首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Heavy metals (HMs) are known to have negative effects on plant water status; however, the mechanisms by which plants rearrange their water relations to adapt to such conditions are poorly understood. Using the model plant Mesembryanthemum crystallinum, we studied disturbances in water status and rapid plant defence responses induced by excess copper or zinc. After a day of HM stress, reductions in root sap exudation and water deficits in leaf tissues became evident. We also observed several primary adaptive events, including a rapid decrease in the transpiration rate and progressive declines in the leaf-cell sap osmotic potential. Longer HM treatments resulted in reductions of total and relative water contents as well as proline accumulation, an increase in water retention capacity and changes in aquaporin gene expression. After 3 h of HM exposure, leaf expression of the McTIP2;2 gene, which encodes tonoplast aquaporin, was suppressed more than two-fold, thus representing one of the earliest responses to HM treatment. The expression of three additional aquaporin genes was also reduced starting at 9 h; this effect became more prominent upon longer HM exposure. These results indicate that HMs induce critical rearrangements in the water relations of M. crystallinum plants, based on the rapid suppression of transpiration flow and strong inhibition of root sap exudation. These effects then triggered an adaptive water-conserving strategy involving differential regulation of aquaporin gene expression in leaves and roots, further reductions in transpiration, and an accelerated switch to CAM photosynthesis.  相似文献   

2.
3.
Functional magnetic resonance imaging was used to study transients of biophysical parameters in a cucumber plant in response to environmental changes. Detailed flow imaging experiments showed the location of xylem and phloem in the stem and the response of the following flow characteristics to the imposed environmental changes: the total amount of water, the amount of stationary and flowing water, the linear velocity of the flowing water, and the volume flow. The total measured volume flow through the plant stem was in good agreement with the independently measured water uptake by the roots. A separate analysis of the flow characteristics for two vascular bundles revealed that changes in volume flow of the xylem sap were accounted for by a change in linear-flow velocities in the xylem vessels. Multiple-spin echo experiments revealed two water fractions for different tissues in the plant stem; the spin-spin relaxation time of the larger fraction of parenchyma tissue in the center of the stem and the vascular tissue was down by 17% in the period after cooling the roots of the plant. This could point to an increased water permeability of the tonoplast membrane of the observed cells in this period of quick recovery from severe water loss.  相似文献   

4.
The Arabidopsis thaliana Tonoplast Intrinsic Protein 1;1 (AtTIP1;1) is a member of the tonoplast aquaporin family. The tissue-specific expression pattern and intracellular localization of AtTIP1;1 were characterized using GUS and GFP fusion genes. Results indicate that AtTIP1;1 is expressed in almost all cell types with the notable exception of meristematic cells. The highest level of AtTIP1;1 expression was detected in vessel-flanking cells in vascular bundles. AtTIP1;1-GFP fusion protein labelled the tonoplast of the central vacuole and other smaller peripheral vacuoles. The fusion protein was not found evenly distributed along the tonoplast continuum but concentrated in contact zones of tonoplasts from adjacent vacuoles and in invaginations of the central vacuole. Such invaginations may result from partially engulfed small vacuoles. A knockout mutant was isolated and characterized to gain insight into AtTIP1;1 function. No phenotypic alteration was found under optimal growth conditions indicating that AtTIP1;1 function is not essential to the plant and that some members of the TIP family may act redundantly to facilitate water flow across the tonoplast. However, a conditional root phenotype was observed when mutant plants were grown on a glycerol-containing medium.  相似文献   

5.
6.
In plants, vacuoles are essential organelles that undergo dynamic volume changes during cell growth due to rapid and high flow of water through tonoplast water-carrying channels composed of integral proteins (tonoplast aquaporins). The tonoplast BobTIP26-1 from cauliflower has previously been shown to be an efficient active aquaporin in Xenopus leavis oocytes. In this study we used tobacco (Nicotiana tabacum cv. Wisconsin 38) suspension cells to examine the effect of BobTIP26-1 expression. In order to follow the intracellular localisation of the protein in real time, the gfp sequence was fused downstream to the BobTIP26-1 coding region. The fusion protein BobTIP26-1::GFP is less active than BobTIP26-1 by itself when expressed in Xenopus oocytes. Nevertheless, this fusion protein is well targeted to the tonoplast of the plant suspension cell when expressed via Agrobacterium co-cultivation. A complex tonoplast labelling is shown when young vacuolated cells are observed. The expression of the fusion protein does not affect the growth rate of the cells but increases their volume. We postulate that the increase in cell volume is triggered by the fusion protein allowing vacuolar volume increase.  相似文献   

7.
8.
BACKGROUND AND AIMS The inner cortical cells (IC-cells) of legume root nodules have been previously shown to regulate the resistance to nodule O2 diffusion by a rapid contraction/expansion mechanism, which controls the volume of intercellular spaces and their occlusion by a liquid phase. The expression of aquaporins in IC-cells was also found to be involved in this nodule O2 diffusion mechanism. The aim of this study was to compare the expression of plasma membrane intrinsic proteins (PIP) aquaporin isoforms with tonoplast intrinsic protein (gamma-TIP) in both IC-cells and adjacent cell types. METHODS: Using immunogold labelling in ultra-thin sections of Glycine max nodules, the expression of two PIP isoforms was observed and compared with the gamma-TIP pattern. KEY RESULTS: The plasma membrane aquaporins PIP1 and PIP2 were expressed more in IC-cells and endodermis than in pericycle and infected cells. The tonoplast aquaporin gamma-TIP has shown a distribution pattern similar to that of the PIPs. CONCLUSIONS: PIPs and gamma-TIP aquaporins are highly expressed in both plasmalemma and tonoplast of nodule IC-cells. This distribution is consistent with the putative role of water fluxes associated with the regulation of nodule conductance to O2 diffusion and the subsequent ATP-dependent nitrogenase activity. In the endodermis, these aquaporins might also be involved in nutrient transport between the infected zone and vascular traces.  相似文献   

9.
Experiments are described indicating the magnitude and location of the low temperature barrier to lateral water flow in stems of cotton (Gossypium hirsutum L. `Auburn 7-683'). Rehydration of wilted stem tissues was performed at 6 C and 32 C. Compared with the 32 C control, a 13-fold increase in the rehydration halftime was recorded at 6 C when water entered the secondary phloem tissues across the vascular cambium from the secondary xylem. However, only a 3-fold increase in the rehydration halftime occurred when water entered phloem tissues through the cortex, and most of this increase was due to the higher viscosity of water at the lower temperature. These results show that the cambial region of an intact cotton stem markedly resists the radial flow of water at lower temperatures. This resistance was not demonstated by other stem tissues.  相似文献   

10.
 Recently, it has been shown that water fluxes across biological membranes occur not only through the lipid bilayer but also through specialized water-conducting proteins, the so called aquaporins. In the present study, we investigated in young and mature leaves of Brassica napus L. the expression and localization of a vacuolar aquaporin homologous to radish γ-tonoplast intrinsic protein/vacuolar-membrane integral protein of 23 kDa (TIP/VM 23). In-situ hybridization showed that these tonoplast aquaporins are highly expressed not only in developing but also in mature leaves, which export photosynthates. No substantial differences could be observed between different tissues of young and mature leaves. However, independent of the developmental stage, an immunohistochemical approach revealed that the vacuolar membrane of bundle-sheath cells contained more protein cross-reacting with antibodies raised against radish γ-TIP/VM 23 than the mesophyll cells. The lowest labeling was detected in phloem cells. We compared these results with the distribution of plasma-membrane aquaporins cross-reacting with antibodies detecting a domain conserved among members of the plasma-membrane intrinsic protein 1 (PIP1) subfamily. We observed the same picture as for the vacuolar aquaporins. Furthermore, a high density of gold particles labeling proteins of the PIP1 group could be observed in plasmalemmasomes of the vascular parenchyma. Our results indicate that γ-TIP/VM 23 and PIP1 homologous proteins show a similar expression pattern. Based on these results it is tempting to speculate that bundle-sheath cells play an important role in facilitating water fluxes between the apoplastic and symplastic compartments in close proximity to the vascular tissue. Received: 23 December 1999 / Accepted: 3 June 2000  相似文献   

11.
Summary Standard lead precipitation procedures have been used to examine the localization of ATPase activity in phloem tissues ofRicinus communis. Reaction product was localized on the plasma membrane of the companion cells associated with sieve elements and of parenchyma cells in phloem tissues from the leaf, petiole, stem and root. ATPase activity was also present on the plasma membrane and dispersed P-protein of sieve elements in petiole, stem and root tissue, but was absent from the plasma membrane of these cells in the leaf minor veins. Substitution of-glycerophosphate for ATP produced no change in the localization of reaction product in leaf tissue. These findings are discussed in relation to current theories on the mechanism of sugar transport and phloem loading.  相似文献   

12.
Aquaporins are membrane water channels that play critical roles in controlling the water content of cells and tissues. In this work, nine full-length cDNAs encoding putative aquaporins were isolated from grape berry cDNA libraries. A phylogenetic analysis conducted with 28 aquaporin genes identified in the grapevine genome and previously characterized aquaporins from Arabidopsis indicates that three cDNAs encode putative tonoplast aquaporins (TIPs) whereas six cDNAs belong to the plasma membrane aquaporin subfamily (PIPs). Specific probes designed on the 3' untranslated regions of each cDNA were used for the preparation of cDNA macroarray filters and in situ hybridization experiments. Macroarray data indicate that expression levels of most TIP and PIP genes depend on grape berry developmental stages and point out to a global decrease of aquaporin gene expression during berry ripening. In young berries, high expression of aquaporin genes was preferentially observed in dividing and elongating cells and in cells involved in water and solutes transport. Taken together, the data provided in this paper indicate that aquaporins are implicated in various physiological aspects of grape berry development.  相似文献   

13.
14.
? Premise of the study: Aquaporins (AQPs) are channel proteins, and their function is mostly associated with transmembrane water transport. While aquaporin genes are known to be expressed in woody poplar stems, little is known about AQP expression at the cellular level. Localization of AQP expression to particular cell and tissue types is a necessary prerequisite in understanding the biological role of these genes. ? Methods: Subsets of plants were subjected to 6 wk of high nitrogen fertilization (high N plants) or to a controlled drought. Experimental treatments affected cambial activity and wood anatomy. RNA in situ hybridization was used to characterize spatial expression of three AQP genes in stem cross sections. ? Key results: The strongest labeling consistently occurred in the cambial region and in adjacent xylem and phloem cells. Expression was also detected in rays. Contact cells exhibited high expression, while expression in other ray cells was more variable. High N plants exhibited a broader band of expression in the cambial region than plants receiving only adequate N fertilization (control plants) and plants subjected to drought. ? Conclusions: Water channels in stems were expressed in a manner that allows hydraulic coupling between xylem and other tissues that may serve as water reservoirs, including phloem and pith parenchyma. Expression of AQPs in rays may increase radial flow of water from xylem and phloem to the cambial region where AQPs may help sustain rapid cell division and expansion of developing vessel elements.  相似文献   

15.
Histochemical localization of ATPase was carried out on phloemtissues from vegetative and reproductive sinks of Ricinus communis,using lead precipitation procedures. Reaction products werelocalized mainly at the plasma membrane of the sieve elements,companion cells and phloem parenchyma cells. Activity was alsopresent in plasmodesmata, the tonoplast of companion cells anddispersed P-protein within the sieve element lumen. The resultsare discussed in relation to the possible involvement of a plasmamembrane ATPase in apoplastic and symplastic unloading fromthe phloem conducting tissues. ATPase, sink tissues, unloading, Ricinus communis  相似文献   

16.

Background

Plants are unavoidably subjected to various abiotic stressors, including high salinity, drought and low temperature, which results in water deficit and even death. Water uptake and transportation play a critical role in response to these stresses. Many aquaporin proteins, localized at different tissues, function in various transmembrane water movements. We targeted at the key aquaporin in charge of both water uptake in roots and radial water transportation from vascular tissues through the whole plant.

Results

The MzPIP2;1 gene encoding a plasma membrane intrinsic protein was cloned from salt-tolerant apple rootstock Malus zumi Mats. The GUS gene was driven by MzPIP2;1 promoter in transgenic Arabidopsis. It indicated that MzPIP2;1 might function in the epidermal and vascular cells of roots, parenchyma cells around vessels through the stems and vascular tissues of leaves. The ectopically expressed MzPIP2;1 conferred the transgenic Arabidopsis plants enhanced tolerance to slight salt and drought stresses, but sensitive to moderate salt stress, which was indicated by root length, lateral root number, fresh weight and K+/Na+ ratio. In addition, the possible key cis-elements in response to salt, drought and cold stresses were isolated by the promoter deletion experiment.

Conclusion

The MzPIP2;1 protein, as a PIP2 aquaporins subgroup member, involved in radial water movement, controls water absorption and usage efficiency and alters transgenic plants drought and salt tolerance.  相似文献   

17.
In legume–rhizobia symbioses, the bacteria in infected cells are enclosed in a plant membrane, forming organelle-like compartments called symbiosomes. Symbiosomes remain as individual units and avoid fusion with lytic vacuoles of host cells. We observed changes in the vacuole volume of infected cells and thus hypothesized that microsymbionts may cause modifications in vacuole formation or function. To examine this, we quantified the volumes and surface areas of plant cells, vacuoles, and symbiosomes in root nodules of Medicago truncatula and analyzed the expression and localization of VPS11 and VPS39, members of the HOPS vacuole-tethering complex. During the maturation of symbiosomes to become N2-fixing organelles, a developmental switch occurs and changes in vacuole features are induced. For example, we found that expression of VPS11 and VPS39 in infected cells is suppressed and host cell vacuoles contract, permitting the expansion of symbiosomes. Trafficking of tonoplast-targeted proteins in infected symbiotic cells is also altered, as shown by retargeting of the aquaporin TIP1g from the tonoplast membrane to the symbiosome membrane. This retargeting appears to be essential for the maturation of symbiosomes. We propose that these alterations in the function of the vacuole are key events in the adaptation of the plant cell to host intracellular symbiotic bacteria.  相似文献   

18.
We investigated tissue- and cell-specific accumulation of radish aquaporin isoforms by immunocytochemical analysis. In taproots, the plasma membrane aquaporins (RsPIP1 and RsPIP2) were accumulated at high levels in the cambium, while the tonoplast aquaporin (RsTIP) was distributed in all tissues. The three isoforms were highly accumulated in the central cylinder of seedling roots and hypocotyls, and rich in the vascular tissue of the petiole of mature plants. The results suggest that RsPIP1 and RsPIP2 are abundant in the cells surrounding the sieve tube of the radish plant. The swelling rate of protoplasts in a hypotonic solution was determined individually by a newly established method to compare the osmotic water permeability of different cell types. All cells of the cortex and endodermis in seedlings showed a high water permeability of more than 300 microm s(-1). There was no marked difference in the values between the root endodermis and cortex protoplasts, although the RsPIP level was lower in the cortex than in the endodermis. This inconsistency suggests two possibilities: (1) a low level of aquaporin is enough for high water permeability and (2) the water channel activity of aquaporin in the tissues is regulated individually. The uneven distribution of aquaporins in tissues is discussed along with their physiological roles.  相似文献   

19.
The time dependent response of the hydrodynamic root system to PEG-induced water stress was studied in intact maize Zea mays L. seedlings at intervals varying from several seconds to 3 h by detecting diffusional water transfer with the use of pulsed NMR. In order to establish the contribution of water transfer through aquaporins in response to water stress, the transmembrane water transport in control roots and roots treated with aquaporin blocker was detected. Changes in diffusional water transfer under stress were shown to depend on the duration of osmotic treatment, and include the series of heterogeneous processes. A transient pulsed jump in diffusional water transfer detected several seconds after beginning the osmotic treatment is associated with the spread of the wave of hydraulic pressure along the root. It is proposed that early responses of the hydrodynamic system of maize roots to PEG-induced water stress lies in the unequal change in water permeability of the plasmalemma and tonoplast resulting from the changes in aquaporin activity and perhaps in the escalation of water transfer along the cell vacuome.  相似文献   

20.
Water deficit (WD) is a growing problem in agriculture. In citrus crops, genetically-determined rootstock characteristics are important factors influencing plant responses to WD. Aquaporins are involved in regulating the water supply to the plant by mediating water flow through the cell membranes. Recent studies support a direct role for aquaporins in plant water relations and demonstrate their involvement in WD tolerance. This study investigates the relationship between photosynthetic and water-balance parameters with aquaporin expression levels and hydraulic conductance of roots (Kr) in conditions of moderate WD in citrus rootstocks. The plant materials used were the rootstocks Poncirus trifoliata (L.) Raf. (PT), Cleopatra mandarin (Citrus reshni Hort ex Tan.) (CM) and 030115 (a hybrid of the two former rootstocks), all grafted with the citrus variety ??Valencia Late?? (C. sinensis (L.) Osb). Plants were irrigated with two differents irrigation doses (normal irrigation and moderate WD) during 70 days and leaf water potential (??s), net CO2 assimilation (ACO2), transpiration, stomatal conductance (gs) and substomatal CO2 concentration (Ci) were measured periodically under both irrigation conditions. Kr and PIP1 and PIP2 gene expression levels in fine roots of control plants and plants subjected to WD on day 43 of the experiment were determined. Under WD conditions, the hybrid 030115 drastically reduced aquaporin expression and Kr, accompanied by a loss of plant vigour but without reducing the net CO2 assimilation (ACO2). PT maintained the same aquaporin expression level and similar Kr under WD as under normal irrigation conditions, but suffered a sharp reduction in ACO2. CM, which has lower Kr and aquaporin expression than PT under both normal irrigation conditions and WD, responded better to water stress conditions than PT. Low aquaporin levels, or down-regulated aquaporin expression, accompanied by decreased plant vigour led to decreased plasma membrane permeability, thereby facilitating water retention in the cells under water stress conditions. This may induce water stress tolerance in citrus rootstocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号