首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pseudomonas sp. strain 7-6, isolated from active sludge obtained from a wastewater facility, utilized a quaternary ammonium surfactant, n-dodecyltrimethylammonium chloride (DTAC), as its sole carbon, nitrogen, and energy source. When initially grown in the presence of 10 mM DTAC medium, the isolate was unable to degrade DTAC. The strain was cultivated in gradually increasing concentrations of the surfactant until continuous exposure led to high tolerance and biodegradation of the compound. Based on the identification of five metabolites by gas chromatography-mass spectrometry analysis, two possible pathways for DTAC metabolism were proposed. In pathway 1, DTAC is converted to lauric acid via n-dodecanal with the release of trimethylamine; in pathway 2, DTAC is converted to lauric acid via n-dodecyldimethylamine and then n-dodecanal with the release of dimethylamine. Among the identified metabolites, the strain precultivated on DTAC medium could utilize n-dodecanal and lauric acid as sole carbon sources and trimethylamine and dimethylamine as sole nitrogen sources, but it could not efficiently utilize n-dodecyldimethylamine. These results indicated pathway 1 is the main pathway for the degradation of DTAC.  相似文献   

2.
The effects of long-chain (C12 to C18) quaternary ammonium compounds (QACs) on the density, heterotrophic activity, and biodegradation capabilities of heterotrophic bacteria were examined in situ in a lake ecosystem. Monoalkyl and dialkyl substituted QACs were tested over a range of concentrations (0.001 to 10 mg/liter) in both acute (3 h) and chronic (21 day) exposures. In general, none of the QACs tested had significant adverse effects on bacterial densities in either acute or chronic studies. However, significant decreases in bacterial heterotrophic activity were noted in acute studies at QAC concentrations from 0.1 to 10 mg/liter. Chronic exposure of lake microbial communities to a specific monoalkyl QAC resulted in an adaptive response and recovery of heterotrophic activity. No-observable-effect level in the adapted populations was >10 mg/liter. Chronic exposure also resulted in significant increases in the number and activity of bacteria capable of biodegrading the material. The increase in biodegradation capability was observed at low (microgram per liter) concentrations which are approximately the same as realistic environmental levels. In general, our studies indicated that exposure of lake microbial communities to QACs results in the development of adapted communities which are less sensitive to potential toxic effects and more active in the biodegradation of these materials.  相似文献   

3.
Resistant cells of Pseudomonas aeruginosa and a waterborne Pseudomonas sp. (strain Z-R) were able to multiply in nitrogen-free minimal salts solution containing various concentrations of commercially prepared, ammonium acetate-buffered benzalkonium chloride (CBC), a potent antimicrobial agent. As the CBC concentration increased, growth increased until a point was reached at which the extent of growth leveled off or was completely depressed. Minimal salts solutions of pure benzalkonium chloride (PBC) containing no ammonium acetate did not support bacterial growth. When ammonium acetate was added to PBC solutions in the same concentrations found in CBC solutions, growth patterns developed that were comparable to those found with CBC. Likewise, (NH(4))(2)SO(4) added to PBC solutions supported growth of both organisms. P. aeruginosa was initially resistant to CBC levels of 0.02% and it was adapted to tolerate levels as high as 0.36%. Strain Z-R was naturally resistant to 0.4% CBC. Since ammonium acetate, carried over by the CBC used in drug formulations and disinfectant solutions, has the potential to support the growth of resistant bacteria and thus make possible the risk of serious infection, it is suggested that regulations allowing the presence of ammonium acetate in CBC solution be reconsidered.  相似文献   

4.
The strain Pseudomonas sp. strain ADP is able to degrade atrazine as a sole nitrogen source and therefore needs a single source for both carbon and energy for growth. In addition to the typical C source for Pseudomonas, Na2-succinate, the strain can also grow with phenol as a carbon source. Phenol is oxidized to catechol by a multicomponent phenol hydroxylase. Catechol is degraded via the ortho pathway using catechol 1,2-dioxygenase. It was possible to stimulate the strain in order to degrade very high concentrations of phenol (1,000 mg/liter) and atrazine (150 mg/liter) simultaneously. With cyanuric acid, the major intermediate of atrazine degradation, as an N source, both the growth rate and the phenol degradation rate were similar to those measured with ammonia as an N source. With atrazine as an N source, the growth rate and the phenol degradation rate were reduced to ~35% of those obtained for cyanuric acid. This presents clear evidence that although the first three enzymes of the atrazine degradation pathway are constitutively present, either these enzymes or the uptake of atrazine is the bottleneck that diminishes the growth rate of Pseudomonas sp. strain ADP with atrazine as an N source. Whereas atrazine and cyanuric acid showed no significant toxic effect on the cells, phenol reduces growth and activates or induces typical membrane-adaptive responses known for the genus Pseudomonas. Therefore Pseudomonas sp. strain ADP is an ideal bacterium for the investigation of the regulatory interactions among several catabolic genes and stress response mechanisms during the simultaneous degradation of toxic phenolic compounds and a xenobiotic N source such as atrazine.  相似文献   

5.
Tube dilution experiments showed that benzalkonium chloride (BC)-resistant mutants of Pseudomonas aeruginosa grown in the presence of 1,000 mug of BC per ml were at least 20 times more sensitive to polymyxin B and colistin sulfate than the BC-sensitive (BCS) parent strain. BCS cells selected for resistance to 500 mug of polymyxin B per ml remained sensitive to BC. There was little difference in the amount of carbenicillin, gentamicin sulfate, or rifampin needed to prevent growth of either the BCS or BC-resistant (BCR) strains. Growth of BCR cells was inhibited by ethylenediaminetetraacetate at a concentration of 400 mug/ml or less, whereas the BCS strain grew at ethylenediaminetetraacetate levels of 10,000 mug/ml. Phenylmercuric acetate and thimerosal inhibited growth of BCR and BCS cells at concentrations of 10 mug/ml or less. BCR cells were cross-resistant to >1,000 mug/ml concentrations of five other quaternary ammonium compounds, including three with C(16) alkyls and two with alkyl groups of shorter length. The BCS strain was also resistant to >1,000 mug/ml concentrations of the three quaternary ammonium compounds with C(16) alkyl groups but, in addition to BC, was inhibited by 200 mug/ml levels or less of the two quaternary ammonium compounds containing alkyl groups of less than 16 carbon atoms.  相似文献   

6.
Pseudomonas sp. strain NGK1, a soil bacterium isolated by naphthalene enrichment from biological waste effluent treatment, capable of utilizing 2-methylnaphthalene as sole source of carbon and energy. To deduce the pathway for biodegradation of 2-methylnaphthalene, metabolites were isolated from the spent medium and identified by thin-layer chromatography and high-performance liquid chromatography. The characterization of purified metabolites, oxygen uptake studies, and enzyme activities revealed that the strain degrades 2-methylnaphthalene through more than one pathway. The growth of the bacterium, utilization of 2-methylnaphthalene, and 4-methylsalicylate accumulation by Pseudomonas sp. strain NGK1 were studied at various incubation periods. Received: 20 March 2001 / Accepted: 25 April 2001  相似文献   

7.
A bacterial strain, designated Pseudomonas sp. strain DCA1, was isolated from a 1,2-dichloroethane (DCA)-degrading biofilm. Strain DCA1 utilizes DCA as the sole carbon and energy source and does not require additional organic nutrients, such as vitamins, for optimal growth. The affinity of strain DCA1 for DCA is very high, with a Km value below the detection limit of 0.5 μM. Instead of a hydrolytic dehalogenation, as in other DCA utilizers, the first step in DCA degradation in strain DCA1 is an oxidation reaction. Oxygen and NAD(P)H are required for this initial step. Propene was converted to 1,2-epoxypropane by DCA-grown cells and competitively inhibited DCA degradation. We concluded that a monooxygenase is responsible for the first step in DCA degradation in strain DCA1. Oxidation of DCA probably results in the formation of the unstable intermediate 1,2-dichloroethanol, which spontaneously releases chloride, yielding chloroacetaldehyde. The DCA degradation pathway in strain DCA1 proceeds from chloroacetaldehyde via chloroacetic acid and presumably glycolic acid, which is similar to degradation routes observed in other DCA-utilizing bacteria.  相似文献   

8.
9.
Amycolatopsis sp. strain HT-6, a poly(tetramethylene succinate) (PTMS)-degrading actinomycete, was observed to degrade poly(tetramethylene carbonate) (PTMC). In a liquid culture with 150 mg of PTMC film, 59% degradation was achieved, but with a low yield of cell growth. On the other hand, PTMS copolymerized with a small amount of PTMC, forming a copolyester carbonate (PEC) that was completely and rapidly degraded with a high yield of cell growth.  相似文献   

10.
Pyrene degradation is known in bacteria. In this study, Mycobacterium sp. strain KMS was used to study the metabolites produced during, and enzymes involved in, pyrene degradation. Several key metabolites, including pyrene-4,5-dione, cis-4,5-pyrene-dihydrodiol, phenanthrene-4,5-dicarboxylic acid, and 4-phenanthroic acid, were identified during pyrene degradation. Pyrene-4,5-dione, which accumulates as an end product in some gram-negative bacterial cultures, was further utilized and degraded by Mycobacterium sp. strain KMS. Enzymes involved in pyrene degradation by Mycobacterium sp. strain KMS were studied, using 2-D gel electrophoresis. The first protein in the catabolic pathway, aromatic-ring-hydroxylating dioxygenase, which oxidizes pyrene to cis-4,5-pyrene-dihydrodiol, was induced with the addition of pyrene and pyrene-4,5-dione to the cultures. The subcomponents of dioxygenase, including the alpha and beta subunits, 4Fe-4S ferredoxin, and the Rieske (2Fe-2S) region, were all induced. Other proteins responsible for further pyrene degradation, such as dihydrodiol dehydrogenase, oxidoreductase, and epoxide hydrolase, were also found to be significantly induced by the presence of pyrene and pyrene-4,5-dione. Several nonpathway-related proteins, including sterol-binding protein and cytochrome P450, were induced. A pyrene degradation pathway for Mycobacterium sp. strain KMS was proposed and confirmed by proteomic study by identifying almost all the enzymes required during the initial steps of pyrene degradation.  相似文献   

11.
镇达  陈茂彬 《微生物学报》2008,35(3):0358-0362
氯代硝基芳香烃是一类环境中难以降解的有毒污染物。一株高效分解4-氯硝基苯的假单胞菌分离于4-氯硝基苯污染土壤, 可以完全降解4-氯硝基苯, 并以之为C源、N源生长。为阐明其降解4-氯硝基苯的代谢途径, 通过对以底物生长的降解菌的酶学分析, 检测到其还原降解的两个关键酶即初始酶硝基还原酶和苯环开环酶2-氨基-5-氯酚1, 6-双加氧酶的活性; 结合其它检测如培养液中降解产物分析、相关底物生长实验结果, 确定了其降解途径是通过部分还原途径。  相似文献   

12.
假单胞菌ZWL73降解4-氯硝基苯的代谢途径研究   总被引:1,自引:1,他引:1  
镇达  陈茂彬 《微生物学通报》2008,35(3):0358-0362
氯代硝基芳香烃是一类环境中难以降解的有毒污染物.一株高效分解4-氯硝基苯的假单胞菌分离于4-氯硝基苯污染土壤,可以完全降解4-氯硝基苯,并以之为C源、N源生长.为阐明其降解4-氯硝基苯的代谢途径,通过对以底物生长的降解茵的酶学分析,检测到其还原降解的两个关键酶即初始酶硝基还原酶和苯环开环酶2-氨基-5-氯酚1,6-双加氧酶的活性:结合其它检测如培养液中降解产物分析、相关底物生长实验结果,确定了其降解途径是通过部分还原途径.  相似文献   

13.
The degradation of long-chain n-alkylbenzenes and n-alkylcyclohexanes by Alcanivorax sp. strain MBIC 4326 was investigated. The alkyl side chain of these compounds was mainly processed by β-oxidation. In the degradation of n-alkylcyclohexanes, cyclohexanecarboxylic acid was formed as an intermediate. This compound was further transformed to benzoic acid via 1-cyclohexene-1-carboxylic acid.  相似文献   

14.
The bacterium Pseudomonas PG2982 metabolizes glyphosate (N-(phosphonomethyl)glycine) by converting it to glycine, a one-carbon unit, and phosphate. Here we show that this conversion involves the intermediate formation of sarcosine. When cells are incubated with [14C]glyphosate, the 14C can be entrapped in glycine or sarcosine. With added sarcosine, 14C from all three carbons of glyphosate is recovered solely in sarcosine. In experiments with glycine, radioactivity from the carboxymethyl moiety of glyphosate is trapped in glycine as well as serine, whereas radioactivity from the phosphonomethyl carbon is only incorporated into serine. These results are consistent with a pathway involving the conversion of glyphosate to sarcosine by cleavage of its carbon-phosphorus (C-P) bond, followed by the oxidation of sarcosine to glycine and formaldehyde.  相似文献   

15.
In laboratory settings, the ability of bacteria and fungi to degrade many environmental contaminants is well proven. However, the potential of microbial inoculants in soil remediation has not often been realized because catabolically competent strains rarely survive and proliferate in soil, and even if they do, they usually fail to express their desired catabolic potential. One method to address the survival problem is formulating the microorganisms with physical and chemical support systems. This study investigates the survival of Pseudomonas sp. strain ADP in sterile soil and its retention of atrazine-degrading functionality. Assessment was conducted with free and zeolite-immobilized bacteria incorporated into the soil. Pseudomonas sp. strain ADP remained viable for at least 10 weeks when stored at 15°C in sterile soil. Cell numbers increased for both free and zeolite-immobilized bacteria during this period, except for free cells when grown in Miller's Luria-Bertani medium, which exhibited constant cell numbers over the 10 weeks. Only the zeolite-immobilized cell retained full functionality to degrade atrazine after 10 weeks in sterile soil regardless of the medium used to culture Pseudomonas sp. strain ADP. Functionality was diminished in free-cell inoculations except when using an improved culture medium. Survival of zeolite-immobilized Pseudomonas sp. strain ADP separated from the soil matrix after 10 weeks’ incubation was significantly (p < .05) greater than in soil inoculated with free cells or in the soil fraction inoculated by release from zeolite-immobilized Pseudomonas sp. strain ADP.  相似文献   

16.
17.
Pseudomonas sp. strain JS6 grows on chlorobenzene, p-dichlorobenzene, or toluene as a sole source of carbon and energy. It does not grow on p-chlorotoluene (p-CT). Growth on glucose in the presence of p-CT resulted in the accumulation of 4-chloro-2,3-dihydroxy-1-methylbenzene (3-chloro-6-methylcatechol), 4-chloro-2,3-dihydroxy-1-methylcyclohexa-4,6-diene (p-CT dihydrodiol), and 2-methyl-4-carboxymethylenebut-2-en-4-olide (2-methyl dienelactone). Strain JS21, a spontaneous mutant capable of growth on p-CT, was isolated from cultures of strain JS6 after extended exposure to p-CT. In addition to growing on p-CT, JS21 grew on all of the substrates that supported growth of the parent strain, including p-dichlorobenzene, chlorobenzene, benzene, toluene, benzoate, p-hydroxybenzoate, phenol, and ethylbenzene. The pathway for degradation of p-CT by JS21 was investigated by respirometry, isolation of intermediates, and assay of enzymes in cell extracts. p-CT was converted to 3-chloro-6-methylcatechol by dioxygenase and dihydrodiol dehydrogenase enzymes. 3-Chloro-6-methylcatechol underwent ortho ring cleavage catalyzed by a catechol 1,2-dioxygenase to form 2-chloro-5-methyl-cis,cis-muconate, which was converted to 2-methyl dienelactone. A dienelactone hydrolase converted 2-methyl dienelactone to 2-methylmaleylacetic acid. Preliminary results indicate that a change in wild-type induction patterns allows JS21 to grow on p-CT.  相似文献   

18.
Pseudomonas sp. strain JS6 grows on chlorobenzene, p-dichlorobenzene, or toluene as a sole source of carbon and energy. It does not grow on p-chlorotoluene (p-CT). Growth on glucose in the presence of p-CT resulted in the accumulation of 4-chloro-2,3-dihydroxy-1-methylbenzene (3-chloro-6-methylcatechol), 4-chloro-2,3-dihydroxy-1-methylcyclohexa-4,6-diene (p-CT dihydrodiol), and 2-methyl-4-carboxymethylenebut-2-en-4-olide (2-methyl dienelactone). Strain JS21, a spontaneous mutant capable of growth on p-CT, was isolated from cultures of strain JS6 after extended exposure to p-CT. In addition to growing on p-CT, JS21 grew on all of the substrates that supported growth of the parent strain, including p-dichlorobenzene, chlorobenzene, benzene, toluene, benzoate, p-hydroxybenzoate, phenol, and ethylbenzene. The pathway for degradation of p-CT by JS21 was investigated by respirometry, isolation of intermediates, and assay of enzymes in cell extracts. p-CT was converted to 3-chloro-6-methylcatechol by dioxygenase and dihydrodiol dehydrogenase enzymes. 3-Chloro-6-methylcatechol underwent ortho ring cleavage catalyzed by a catechol 1,2-dioxygenase to form 2-chloro-5-methyl-cis,cis-muconate, which was converted to 2-methyl dienelactone. A dienelactone hydrolase converted 2-methyl dienelactone to 2-methylmaleylacetic acid. Preliminary results indicate that a change in wild-type induction patterns allows JS21 to grow on p-CT.  相似文献   

19.
Degradation of bromacil by a Pseudomonas sp.   总被引:1,自引:1,他引:1       下载免费PDF全文
A gram-negative rod, identified as a Pseudomonas sp., was isolated from soil by using bromacil as the sole source of carbon and energy. During growth on bromacil or 5-bromouracil, almost stoichiometric amounts of bromide were released. The bacterium was shown to harbor two plasmids approximately 60 and 100 kilobases in size. They appeared to be associated with the ability to utilize bromacil as a sole source of carbon and also with resistance to ampicillin. This microorganism also showed the potential to decontaminate soil samples fortified with bromacil under laboratory conditions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号