolysis activity is seen between SR and trypsin-treated SR. A large decrease in E-P formation and hydrolysis activity of the enzyme appear only at T3 cleavage, which represents the cleavage of A1 fragment to A1a + A1b forms. The disappearance of hydrolysis activity due to digestion is prior to the disappearance of E-P formation. No significant difference is found in the passive Ca2+ efflux between control SR and tryptically digested SR in the absence of Mg+ ruthenium red or in the presence of ATP. However, the passive Ca2+ efflux rate for tryptically digested SR is much larger than control SR in the presence of Mg2+ + ruthenium red. These results show that the Ca2+ channel cannot be closed after trypsin digestion of SR membranes by the presence of the Ca2+ channel inhibitors, Mg2+ and ruthenium red. In the reconstituted ATPase proteoliposomes, the Ca2+ efflux rates are the same regardless of digestion (T2); also, efflux is not affected by the presence or absence of Mg2+ + ruthenium red. These results indicate that T2 cleavage causes uncoupling of the Ca2+-pump from ATP hydrolytic activity.A theoretical model is developed in order to fit the extent of tryptic digestion of the A fragment of the (Ca2+ + Mg2+)-ATPase polypeptide with the loss of Ca2+-transport. Fits of the theoretical equations to the data are consistent with that Ca2+-transport system appears to require a dimer of the polypeptide (Ca2+ + Mg2+)-ATPase.  相似文献   

20.
Previous studies in chick embryo cardiac myocytes have shown that the inhibition of Na+/K+-ATPase with ouabain induces cell shrinkage in an isosmotic environment (290 mOsm). The same inhibition produces an enhanced RVD (regulatory volume decrease) in hyposmotic conditions (100 mOsm). It is also known that submitting chick embryo cardiomyocytes to a hyperosmotic solution induces shrinkage and a concurrent intracellular alkalization. The objective of this study was to evaluate the involvement of intracellular pH (pHi), intracellular Ca2+ ([Ca2+]i) and Na+/K+-ATPase inhibition during hyposmotic swelling. Changes in intracellular pH and Ca2+ were monitored using BCECF and fura-2, respectively. The addition of ouabain (100 M) under both isosmotic and hyposmotic stimuli resulted in a large increase in [Ca2+]i (200%). A decrease in pHi (from 7.3 ± 0.09 to 6.4 ± 0.08, n = 6; p < 0.05) was only observed when ouabain was applied during hyposmotic swelling. This acidification was prevented by the removal of extracellular Ca2+. Inhibition of Na+/H2+ exchange with amiloride (1 mM) had no effect on the ouabain-induced acidification. Preventing the mitochondrial accumulation of Ca2+ using CCCP (10 M) resulted in a blockade of the progressive acidification normally induced by ouabain. The inhibition of mitochondrial membrane K+/H+ exchange with DCCD (1 mM) also completely prevented the acidification. Our results suggest that intracellular acidification upon cell swelling is mediated by an initial Ca2+ influx via Na+/Ca2+ exchange, which under hyposmotic conditions activates the K+ and Ca2+ mitochondrial exchange systems (K+/H+ and Ca2+/H+).Deceased  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号