首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A new ascosporogenous yeast, Zygosaccharomyces kombuchaensis sp. n. (type strain NRRL YB-4811, CBS 8849), is described; it was isolated from Kombucha tea, a popular fermented tea-based beverage. The four known strains of the new species have identical nucleotide sequences in domain D1/D2 of 26S rDNA. Phylogenetic analysis of D1/D2 and 18S rDNA sequences places Z. kombuchaensis near Zygosaccharomyces lentus. The two species are indistinguishable on standard physiological tests used for yeast identification, but can be recognized from differences in restriction fragment length polymorphism patterns obtained by digestion of 18S-ITS1 amplicons with the restriction enzymes DdeI and MboI.  相似文献   

2.
Guerreiro JF  Mira NP  Sá-Correia I 《Proteomics》2012,12(14):2303-2318
Zygosaccharomyces bailii is the most tolerant yeast species to acetic acid-induced toxicity, being able to grow in the presence of concentrations of this food preservative close to the legal limits. For this reason, Z. bailii is the most important microbial contaminant of acidic food products but the mechanisms behind this intrinsic resistance to acetic acid are very poorly characterized. To gain insights into the adaptive response and tolerance to acetic acid in Z. bailii, we explored an expression proteomics approach, based on quantitative 2DE, to identify alterations occurring in the protein content in response to sudden exposure or balanced growth in the presence of an inhibitory but nonlethal concentration of this weak acid. A coordinate increase in the content of proteins involved in cellular metabolism, in particular, in carbohydrate metabolism (Mdh1p, Aco1p, Cit1p, Idh2p, and Lpd1p) and energy generation (Atp1p and Atp2p), as well as in general and oxidative stress response (Sod2p, Dak2p, Omp2p) was registered. Results reinforce the concept that glucose and acetic acid are coconsumed in Z. bailii, with acetate being channeled into the tricarboxylic acid cycle. When acetic acid is the sole carbon source, results suggest the activation of gluconeogenic and pentose phosphate pathways, based on the increased content of several proteins of these pathways after glucose exhaustion.  相似文献   

3.
Lactic acid represents an important class of commodity chemicals, which can be produced by microbial cell factories. However, due to the toxicity of lactic acid at lower pH, microbial production requires the usage of neutralizing agents to maintain neutral pH. Zygosaccharomyces bailii, a food spoilage yeast, can grow under the presence of organic acids used as food preservatives. This unique trait of the yeast might be useful for producing lactic acid. With the goal of domesticating the organic acid‐tolerant yeast as a metabolic engineering host, seven Z. bailii strains were screened in a minimal medium with 10 g/L of acetic, or 60 g/L of lactic acid at pH 3. The Z. bailii NRRL Y7239 strain was selected as the most robust strain to be engineered for lactic acid production. By applying a PAN‐ARS‐based CRISPR‐Cas9 system consisting of a transfer RNA promoter and NAT selection, we demonstrated the targeted deletion of ADE2 and site‐specific integration of Rhizopus oryzae ldhA coding for lactate dehydrogenase into the PDC1 locus. The resulting pdc1::ldhA strain produced 35 g/L of lactic acid without ethanol production. This study demonstrates the feasibility of the CRISPR‐Cas9 system in Z. bailii, which can be applied for a fundamental study of the species.  相似文献   

4.
A genomic library of the yeast Zygosaccharomyces bailii ISA 1307 was constructed in pRS316, a shuttle vector for Saccharomyces cerevisiae and Escherichia coli. The library has an average insert size of 6 kb and covers the genome more than 20 times assuming a genome size similar to that of S. cerevisiae. This new tool has been successfully used, by us and others, to isolate Z. bailii genes. One example is the beta-isopropylmalate dehydrogenase gene (ZbLEU2) of Z. bailii, which was cloned by complementation of a leu2 mutation in S. cerevisiae. An open reading frame encoding a protein with a molecular mass of 38.7 kDa was found. The nucleotide sequence of ZbLEU2 and the deduced amino acid sequence showed a significant degree of identity to those of beta-isopropylmalate dehydrogenases from several other yeast species. The sequence of ZbLEU2 has been deposited in the EMBL data library under accession number AJ292544.  相似文献   

5.
Changes in the fatty acid profile of Zygosaccharomyces bailii strains, isolated from different sources, after growth at increasing concentrations of ethanol and/or decreasing temperatures were determined. Differences in fatty acid composition between Zygosaccharomyces bailii strains at standard conditions (25°C, 0% initial ethanol) were observed and could be related to ethanol tolerance. Zygosaccharomyces bailii strain isolated from wine showed the highest ethanol tolerance in relation to growth rate. Surprisingly, an increase in ethanol concentration or a decrease in growth temperature caused a decrease in the degree of unsaturation of total cellular fatty acids. On the other hand, the mean chain length increased (high ethanol concentration) or decreased (low temperature) depending on the stress factor. When both stress situations (high ethanol concentration and low temperature) were present at the same time, the degree of unsaturation remained approximately constant. With decreasing temperatures, the C16/C18 ratio increased in studies of initial ethanol content below 5%, and above 5% ethanol, decreased.  相似文献   

6.
Molecular tools for the production of heterologous proteins and metabolic engineering applications of the non-conventional yeast Zygosaccharomyces bailii were developed. The combination of Z. bailii's resistance to relatively high temperature, osmotic pressure and low pH values, with a high specific growth rate renders this yeast potentially interesting for exploitation for biotechnological purposes as well as for the understanding of the biological phenomena and mechanisms underlying the respective resistances. Looking forward to these potential applications, here we present the tools required for the production and the secretion of different heterologous proteins, and one example of a metabolic engineering application of this non-conventional yeast, employing the newly developed molecular tools.  相似文献   

7.
The yeast Zygosaccharomyces bailii , known to have peculiar resistance to several environmental constraints, is very little known with respect to its genetics and life cycle. In addition to molecular and biochemical studies, cytofluorimetric and morphological analyses can also add information necessary to shed light on its interesting features. In the present study, the DNA and protein content as well as the cellular morphology of Z. bailii populations growing in minimal medium supplemented with different carbon sources and with the addition of different organic acids were investigated. The results show the occurrence of a multibudded phenotype and of a low, but significant percentage of binucleate cells occurring in the early-stationary phase. These traits appear to be different in comparison with the better-known laboratory yeast Saccharomyces cerevisiae . Experiments and speculations about these features and possible implications with Z. bailii main characteristics are discussed.  相似文献   

8.
Zygosaccharomyces lentus is a yeast species recently identified from its physiology and 18S ribosomal sequencing (Steels et al. 1999).The physiological characteristics of five strains of this new yeast so far isolated were investigated, particularly those of technical significance for a spoilage yeast, namely temperature range, pH range, osmotolerance, sugar fermentation, resistance to food preservatives such as sorbic acid, benzoic acid and dimethyldicarbonate (DMDC; Velcorin). Adaptation to benzoic acid, and growth in shaking and static culture were also investigated. Zygosaccharomyces lentus strains grew over a wide range of temperature (4-25 degrees C) and pH 2.2-7.0. Growth at 4 degrees C was significant. Zygosaccharomyces lentus strains grew at 25-26 degrees C in static culture but were unable to grow in aerobic culture close to their temperature maximum. All Z. lentus strains grew in 60% w/v sugar and consequently, are osmotolerant. Zygosaccharomyces lentus strains could utilize sucrose, glucose or fructose as a source of fermentable sugar, but not galactose. Zygosaccharomyces lentus strains were resistant to food preservatives, growing in sorbic acid up to 400 mg l-1 and benzoic acid to 900 mg l-1 at pH 4.0. Adaptation to higher preservative concentrations was demonstrated with benzoic acid. Resistance to DMDC was shown to be greater than that of Z. bailii and Saccharomyces cerevisiae. This study confirms that Z. lentus is an important food spoilage organism potentially capable of growth in a wide range of food products, particularly low pH, high sugar foods and drinks. It is likely to be more significant than Z. bailii in the spoilage of chilled products.  相似文献   

9.
A non-radioactive PCR coupled ligase detection reaction was developed to discriminate the food spoilage yeasts Zygosaccharomyces bailii and Z. bisporus from each other and from other members of the genus. A short region of the 18S rRNA gene was amplified from boiled cell lysates and polymerase chain reaction (PCR) products used as target in the template directed ligation of two adjacent oligonucleotides. Ligated products were captured using biotin-streptavidin chemistry and detected using digoxigenin
immuno-chemiluminescence. The ligase detection reaction was able to discriminate to the species level, targeting a single base deletion. The specificity of the reaction was assessed using seven species of the genus Zygosaccharomyces . Only strains of Z. bailii and Z. bisporus gave positive results with their respective primer sets. The lower detection limit of the strategy was 10pg (3 times 107 targets) of amplified product.  相似文献   

10.
Zygocin, a protein toxin produced and secreted by a killer virus-infected strain of the osmotolerant yeast Zygosaccharomyces bailii, kills a great variety of human and phytopathogenic yeasts and filamentous fungi. Toxicity of the viral toxin is envisaged in a two-step receptor-mediated process in which the toxin interacts with cell surface receptors at the level of the cell wall and the plasma membrane. Zygocin receptors were isolated and partially purified from the yeast cell wall mannoprotein fraction and could be successfully used as biospecific ligand for efficient one-step purification of the 10-kDa protein toxin by receptor-mediated affinity chromatography. Evidence is presented that zygocin-treated yeast cells are rapidly killed by the toxin, and intensive propidium iodide staining of zygocin-treated cells indicated that the toxin is affecting cytoplasmic membrane function, most probably by lethal ion channel formation. The presented findings suggest that zygocin has potential as a novel antimycotic in combating fungal infections.  相似文献   

11.
P ainting , K.A. & K irsop , B arbara , 1984. A note on the presence of novel DNA species in the spoilage yeasts Zygosaecharomyces bailii and Pichia membranaefaciens. Journal of Applied Bacteriology 56 , 331–336.
Two novel covalently closed circular DNA species of 5.4 and 6.0 kilobases were detected in strains of Zygosaecharomyces bailii with a rapid small scale isolation procedure. The 5.4 kb species was found in four strains and both species were found in three strains. A novel, covalently-closed circular DNA species of 6.9 kb was detected in four of 12 strains of Pichia membranaefaciens . Plasmid DNA (2 μm) (that is CCC DNA of approximately 6 kb in Saccharomyces cerevisiae) was detected in 38 of 40 strains of Sacch. cerevisiae confirming reports of the widespread distribution of this plasmid.  相似文献   

12.
Glycosylphosphatidylinositol (GPI)-dependent cell wall proteins in yeast are connected to the beta-1,3-glucan network via a beta-1,6-glucan moiety. Addition of gentiobiose or beta-1,6-glucan oligomers to growing cells affected the construction of a normal layer of GPI-dependent cell wall proteins at the outer rim of the Saccharomyces cerevisiae cell wall. Treated S. cerevisiae cells secreted significant amounts of cell wall protein 2, were much more sensitive to the lytic action of zymolyase 20T and displayed a marked increase in sensitivity to the small amphipathic antimicrobial peptide MB-21. Similar results in terms of sensitization of yeast cells to the antimicrobial peptide were obtained with the notorious food spoilage yeast Zygosaccharomyces bailii. Our results indicate that treating cells with a membrane-perturbing compound together with compounds that lead to an impaired construction of a normal GPI-dependent yeast wall protein layer represents an effective strategy to prevent the growth of major food spoilage yeasts.  相似文献   

13.
A respiration-deficient (RD) mutant was isolated from the petite-negative, salt-tolerant yeast Zygosaccharomyces rouxii. One strain among sixteen glycerol-non-utilizing mutants exhibited vigorous liberation of CO2 but no uptake of O2. Furthermore, this strain lacked cytochrome aa3 and had a reduced level of cytochrome b. The few mitochondria found in cells of this strain contained few or no cristae. Salt tolerance and intracellular accumulation of glycerol by the RD strain were almost equal to that of the wild-type strain in media containing NaCl up to 2.5 M. In media with more than 3 M NaCl, the growth of the RD mutant was retarded and the intracellular accumulation of glycerol was depressed in spite of ample production.  相似文献   

14.
Shigella flexneri, but not a non-invasive mutant derivative rapidly induced cell death in human monoblastic U937 cells as well as in differentiated cells pretreated with interferon-gamma (IFN gamma) or retinoic acid (RA). We investigated the morphological and biochemical characteristics of bacterial invasion-induced cell death in these differentiated U937 cells. IFN gamma-differentiated cells showed morphological changes typical of apoptosis and their DNA was cleaved giving a ladder-like electrophoretic pattern after infection by Shigellae. In contrast, swelling of the cytoplasm and blebbing of the plasma membrane were observed in RA-differentiated and undifferentiated cells invaded by the bacteria. No condensation of nuclei was observed in these cells by light microscopy, and no internucleosomal fragmentation of DNA was detected on agarose gels, which resembled the features of oncosis. Furthermore, cleavage of poly(ADP-ribose) polymerase, a substrate for apoptotic caspases, was seen only in IFN gamma-pretreated cells but not in RA-pretreated or undifferentiated cells. These findings suggested that virulent Shigella flexneri induces distinct types of cell death in U937 cells depending on their differentiation state.  相似文献   

15.
Cells of Zygosaccharomyces bailii ISA 1307 grown in a medium with acetic acid, ethanol, or glycerol as the sole carbon and energy source transported acetic acid by a saturable transport system. This system accepted propionic and formic acids but not lactic, sorbic, and benzoic acids. When the carbon source was glucose or fructose, the cells displayed activity of a mediated transport system specific for acetic acid, apparently not being able to recognize other monocarboxylic acids. In both types of cells, ethanol inhibited the transport of labelled acetic acid. The inhibition was noncompetitive, and the dependence of the maximum transport rate on the ethanol concentration was found to be exponential. These results reinforced the belief that, under the referenced growth conditions, the acid entered the cells mainly through a transporter protein. The simple diffusion of the undissociated acid appeared to contribute, with a relatively low weight, to the overall acid uptake. It was concluded that in Z. bailii, ethanol plays a protective role against the possible negative effects of acetic acid by inhibiting its transport and accumulation. Thus, the intracellular concentration of the acid could be maintained at levels lower than those expected if the acid entered the cells only by simple diffusion.  相似文献   

16.
Abstract The 16S rRNA sequences from the Gluconobacter species G. asaii G. cerinus and G. frateurii were determined and compared with homologous sequences from published databases and sequences of G. oxydans and Acetobacter species previously described [Sievers M., Ludwig W. and Teuber M. (1994) System. Appl. Microbiol. 17, 189–196]. The Gluconobacter species have unique 16S rRNA sequences and exhibit sequence similarity values of 97.4 to 99.1%, corresponding to 36 to 14 base differences. The phylogenetic tree inferring methods (distance matrix, maximum parsimony and maximum likelihood) show that the species of Gluconobacter form a coherent, closely related cluster. Based on the distance matrix method including Rhodopila globiformis as an outgroup reference organism, Gluconobacter is well separated from Acetobacter .  相似文献   

17.
In this work, it is described the sequencing and annotation of the genome of the yeast strain ISA1307, isolated from a sparkling wine continuous production plant. This strain, formerly considered of the Zygosaccharomyces bailii species, has been used to study Z. bailii physiology, in particular, its extreme tolerance to acetic acid stress at low pH. The analysis of the genome sequence described in this work indicates that strain ISA1307 is an interspecies hybrid between Z. bailii and a closely related species. The genome sequence of ISA1307 is distributed through 154 scaffolds and has a size of around 21.2 Mb, corresponding to 96% of the genome size estimated by flow cytometry. Annotation of ISA1307 genome includes 4385 duplicated genes (∼90% of the total number of predicted genes) and 1155 predicted single-copy genes. The functional categories including a higher number of genes are ‘Metabolism and generation of energy’, ‘Protein folding, modification and targeting’ and ‘Biogenesis of cellular components’. The knowledge of the genome sequence of the ISA1307 strain is expected to contribute to accelerate systems-level understanding of stress resistance mechanisms in Z. bailii and to inspire and guide novel biotechnological applications of this yeast species/strain in fermentation processes, given its high resilience to acidic stress. The availability of the ISA1307 genome sequence also paves the way to a better understanding of the genetic mechanisms underlying the generation and selection of more robust hybrid yeast strains in the stressful environment of wine fermentations.  相似文献   

18.
Zygosaccharomyces rouxii, a salt-tolerant yeast isolated from the soy sauce process, produces fusel alcohols (isoamyl alcohol, active amyl alcohol and isobutyl alcohol) from branched-chain amino acids (leucine, isoleucine and valine, respectively) via the Ehrlich pathway. Using a high-throughput screening approach in microtiter plates, we have studied the effects of pH, temperature and salt concentration on growth of Z. rouxii and formation of fusel alcohols from branched-chain amino acids. Application of minor variations in pH (range 3-7) and NaCl concentrations (range 0-20%) per microtiter plate well allowed a rapid and detailed evaluation of fermentation conditions for optimal growth and metabolite production. Conditions yielding the highest cell densities were not optimal for fusel alcohol production. Maximal fusel alcohol production occurred at low pH (3.0-4.0) and low NaCl concentrations (0-4%) at 25 degrees C. At pH 4.0-6.0 and 0-18% NaCl, considerable amounts of alpha-keto acids, the deaminated products from the branched-chain amino acids, accumulated extracellularly. The highest cell densities were obtained in plates incubated at 30 degrees C. The results obtained under various incubation conditions with (deep-well) microtiter plates were validated in Erlenmeyer shake-flask cultures.  相似文献   

19.
A new species, Mortierella sugadairana, is described for a fungus forming homothallic zygospores with a club-shaped macrosuspensor and a microsuspensor originating from the macrosuspensor. The species was isolated from cool regions in Japan and morphologically and phylogenetically close to a heterothallic species M. parvispora, which is the first species reported as a heterothallic species in the genus. Mycelial growth of the species was limited at 30 °C, whereas two isolates of M. parvispora can grow. This may indicate that the species and M. parvispora adapted to different climates from a common ancestor involving differentiation of the manner of reproduction.  相似文献   

20.
Five taxa already in the literature are here removed from Chydorus to their own genus Ephemeroporus, and two new species — E. acanthodes and E. archboldi — are described, with E. acanthodes being designated the type species of the genus. These taxa, plus at least nine undescribed species and others undoubtedly waiting to be sorted out, constitute a tightly circumscribed group of species morphologically. The first two species described — E. barroisi and E. poppei — are nomina dubia for the present, as no specimens exist from the original collections, nor are any available from the type localities or reasonably close thereto. E. hybridus from Brazil has been characterized in greater detail through the availability of specimens from the type series, which has enabled one of the species in the E. hybridus group from North America to be judged conspecific with reasonable certainty. E. tridentatus, from Brazil, has been restored as a valid species, and the highly distinctive E. phintonicus from Sardinia and Algeria constitutes the seventh species in the genus. Chydorus nitidulus and Chydorus tilhoi, which have been suggested to be members of the barroisi complex, are not. What are presently called E. barroisi and E. hybridus, except for E. hybridus, sens. str., each consists of a cluster of species sharing the same number of teeth on the labrum and shell. Because of their wide, distribution, abundance, and frequency of occurrence, especially in South Asia, the species in the E. barroisi group will be especially meaningful to sort out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号