共查询到9条相似文献,搜索用时 0 毫秒
1.
Mutations in the X-linked gene FMR1 cause fragile X syndrome, the leading cause of inherited mental retardation. Two autosomal paralogs of FMR1 have been identified, and are known as FXR1 and FXR2. Here we describe and compare the genomic structures of the mouse and human genes FMR1, FXR1, and FXR2. All three genes are very well conserved from mouse to human, with identical exon sizes for all but two FXR2 exons. In addition, the three genes share a conserved gene structure, suggesting they are derived from a common ancestral gene. As a first step towards exploring this hypothesis, we reexamined the Drosophila melanogaster gene Fmr1, and found it to have several of the same intron/exon junctions as the mammalian FXRs. Finally, we noted several regions of mouse/human homology in the noncoding portions of FMR1 and FXR1. Knowledge of the genomic structure and sequence of the FXR family of genes will facilitate further studies into the function of these proteins. 相似文献
2.
Christopher Hayes Andreas Rump Matthew R. Cadman Mark Harrison Edward P. Evans Mary F. Lyon Gillian M. Morriss-Kay Andr Rosenthal Steve D. M. Brown 《Genomics》2001,78(3):197
The mouse doublefoot (Dbf) mutant exhibits preaxial polydactyly in association with craniofacial defects. This mutation has previously been mapped to mouse chromosome 1. We have used a positional cloning strategy, coupled with a comparative sequencing approach using available human draft sequence, to identify putative candidates for the Dbf gene in the mouse and in homologous human region. We have constructed a high-resolution genetic map of the region, localizing the mutation to a 0. 4-cM (±0.0061) interval on mouse chromosome 1. Furthermore, we have constructed contiguous BAC/PAC clone maps across the mouse and human Dbf region. Using existing markers and additional sequence tagged sites, which we have generated, we have anchored the physical map to the genetic map. Through the comparative sequencing of these clones we have identified 35 genes within this interval, indicating that the region is gene-rich. From this we have identified several genes that are known to be differentially expressed in the developing mid-gestation mouse embryo, some in the developing embryonic limb buds. These genes include those encoding known developmental signaling molecules such as WNT proteins and IHH, and we provide evidence that these genes are candidates for the Dbf mutation. 相似文献
3.
Soline Vigneau Florence Levillayer Herv Crespeau Laurence Cattolico Bernard Caudron Franck Bihl Catherine Robert Michel Brahic Jean Weissenbach Jean-Franois Bureau 《Genomics》2001,78(3):206-213
We sequenced a 173-kb region of mouse chromosome 10, telomeric to the Ifng locus, and compared it with the human homologous sequence located on chromosome 12q15 using various sequence analysis programs. This region has a low density of genes: one gene was detected in the mouse and the human sequences and a second gene was detected only in the human sequence. The mouse gene and its human orthologue, which are expressed in the immune system at a low level, produce a noncoding mRNA. Nonexpressed sequences show a higher degree of conservation than exons in this genomic region. At least three of these conserved sequences are also conserved in a third mammalian species (sheep or cow). 相似文献
4.
5.
We have characterized genomic loci encoding translation elongation factor 1Bα (eEF1Bα) in mice and humans. Mice have a single structural locus (named Eef1b2) spanning six exons, which is ubiquitously expressed and maps close to Casp8 on mouse chromosome 1, and a processed pseudogene. Humans have a single intron-containing locus, EEF1B2, which maps to 2q33, and an intronless paralogue expressed only in brain and muscle (EEF1B3). Another locus described previously, EEF1B1, is actually a processed pseudogene on chromosome 15 corresponding to an alternative splice form of EEF1B2. Our study illustrates the value of comparative mapping in distinguishing between processed pseudogenes and intronless paralogues. 相似文献
6.
Mutations in PDX1, the Human Lipoyl-Containing Component X of the Pyruvate Dehydrogenase–Complex Gene on Chromosome 11p1, in Congenital Lactic Acidosis 总被引:3,自引:0,他引:3 下载免费PDF全文
Bernard Aral Chantal Benelli Ghania Ait-Ghezala Mohamed Amessou Françoise Fouque Catherine Maunoury Nicole Créau Pierre Kamoun Cécile Marsac 《American journal of human genetics》1997,61(6):1318-1326
We have identified and sequenced a cDNA that encodes an apparent human orthologue of a yeast protein-X component (ScPDX1) of pyruvate dehydrogenase multienzyme complexes. The new human cDNA that has been referred to as "HsPDX1" cDNA was cloned by use of the "database cloning" strategy and had a 1,506-bp open reading frame. The amino acid sequence of the protein encoded by the cDNA was 20% identical with that encoded by the yeast PDX1 gene and 40% identical with that encoded by the lipoate acetyltransferase component of the pyruvate dehydrogenase and included a lipoyl-bearing domain that is conserved in some dehydrogenase enzyme complexes. Northern blot analysis demonstrated that the major HsPDX1 mRNA was 2.5 kb in length and was expressed mainly in human skeletal and cardiac muscles but was also present, at low levels, in other tissues. FISH analysis performed with a P1-derived artificial chromosome (PAC)-containing HsPDX1 gene sublocalized the gene to 11p1.3. Molecular investigation of PDX1 deficiency in four patients with neonatal lactic acidemias revealed mutations 78del85 and 965del59 in a homozygous state, and one other patient had no PDX1 mRNA expression. 相似文献
7.
Borazjani A Edelmann MJ Hardin KL Herring KL Allen Crow J Ross MK 《Chemico-biological interactions》2011,(1):1-12
Oxidative stress in cells and tissues leads to the formation of an assortment of lipid electrophiles, such as the quantitatively important 4-hydroxy-2-trans-nonenal (HNE). Although this cytotoxic aldehyde is atherogenic the mechanisms involved are unclear. We hypothesize that elevated HNE levels can directly inactivate esterase and lipase activities in macrophages via protein adduction, thus generating a biochemical lesion that accelerates foam cell formation and subsequent atherosclerosis. In the present study we examined the effects of HNE treatment on esterase and lipase activities in human THP1 monocytes/macrophages at various physiological scales (i.e., pure recombinant enzymes, cell lysate, and intact living cells). The hydrolytic activities of bacterial and human carboxylesterase enzymes (pnbCE and CES1, respectively) were inactivated by HNE in vitro in a time- and concentration-dependent manner. In addition, so were the hydrolytic activities of THP1 cell lysates and intact THP1 monocytes and macrophages. A single lysine residue (Lys105) in recombinant CES1 was modified by HNE via a Michael addition reaction, whereas the lone reduced cysteine residue (Cys389) was found unmodified. The lipolytic activity of cell lysates and intact cells was more sensitive to the inhibitory effects of HNE than the esterolytic activity. Moreover, immunoblotting analysis using HNE antibodies confirmed that several cellular proteins were adducted by HNE following treatment of intact THP1 monocytes, albeit at relatively high HNE concentrations (>50 μM). Unexpectedly, in contrast to CES1, the treatment of a recombinant human CES2 with HNE enhanced its enzymatic activity ∼3-fold compared to untreated enzyme. In addition, THP1 monocytes/macrophages can efficiently metabolize HNE, and glutathione conjugation of HNE is responsible for ∼43% of its catabolism. The functional importance of HNE-mediated inactivation of cellular hydrolytic enzymes with respect to atherogenesis remains obscure, although this study has taken a first step toward addressing this important issue by examining the potential of HNE to inhibit this biochemical activity in a human monocyte/macrophage cell line. 相似文献
8.
Grain size and shape are important factors affecting grain quality and yield in rice. Mapping, tagging and identification of their related genes can lead us to understand their expression pattern and mechanism network, which is to their control. In this study we mapped a grain length controlling gene named Lk-4(t) with SSR and CAPs markers by screening 800 recessive plants in a BC2F2 population derived from a cross of Shuhui527xXiaoli and backcrossed with Xiaoli as the donor parent. The distribution of grain shape parameters and thousand grain weight in F2 and BC2F2 population showed that backcross can diminish most unnecessary variations to identify the target gene more clearly. There were only two grain length phenotypes found among the 3 209 BC2F2 plants, long and short, indicating it is a qualitative trait. The frequency distribution for the grain length showed a typical segregation ratio of 3 : 1, suggesting that only one allele was responsible for the variation. By screening the recessive long grain plants with three CAPs markers, P1-EcoR V, P2-Sac I and P3-Mbo I, we tagged the locus on the arm of chromosome 3 near the centromere. Lk-4(t) was located between P1-EcoRV and P2-Sac I, with genetic distance of 0.90 cM and 0.50 cM from the two markers respectively. Mapping of the gene is a foundation for its final identification and function analysis. 相似文献
9.
Jeffrey J. Almrud Rakhi Dasgupta Robert M. Czerwinski Andrew D. Kern Marvin L. Hackert Christian P. Whitman 《Bioorganic chemistry》2010,38(6):252-259
The tautomerase superfamily consists of structurally homologous proteins that are characterized by a β-α-β fold and a catalytic amino-terminal proline. 4-Oxalocrotonate tautomerase (4-OT) family members have been identified and categorized into five subfamilies on the basis of multiple sequence alignments and the conservation of key catalytic and structural residues. Representative members from two subfamilies have been cloned, expressed, purified, and subjected to kinetic and structural characterization. The crystal structure of DmpI from Helicobacter pylori (HpDmpI), a 4-OT homolog in subfamily 3, has been determined to high resolution (1.8 Å and 2.1 Å) in two different space groups. HpDmpI is a homohexamer with an active site cavity that includes Pro-1, but lacks the equivalent of Arg-11 and Arg-39 found in 4-OT. Instead, the side chain of Lys-36 replaces that of Arg-11 in a manner similar to that observed in the trimeric macrophage migration inhibitory factor (MIF), which is the title protein of another family in the superfamily. The electrostatic surface of the active site is also quite different and suggests that HpDmpI might prefer small, monoacid substrates. A kinetic analysis of the enzyme is consistent with the structural analysis, but a biological role for the enzyme remains elusive. The crystal structure of DmpI from Archaeoglobus fulgidus (AfDmpI), a 4-OT homolog in subfamily-4, has been determined to 2.4 Å resolution. AfDmpI is also a homohexamer, with a proposed active site cavity that includes Pro-1, but lacks any other residues that are readily identified as catalytic ones related to 4-OT activity. Indeed, the electrostatic potential of the active site differs significantly in that it is mostly neutral, in contrast to the usual electropositive features found in other 4-OT family members, suggesting that AfDmpI might accommodate hydrophobic substrates. A kinetic analysis has been carried out, but does not provide any clues about the type of reaction the enzyme might catalyze. 相似文献