首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N2O uptake activity of cells and N2O reductase activity of the soluble fraction from denitrifying bacteria were assayed. Pseudomonas aeruginosa strains PAO1 and P1 lost most of their N2O uptake activity and the ability to grow well on N2O within 2 to 5 h after exposure to N2O. Extensive loss of N2O reductase activity accompanied the nearly complete loss of N2O uptake activity under N2O. Paracoccus denitrificans retained much, but not all, of both activities and the ability to grow vigorously on N2O. The pattern with P. aeruginosa strain P2 resembled that for PAO1 and P1 except that loss of the activities proceeded at a slower rate and growth could continue for up to 12 h after exposure to N2O. The inability of a number of P. aeruginosa strains to grow well on N2O is therefore a direct consequence of the nearly complete loss of N2O reductase activity. Turnover-dependent inactivation of N2O reductase and its reactivation under reducing conditions occurred in vitro for the enzyme from P. aeruginosa and Paracoccus denitrificans. These events may be significant in determining the activity level of N2O reductase in denitrifying bacteria during N2O respiration.  相似文献   

2.
N2O uptake activity of cells and N2O reductase activity of the soluble fraction from denitrifying bacteria were assayed. Pseudomonas aeruginosa strains PAO1 and P1 lost most of their N2O uptake activity and the ability to grow well on N2O within 2 to 5 h after exposure to N2O. Extensive loss of N2O reductase activity accompanied the nearly complete loss of N2O uptake activity under N2O. Paracoccus denitrificans retained much, but not all, of both activities and the ability to grow vigorously on N2O. The pattern with P. aeruginosa strain P2 resembled that for PAO1 and P1 except that loss of the activities proceeded at a slower rate and growth could continue for up to 12 h after exposure to N2O. The inability of a number of P. aeruginosa strains to grow well on N2O is therefore a direct consequence of the nearly complete loss of N2O reductase activity. Turnover-dependent inactivation of N2O reductase and its reactivation under reducing conditions occurred in vitro for the enzyme from P. aeruginosa and Paracoccus denitrificans. These events may be significant in determining the activity level of N2O reductase in denitrifying bacteria during N2O respiration.  相似文献   

3.
The mass ratio of nitrous oxide reductase to total protein in the soluble protein fraction of Pseudomonas aeruginosa P2 was highest in cells grown on nitrate, decreased in cells grown on N2O following the exhaustion of the initial charge of nitrate, and was nearly zero in cells exposed solely to N2O.  相似文献   

4.
Nitrous oxide reductase, which catalyzes the reduction of N2O to N2, was purified in a largely oxidized form from Pseudomonas aeruginosa strain P2 by a simple anaerobic procedure to yield an enzyme with a peptide purity of 95-98%. For the native (dimeric) enzyme, Mr = 120,000 and for the denatured subunit, Mr = 73,000. The enzyme contained four Cu atoms/subunit, was purple in color, and exhibited a broad absorption band at 550 nm with an extinction coefficient of about 11,000 M-1 x cm-1 referenced to the dimer. It was nearly inactive as prepared but could be activated by incubation with 2-(N-cyclohexylamino)ethane sulfonate buffer, pH 10, to specific activities as high as 27 mumol of N2O x min-1 x mg-1.Km for N2O and benzyl viologen radical cation was about 2 and 4 microM, respectively, both before and after enzyme activation. Activation increased the t1/2 for turnover-dependent inactivation from about 30 s to 5-10 min. Reduction of the enzyme by dithionite was kinetically biphasic and resulted in the loss of the 550-nm band and ultimate appearance of a 670-nm band. Isoelectric focusing revealed five components with pI values from 5.2 to 5.7. The pI values did not change following activation. The copper CD spectrum of the enzyme as prepared was different from that for the activated enzyme, whereas those for the enzyme after exposure to air and the activated enzyme were similar. Because the activated enzyme is a mixture of activated and inactive species, the specific activity of the activated species must be substantially greater than the observed value. Molecular heterogeneity may also explain the decreased optical absorbance and CD amplitude that resulted from the activation process. The data overall reinforce the view that the absorption spectrum of nitrous oxide reductase is not a good predictor of absolute activity.  相似文献   

5.
The final step of bacterial denitrification, the two-electron reduction of N2O to N2, is catalyzed by a multi-copper enzyme named nitrous oxide reductase. The catalytic centre of this enzyme is a tetranuclear copper site called CuZ, unique in biological systems. The in vitro reconstruction of the activity requires a slow activation in the presence of the artificial electron donor, reduced methyl viologen, necessary to reduce CuZ from the resting non-active state (1CuII/3CuI) to the fully reduced state (4CuI), in contrast to the turnover cycle, which is very fast. In the present work, the direct reaction of the activated form of Pseudomonas nautica nitrous oxide reductase with stoichiometric amounts of N2O allowed the identification of a new reactive intermediate of the catalytic centre, CuZ°, in the turnover cycle, characterized by an intense absorption band at 680 nm. Moreover, the first mediated electrochemical study of Ps. nautica nitrous oxide reductase with its physiological electron donor, cytochrome c-552, was performed. The intermolecular electron transfer was analysed by cyclic voltammetry, under catalytic conditions, and a second-order rate constant of (5.5 ± 0.9) × 105 M−1 s−1 was determined. Both the reaction of stoichiometric amounts of substrate and the electrochemical studies show that the active CuZ° species, generated in the absence of reductants, can rearrange to the resting non-active CuZ state. In this light, new aspects of the catalytic and activation/inactivation mechanism of the enzyme are discussed.  相似文献   

6.
Three strains of Pseudomonas aeruginosa were grown anaerobically on exogenous N2O in a defined medium under conditions that assured the maintenance of highly anaerobic conditions for periods of 1 week or more. The bacteria were observed reproducibly to increase their cell density by factors of 3 to 9, but not more, depending on the initial amount of N2O. Growth on N2O was cleanly blocked by acetylene. Cell yields, CO2 production, and N2O uptake all increased with initial PN2O at PN2O less than or equal to 0.1 atm. Growth curves were atypical in the sense that growth rates decreased with time. This is the first observation of growth of P. aeruginosa on N2O as the sole oxidant. N2O was shown to be an obligatory, freely diffusible intermediate during growth of strains PAO1 and P1 on nitrate. All three strains used this endogenous N2O efficiently for growth. For strains PAO1 and P1, it was confirmed that exogenous N2O had little effect on the cell yields of cultures growing with nitrate; thus, for these strains exogenous N2O neither directly inhibited growth nor was used significantly for growth. On the other hand, strain P2 grew abundantly on exogenous N2O when small and growth-limiting concentrations of nitrate or nitrate (2 to 10 mM) were included in the medium. The dramatic effect of these N-anions was realized in large part even when the exogenous N2O was introduced immediately after the quantitative conversion of anion-nitrogen to N2. No evidence was found for a factor in filter-sterilized spent medium that stimulated fresh inocula to grow abundantly on N2O.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Growth of Pseudomonas aeruginosa on nitrous oxide.   总被引:7,自引:4,他引:3       下载免费PDF全文
Three strains of Pseudomonas aeruginosa were grown anaerobically on exogenous N2O in a defined medium under conditions that assured the maintenance of highly anaerobic conditions for periods of 1 week or more. The bacteria were observed reproducibly to increase their cell density by factors of 3 to 9, but not more, depending on the initial amount of N2O. Growth on N2O was cleanly blocked by acetylene. Cell yields, CO2 production, and N2O uptake all increased with initial PN2O at PN2O less than or equal to 0.1 atm. Growth curves were atypical in the sense that growth rates decreased with time. This is the first observation of growth of P. aeruginosa on N2O as the sole oxidant. N2O was shown to be an obligatory, freely diffusible intermediate during growth of strains PAO1 and P1 on nitrate. All three strains used this endogenous N2O efficiently for growth. For strains PAO1 and P1, it was confirmed that exogenous N2O had little effect on the cell yields of cultures growing with nitrate; thus, for these strains exogenous N2O neither directly inhibited growth nor was used significantly for growth. On the other hand, strain P2 grew abundantly on exogenous N2O when small and growth-limiting concentrations of nitrate or nitrate (2 to 10 mM) were included in the medium. The dramatic effect of these N-anions was realized in large part even when the exogenous N2O was introduced immediately after the quantitative conversion of anion-nitrogen to N2. No evidence was found for a factor in filter-sterilized spent medium that stimulated fresh inocula to grow abundantly on N2O.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
N(2)O reductase activity in soybean nodules formed with Bradyrhizobium japonicum was evaluated from N(2)O uptake and conversion of (15)N-N(2)O into (15)N-N(2). Free-living cells of USDA110 showed N(2)O reductase activity, whereas a nosZ mutant did not. Complementation of the nosZ mutant with two cosmids containing the nosRZDFYLX genes of B. japonicum USDA110 restored the N(2)O reductase activity. When detached soybean nodules formed with USDA110 were fed with (15)N-N(2)O, they rapidly emitted (15)N-N(2) outside the nodules at a ratio of 98.5% of (15)N-N(2)O uptake, but nodules inoculated with the nosZ mutant did not. Surprisingly, N(2)O uptake by soybean roots nodulated with USDA110 was observed even in ambient air containing a low concentration of N(2)O (0.34 ppm). These results indicate that the conversion of N(2)O to N(2) depends exclusively on the respiratory N(2)O reductase and that soybean roots nodulated with B. japonicum carrying the nos genes are able to remove very low concentrations of N(2)O.  相似文献   

9.
The copper centers of nitrous oxide reductase from Pseudomonas aeruginosa strain P2 were studied by x-ray and electron paramagnetic resonance (EPR) spectroscopy. The enzyme is dimeric and contains four Cu atoms and about seven cysteine residues/subunit of Mr = 73,000. The extended x-ray absorption fine structure (EX-AFS) spectrum was analyzed for enzyme as isolated (oxidized or slightly reduced), enzyme exposed briefly to air, reduced enzyme, and enzyme at pH 7 after having been activated by standing at pH 10. The average Cu ligand environment in the first shell was best modeled for all forms of the enzyme by a combination of N/O and S atoms at a total coordination number between 3 and 4 and bond distances ranging from 1.96-2.03 A for Cu-N/O and 2.20-2.25 A for Cu-S. The data could be fit without using Cu-Cu interactions. Overall the results are similar to those reported for the enzyme for Pseudomonas stutzeri (Scott, R. A., Zumft, W.G., Coyle, C.L., and Dooley, D.M. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 4082-4086). The first derivative EPR spectra of the Cu(II) centers at 15 and 45 K were qualitatively similar among enzyme as isolated and enzyme exposed to N2O or air. These three nominally oxidized samples showed an axial signal with g perpendicular = 2.03 and g parallel = 2.15-2.16. Hyperfine structure was observed in both the g parallel and g perpendicular regions with splittings of 43 and 25 gauss, respectively. These hyperfine components are attributed to exchange coupled Cu(I)-Cu(II) S = 1/2 (half-met) centers. In the enzyme as isolated and after exposure to N2O, about 3/4 of the Cu was EPR silent, whereas after exposure to air the signal integrated to about half the Cu concentration. The EPR spectrum of enzyme activated at pH 10 but frozen at pH 7 was a composite of spectra from activated and inactive species. The activated species presented a complex set of narrow hyperfine components which may arise from contributions from more than one species of half-met center.  相似文献   

10.
It was shown that kcat for the benzyl viologen cation (BV+)-N2O oxidoreductase activity of nitrous oxide reductase from Wolinella succinogenes was 2-3 times greater at high N2O concentrations than at low. This effect of N2O on kcat exhibited a titration curve implicating a single secondary binding site for N2O with a Kd of 130-200 microM (Km with respect to N2O is about 2.5 microM). This work represents the first evidence of an apparently allosteric kinetic effect among nitrous oxide reductases. Its possible cause is discussed. BV+ was generated in these kinetic studies by addition of sub-stoichiometric amounts of dithionite. This means of reduction proved to be superior to the photochemical generation of BV+ that had been used previously with the enzyme. Mass spectrometric measurements suggested that the M(r) of the subunit of the enzyme is about 95,500 rather than 88,000.  相似文献   

11.
Analyses of the complete genomes of sequenced denitrifying bacteria revealed that approximately 1/3 have a truncated denitrification pathway, lacking the nosZ gene encoding the nitrous oxide reductase. We investigated whether the number of denitrifiers lacking the genetic ability to synthesize the nitrous oxide reductase in soils is important for the proportion of N2O emitted by denitrification. Serial dilutions of the denitrifying strain Agrobacterium tumefaciens C58 lacking the nosZ gene were inoculated into three different soils to modify the proportion of denitrifiers having the nitrous oxide reductase genes. The potential denitrification and N2O emissions increased when the size of inoculated C58 population in the soils was in the same range as the indigenous nosZ community. However, in two of the three soils, the increase in potential denitrification in inoculated microcosms compared with the noninoculated microcosms was higher than the increase in N2O emissions. This suggests that the indigenous denitrifier community was capable of acting as a sink for the N2O produced by A. tumefaciens. The relative amount of N2O emitted also increased in two soils with the number of inoculated C58 cells, establishing a direct causal link between the denitrifier community composition and potential N2O emissions by manipulating the proportion of denitrifiers having the nosZ gene. However, the number of denitrifiers which do not possess a nitrous oxide reductase might not be as important for N2O emissions in soils having a high N2O uptake capacity compared with those with lower. In conclusion, we provide a proof of principle that the inability of some denitrifiers to synthesize the nitrous oxide reductase can influence the nature of the denitrification end products, indicating that the extent of the reduction of N2O to N2 by the denitrifying community can have a genetic basis.  相似文献   

12.
The cytosol fraction of rat adrenocortical tissue contains comparatively high levels of two prostaglandin metabolizing enzymes. The first, prostaglandin-9-ketoreductase, utilizes NADPH more effectively than NADH as cofactor, is inhibited by NADP, and exhibits an apparent Km of 304 μM for PGE1. 15-hydroxyprostaglandin dehydrogenase, tentatively identified as the type II NADP-dependent isozyme, is inhibited by NADPH but not NADH, and exhibits an apparent Km of 157 μM when PGE1 is used as substrate. Changes in specific activities of the two enzymes following ACTH, hypophysectomy, or dexamethasone treatment are inconclusive in defining a chronic regulatory role for adrenocorticotropin.  相似文献   

13.
Hydrogen sulfide (H2S) inhibits the last step of the denitrification process, i.e. the reduction of nitrous oxide (N2O) to dinitrogen gas (N2), both in natural environments (marine sediments) and industrial processes (activated sludge, methanogenic sludge, BioDeNOx process). In a previously published study, we showed that the inhibitory effect of sulfide to N2O reduction in mixed microbial communities is reversible and can be counteracted by dosing trace amounts of copper. It remained, however, unclear if this was due to copper sulfide precipitation or a retrofitting of the copper containing N2O-reductase (N2OR). The present study aimed to elucidate the mechanism of the restoration of sulfide-inhibited N2O reducing activity by metal addition to a pure Pseudomonas aeruginosa culture. This was done by using other metals (zinc, cobalt and iron) in comparison with copper. Zinc and cobalt clearly alleviated the sulfide inhibition of N2OR to the same extent as copper and the activity restoration was extremely fast (within 15 min, Fig. 3) for zinc, cobalt and copper. This suggests that the alleviation of the inhibitory effect of sulfide is due to metal sulfide precipitation and thus not exclusively limited to Cu. This work also underlines the importance of metal speciation: supply of iron did not restore the N2OR activity because it was precipitated by the phosphates present in the medium and thus could not precipitate the sulfide.  相似文献   

14.
Immunogold labelling techniques on ultrathin sections of low temperature embedded cells yielded evidence for the periplasmic location of the respiratory enzymes N2O reductase and nitrite reductase (cytochrome cd 1) in Pseudomonas stutzeri strain ZoBell. Cell fractionation by spheroplast preparation and two-dimensional electrophoresis showed the absence of a membrane association of these enzymes. Immunocytochemical localization of N2O reductase in a mutant strain deficient in the chromophore of N2O reductase showed the gold label at the cell periphery, indicating that the copper chromophore processing takes place after export of this protein's apoform.  相似文献   

15.
16.
Pseudomonas aeruginosa PAO1 reduced nitrous oxide to dinitrogen but did not grow anaerobically in nitrous oxide. Two transposon insertion Nos- mutants of Pseudomonas stutzeri exhibited the P. aeruginosa phenotype. Growth yield studies demonstrated that nitrous oxide produced in vivo was productively respired, but nitrous oxide supplied exogenously was not. The defect may be in electron transport or in nitrous oxide uptake.  相似文献   

17.
Sources and sinks of nitrous oxide (N2O) in deep lakes   总被引:2,自引:1,他引:2  
As reported from marine systems, we found that also in15 prealpine lakes N2O concentrations werestrongly correlated with O2 concentrations. Inoxic waters below the mixed surface layer, N2Oconcentrations usually increased with decreasingO2 concentrations. N2O is produced in oxicepilimnia, in oxic hypolimnia and at oxic-anoxicboundaries, either in the water or at the sediment-waterinterface. It is consumed, however, incompletely anoxic layers. Anoxic water layers weretherefore N2O undersaturated. All studied lakeswere sources for atmospheric N2O, including thosewith anoxic, N2O undersaturated hypolimnia.However, compared to agriculture, lakes seem not tocontribute significantly to atmospheric N2Oemissions.  相似文献   

18.
Nitric oxide (NO) plays a crucial role in the antimicrobial activity of host defense systems. We investigated the function of Pseudomonas aeruginosa NO reductase as a detoxifying enzyme in phagocytes. We found that the growth of the NO reductase-deficient mutant of P. aeruginosa under a microaerobic condition was inhibited by the exogenous NO. Furthermore, the intracellular survival assay within the NO-producing RAW 264.7 macrophages revealed that the wild-type strain survived longer than the NO reductase-deficient mutant. These results suggest that the P. aeruginosa NO reductase may contribute to the intracellular survival by acting as a counter component against the host's defense systems.  相似文献   

19.
Nitrous-oxide reductases (N2OR) catalyze the two-electron reduction of N(2)O to N(2). The crystal structure of N2ORs from Pseudomonas nautica (Pn) and Paracoccus denitrificans (Pd) were solved at resolutions of 2.4 and 1.6 A, respectively. The Pn N2OR structure revealed that the catalytic CuZ center belongs to a new type of metal cluster in which four copper ions are liganded by seven histidine residues. A bridging oxygen moiety and two other hydroxide ligands were proposed to complete the ligation scheme (Brown, K., Tegoni, M., Prudencio, M., Pereira, A. S., Besson, S., Moura, J. J. G., Moura, I., and Cambillau, C. (2000) Nat. Struct. Biol. 7, 191-195). However, in the CuZ cluster, inorganic sulfur chemical determination and the high resolution structure of Pd N2OR identified a bridging inorganic sulfur instead of an oxygen. This result reconciles the novel CuZ cluster with the hitherto puzzling spectroscopic data.  相似文献   

20.
The tetrathionate reductase test may be used for the identification of P. aeruginosa. The most reliable results have been obtained with the use of a medium containing sodium tetrathionate for this purpose, and replacing bromthymol blue used as an indicator for phenol red excludes the possibility of false negative reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号