首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We developed a computational screen that tests an individual's genome for mutations in the BRCA genes, despite the fact that both are currently protected by patents.  相似文献   

2.
3.
Genome editing is a revolutionary technology in molecular biology. While scientists are fascinated with the unlimited possibilities provided by directed and controlled changes in DNA in eukaryotes and have eagerly adopted such tools for their own experiments, an understanding of the intellectual property (IP) implications involved in bringing genome editing-derived products to market is often lacking. Due to the ingenuity of genome editing, the time between new product conception and its actual existence can be relatively short; therefore knowledge about IP of the various genome editing methods is relevant. This point must be regarded in a national framework as patents are instituted nationally. Therefore, when designing scientific work that could lead to a product, it is worthwhile to consider the different methods used for genome editing not only for their scientific merits but also for their compatibility with a speedy and reliable launch into the desired market.  相似文献   

4.
Mutations, Single Nucleotide Polymorphisms (SNPs), deletions and genetic rearrangements in specific genes in the human genome account for not only our physical characteristics and behavior, but can lead to many in-born and acquired diseases. Such changes in the genome can also predispose people to cancers, as well as significantly affect the metabolism and efficacy of many drugs, resulting in some cases in acute toxicity to the drug. The testing of the presence of such genetic mutations and rearrangements is of great practical and commercial value, leading many of these genes and their mutations/deletions and genetic rearrangements to be patented. A recent decision by a judge in the Federal District Court in the Southern District of New York, has created major uncertainties, based on the revocation of BRCA1 and BRCA2 gene patents, in the eligibility of all human and presumably other gene patents. This article argues that while patents on BRCA1 and BRCA2 genes could be challenged based on a lack of utility, the patenting of the mutations and genetic rearrangements is of great importance to further development and commercialization of genetic tests that can save human lives and prevent suffering, and should be allowed.  相似文献   

5.
Patent pools and diagnostic testing   总被引:1,自引:0,他引:1  
There is increasing concern that overlapping patents in the field of genetics will create a costly and legally complex situation known as a patent thicket, which, along with the associated issues of accumulating royalty payments, can act as a disincentive for innovation. One potential means of preventing this is for the patent holders to enter into a so-called patent pool, such as those established in the electronics and telecommunications industries. Precedents for these also exist in the field of genetics, notably with the patents pertaining to the SARS genome. In this review, we initially address the patent pool concept in general and its application in genetics. Following this, we will explore patent pools in the diagnostic field in more detail, and examine some existing and novel examples of patent pools in genetics.  相似文献   

6.
The partial genome sequences of a serotype 3 and a serotype 2 pneumococcal strain were compared to the complete type 4 pneumococcal genome. Over 500000 and 150000 base pairs of the partial genome data, obtained from published patents, were analysed respectively. Global alignment showed that nearly the whole genome is highly conserved in accordance with data of multilocus sequence typing of housekeeping genes. The search for clone-specific genes revealed 17 new open reading frames in the type 3 strain, while no new open reading frame was detected in the type 2 strain. Allelic variation of genes was restricted by the use of crude sequence data, but still permitted identification of some new alleles and the observation that all surface proteins present in the partial genome data were highly conserved. In both strains we observed also a variety of chromosomal rearrangements and variations due to mobile genetic elements. All together, this comparative genomic approach gives a genome-based overview of strain relatedness and a prospective on what could be expected when sequencing other pneumococcal strains.  相似文献   

7.

Background  

DNA-based watermarks are helpful tools to identify the unauthorized use of genetically modified organisms (GMOs) protected by patents. In silico analyses showed that in coding regions synonymous codons can be used to insert encrypted information into the genome of living organisms by using the DNA-Crypt algorithm.  相似文献   

8.
We analyze the patent filing strategies of foreign pharmaceutical companies in Chile distinguishing between “primary” (active ingredient) and “secondary” patents (patents on modified compounds, formulations, dosages, particular medical uses, etc.). There is prior evidence that secondary patents are used by pharmaceutical originator companies in the U.S. and Europe to extend patent protection on drugs in length and breadth. Using a novel dataset that comprises all drugs registered in Chile between 1991 and 2010 as well as the corresponding patents and trademarks, we find evidence that foreign originator companies pursue similar strategies in Chile. We find a primary to secondary patents ratio of 1:4 at the drug-level, which is comparable to the available evidence for Europe; most secondary patents are filed over several years following the original primary patent and after the protected active ingredient has obtained market approval in Chile. This points toward effective patent term extensions through secondary patents. Secondary patents dominate “older” therapeutic classes like anti-ulcer and anti-depressants. In contrast, newer areas like anti-virals and anti-neoplastics (anti-cancer) have a much larger share of primary patents.  相似文献   

9.
Seeber F 《Nature protocols》2007,2(10):2418-2428
This communication provides an easy-to-follow protocol for using the free Internet-accessible scientific search engine, Scirus, to search for and subsequently retrieve published patents from several patent offices in portable document format (PDF). Hints on how to 'read' patents and how to extract relevant information, as well as how to export bibliographic data from Scirus and how to cite patents, are also given. The reason for providing such a protocol is that a vast amount of information, also of potential interest to life scientists, is largely hidden for those not knowing how to access these data. Several examples are provided that highlight the reasons to include patent searches into the workflow of life scientists. These include early access to data before publication, patents as a source of data that never appear in the literature and patents as a source of critical information otherwise hard to get from commercial suppliers. Finally, alternative free patent search services are briefly discussed, and their differences are highlighted.  相似文献   

10.
In the mid-1990s, the company Human Genome Sciences submitted three potentially revolutionary patent applications to the US Patent and Trademark Office, each of which claimed the entire genome sequence of a microorganism. The patent examiners, however, objected to these applications, and after negotiation they were eventually re-written to resemble more traditional gene patents. In this paper, which is based on a study of the patent examination files, we examine the reasons why these patent applications were unsuccessful in their original form. We show that with respect to utility and novelty, the patent attorney's case built on an understanding of the genome as a computer-related invention. The patent examiners did not object to the patenting of complete genome sequences as computer-related inventions on moral grounds or in terms of the distinction between a discovery and an invention. Instead, their objections were based on classification, rules and procedure. Rather than patent examiners having a notion of a genome that should not be patented, the notion of a 'genome', and the ways in which it may be different from a 'gene', played no role in these debates. We discuss the consequences of our findings for patenting in the biosciences.  相似文献   

11.
Phycobiliproteins are a group of colored proteins commonly present in cyanobacteria and red algae possessing a spectrum of applications. They are extensively commercialized for fluorescent applications in clinical and immunological analysis. They are also used as a colorant, and their therapeutic value has also been categorically demonstrated. However, a comprehensive knowledge and technological base for augmenting their commercial utilities is lacking. Hence, this work is focused towards this objective by means of analyzing global patents and commercial activities with application oriented research. Strategic mining of patents was performed from global patent databases resulting in the identification of 297 patents on phycobiliproteins. The majority of the patents are from USA, Japan and Europe. Patents are grouped into fluorescent applications, general applications and production aspects of phycobiliproteins and the features of each group are discussed. Commercial and applied research activities are compared in parallel. It revealed that US patents are mostly related to fluorescent applications while Japanese are on the production, purification and application for therapeutic and diagnostic purposes. Fluorescent applications are well represented in research, patents and commercial sectors. Biomedical properties documented in research and patents are not ventured commercially. Several novel applications are reported only in patents. The paper further pinpoints the plethora of techniques used for cell breakage and for extraction and purification of phycobiliproteins. The analysis identifies the lacuna and suggests means for improvements in the application and production of phycobiliproteins.  相似文献   

12.

Background

While there has been much discussion by policymakers and stakeholders about the effects of “secondary patents” on the pharmaceutical industry, there is no empirical evidence on their prevalence or determinants. Characterizing the landscape of secondary patents is important in light of recent court decisions in the U.S. that may make them more difficult to obtain, and for developing countries considering restrictions on secondary patents.

Methodology/Principal Findings

We read the claims of the 1304 Orange Book listed patents on all new molecular entities approved in the U.S. between 1988 and 2005, and coded the patents as including chemical compound claims (claims covering the active molecule itself) and/or one of several types of secondary claims. We distinguish between patents with any secondary claims, and those with only secondary claims and no chemical compound claims (“independent” secondary patents).We find that secondary claims are common in the pharmaceutical industry. We also show that independent secondary patents tend to be filed and issued later than chemical compound patents, and are also more likely to be filed after the drug is approved. When present, independent formulation patents add an average of 6.5 years of patent life (95% C.I.: 5.9 to 7.3 years), independent method of use patents add 7.4 years (95% C.I.: 6.4 to 8.4 years), and independent patents on polymorphs, isomers, prodrug, ester, and/or salt claims add 6.3 years (95% C.I.: 5.3 to 7.3 years). We also provide evidence that late-filed independent secondary patents are more common for higher sales drugs.

Conclusions/Significance

Policies and court decisions affecting secondary patenting are likely to have a significant impact on the pharmaceutical industry. Secondary patents provide substantial additional patent life in the pharmaceutical industry, at least nominally. Evidence that they are also more common for best-selling drugs is consistent with accounts of active “life cycle management” or “evergreening” of patent portfolios in the industry.  相似文献   

13.
Why should patents be granted on genes? This question is a provocative and troubling issue currently facing society. Looking at the commercial realities of gene patents, I conclude that on balance their effect is to retard, rather than to stimulate, both scientific and economic progress. The monopolies awarded by patents on genes as novel chemicals are not therefore in the public interest. Society would benefit from immediate change in the policy of patent offices to limit the allowance of patents on genes to specified uses with only narrow claims.  相似文献   

14.
The total number of patents produced by a country (or the number of patents produced per capita) is often used as an indicator for innovation. Here we present evidence that the distribution of patents amongst applicants within many countries is well-described by power laws with exponents that vary between 1.66 (Japan) and 2.37 (Poland). We suggest that this exponent is a useful new metric for studying innovation. Using simulations based on simple preferential attachment-type rules that generate power laws, we find we can explain some of the variation in exponents between countries, with countries that have larger numbers of patents per applicant generally exhibiting smaller exponents in both the simulated and actual data. Similarly we find that the exponents for most countries are inversely correlated with other indicators of innovation, such as research and development intensity or the ubiquity of export baskets. This suggests that in more advanced economies, which tend to have smaller values of the exponent, a greater proportion of the total number of patents are filed by large companies than in less advanced countries.  相似文献   

15.
Australia, like most countries, faces high and rapidly-rising drug costs. There are longstanding concerns about pharmaceutical companies inappropriately extending their monopoly position by “evergreening” blockbuster drugs, through misuse of the patent system. There is, however, very little empirical information about this behaviour. We fill the gap by analysing all of the patents associated with 15 of the costliest drugs in Australia over the last 20 years. Specifically, we search the patent register to identify all the granted patents that cover the active pharmaceutical ingredient of the high-cost drugs. Then, we classify the patents by type, and identify their owners. We find a mean of 49 patents associated with each drug. Three-quarters of these patents are owned by companies other than the drug''s originator. Surprisingly, the majority of all patents are owned by companies that do not have a record of developing top-selling drugs. Our findings show that a multitude of players seek monopoly control over innovations to blockbuster drugs. Consequently, attempts to control drug costs by mitigating misuse of the patent system are likely to miss the mark if they focus only on the patenting activities of originators.  相似文献   

16.
Drawing an appropriate boundary between unpatentable natural phenomena and patentable inventions is crucial in preventing the patent laws from unduly restricting access to fundamental scientific discoveries. Some would argue that, particularly in the U.S., patents are being issued that purport to claim a novel product or process but that, in effect, encompass any practical application of a fundamental biological principle. Examples include gene patents, which Congress is considering banning, and patents relating to biological correlations and pathways, such as the patents at issue in the headline-grabbing LabCorp v. Metabolite and Ariad v. Eli Lilly litigations. In view of the mounting concern, it seems likely that Congress and/or the courts will address the issue, and perhaps substantially shift the boundary.  相似文献   

17.
The discovery of microRNAs (miRNAs), a new class of negative regulator that represses gene expression by pairing with their target messenger RNAs (mRNAs), has revealed a natural pathway for controlling gene expression. There are hundreds of miRNAs encoded in the human genome and thousands of target mRNAs, which illustrates the important regulatory roles of miRNAs in cell developmental, differentiation, proliferation and apoptosis pathways. In this scenario, it is not surprising that deregulated miRNAs have been involved in the pathogenesis of many human diseases. The recent development of technologies and compounds to identify and modulate miRNAs has opened new avenues for diagnosis, prognosis and therapeutic applications. Here, we summarize most of the recent patents related to the detection and profiling of miRNAs from pathological samples and to miRNA modulators used as new therapies for disease, including cancer and viral infections, as well as methods for their delivery.  相似文献   

18.
The results in this paper establish that information contained in patents in a technological domain is strongly correlated with the rate of technological progress in that domain. The importance of patents in a domain, the recency of patents in a domain and the immediacy of patents in a domain are all strongly correlated with increases in the rate of performance improvement in the domain of interest. A patent metric that combines both importance and immediacy is not only highly correlated (r = 0.76, p = 2.6*10-6) with the performance improvement rate but the correlation is also very robust to domain selection and appears to have good predictive power for more than ten years into the future. Linear regressions with all three causal concepts indicate realistic value in practical use to estimate the important performance improvement rate of a technological domain.  相似文献   

19.
We analyzed gender disparities in patenting by country, technological area, and type of assignee using the 4.6 million utility patents issued between 1976 and 2013 by the United States Patent and Trade Office (USPTO). Our analyses of fractionalized inventorships demonstrate that women’s rate of patenting has increased from 2.7% of total patenting activity to 10.8% over the nearly 40-year period. Our results show that, in every technological area, female patenting is proportionally more likely to occur in academic institutions than in corporate or government environments. However, women’s patents have a lower technological impact than that of men, and that gap is wider in the case of academic patents. We also provide evidence that patents to which women—and in particular academic women—contributed are associated with a higher number of International Patent Classification (IPC) codes and co-inventors than men. The policy implications of these disparities and academic setting advantages are discussed.  相似文献   

20.
Ulrich Storz 《MABS-AUSTIN》2016,8(5):841-847
Dosage patents are one way to extend the market exclusivity of an approved drug beyond the lifetime of the patent that protects the drug as such. Dosage patents may help to compensate the applicant for the long period where the active pharmaceutical ingredient as such is already under patent prosecution, but not on the market yet, due to lengthy development and approval procedures. This situation erodes part of the time the drug is marketed under patent protection. Dosage patents filed at a later date can provide remedy for this problem. Examples of successful and unsuccesful attempts, and the reasons for the respective outcomes, are provided in this article.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号