首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
In Japanese quail, Coturnix coturnix japonica the tanycytes of the median eminence absorbed peroxidase injected into the third ventricle. The number of tanycytes showing peroxidase reaction was greater in the posterior median eminence than in the anterior median eminence. Following hypothalamic deafferentation, the tanycyte absorption was augmented both in the posterior and anterior median eminence. These findings suggest that axons of some neurons, which have inhibitory action on the tanycyte absorption, were transected by deafferentation resulting in augmentation of tanycyte absorption. A considerable number of ependymal cells lining the upper portion of the third ventricle and those of the pars nervosa also absorbed peroxidase. In birds with a deafferented hypothalamus, photostimulated ovarian growth was completely inhibited.  相似文献   

2.
Summary Light-and electron-microscopic immunocytochemistry (LM-ICC and EM-ICC) were used to visualize luteinizing hormone-releasing hormone (LHRH) in fibres associated with ventricular ependyma and tanycytes of the median eminence. LM-ICC suggests that LHRH fibers appear to enter the third ventricle. However, with EM-ICC, LHRH fibers are in fact found within ependymal canaliculi formed by adjacent ependymal cells. The canaliculi contain other myelinated and unmyelinated axons in addition to immunoreactive LHRH fibers. Thin slips of ependymal and tanycyte processes project into the canaliculi and enclose axons to varying degrees. At the median eminence many LHRH fibers bend sharply downwards from their ventricular course and travel with tanycytic processes towards their common destination — the perivascular space of the hypophysial-portal vascular system. Here, EM-ICC reveals that LHRH fibers closely contact basal processes of tanycytes. Lateral processes from tanycytes form glioplasmic sheaths which surround some individual LHRH fibers. A few LHRH terminals contact the perivascular space directly but more often are separated from the perivascular space by intervening glia. It is hypothesized that: (1) glia of this region responds to the physiological state of the animal and may determine the degree of LHRH secretion by varying the extent of glial investment of LHRH terminals; and (2) may play a role during development by providing direction and support for LHRH fibers similar to that described for radial and other glial cells.  相似文献   

3.
Summary Freeze-etched preparations of the ventricular surfaces of ependymal cells clearly reveal the presence of pinocytotic vesicles opening into the third ventricle and large vacuoles formed by broad cell projections. The density of the vesicular openings is approximately 20 per m2. The ependymal cells in the median eminence of the frog are adjoined by tight junctions comprised of five to eight interconnected junctional strands, whereas near the median eminence in the mouse only one to two such strands form the tight junction of the ependymal cells. Gap junctions between the adjacent ependymal cells are detected near the median eminence in the mouse but not in the frog.This study was supported in part by a grant from the Japanese Ministry of Education (No. 067670)  相似文献   

4.
Summary The fine structure of arcuate neurons of the arcuate nucleus, the ependymal tanycytes and the contact zone of the median eminence was examined following immobilization, an acute stress which significantly activated the hypothalamo-pituitary-adrenal (HPA) axis. Arcuate neurons of immobilized adult male hamsters displayed morphological indications of heightened activity; the number of lysosomes and dense core vesicles (80–120 nm) was increased. A markedly greater number of dense core vesicles was present in axon terminals of the contact zone of the mid-central median eminence and the ventral proximal stalk.Tanycytes of the median eminence exhibited an augmented number of electron dense bodies in both perikarya and end processes. These results indicate that the arcuate neurons, the axons of the contact zone, and the ependymal tanycytes of the hamster medial basal hypothalamus (MBH) may be involved in the response to immobilization.This work was supported by Program Project Grant #NS-11642  相似文献   

5.
An active role of the ependymal cells (tanycytes) of the median eminence in the transport of hypothalamic hormones has been recently suggested. In order to investigate the fate of material present in the cerebrospinal fluid, a protein tracer, horse-radish peroxidase (HRP) was injected into the left lateral ventricle of rats. Two minutes after the injection, HRP had largely diffused between tanycytes and hypendymal cells. As soon as 5 min after the injection, HRP had completely penetrated all the layers of the median eminence. A few labelled vesicles and lysosomes were occasionally seen in ependymal and glial cells. At longer time intervals (20 min, 1 and 4 hrs), a reaction was observed in the lumen of fenestrated capillaries of the pituitary portal plexus. In many nerve endings of the external zone, vesicles and lysosomes were seen to contain HRP. An interesting observation was the localization of HRP between nerve endings and cells in both the pars nervosa and the pars intermedia of the pituitary gland. No reaction was recorded in the anterior pituitary and the kidney. Seventeen hours after the injection, the extracellular space was free of reaction but a few positive intracellular structure were still found. These results clearly indicate that some material from the third ventricle can rapidly diffuse between cells and axons of the median eminence to reach the fenestrated capillaries of the pituitary portal plexus and the posterior pituitary without involving an active transport by tanycytes.  相似文献   

6.
The circum ventricular region of C. batrachus is highly vascular and the ependymal cells appear differently when stained with haematoxylin, silver impregnation and Golgi-Cox techniques. The ventricule has PAS and AF positive material and some ependymal cells themselves are PAS positive. Few AF positive peptidergic and several AF negative small neurons have liquor contacting terminals. Golgi-Cox preparations reveal a variety of forms among the tanycytes. Their basal processes which are barbed or studded with varicosities, usually end on blood vessels and other neuronal elements. These basal processes themselves are often seen in direct morphological contact. Smaller silver positive cells without basal processes are also evident. Some tanycytes have apical processes resembling broadened endfeet. Few neurosecretory tracts are Golgi-Cox positive and can be differentiated from the tanycytic processes by their smooth surface. Varying degrees of ascorbic acid activity are noticed inside the ventricle, among the tanycytes and in the neurons of the NLT. Some of the latter neurons have liquor contacting terminals as well. The ChE activity noticed in some parts of the ependyma and in some NLT cells suggest their probable differential cholinergic control. Presence of SDH, NADPH and NADH diaphorases and cytochrome oxidase in varying quantities in the ependymal cells suggests that they are metabolically active. Presence of MAO positive tracts bridging the subependyma and ventricle suggests the degradation of monoamines at these sites. The presence of various enzymes and the morphological relationship of the tanycytes described in this species are comparable to those of the mammals. It is significant as this species is reported to have a median eminence morphologically resembling the tetrapods.  相似文献   

7.
Tanycytes are specialized ependymal cells lining the infundibular recess of the third ventricle of the cerebrum. Early and recent investigations involve tanycytes in the mechanism of gonadotropin-releasing hormone (GnRH) release to the portal blood. The present investigation was performed to obtain a specific immunological marker of tanycytes and to identify the compound(s) responsible for this labeling. After 30 days of organ culture, explants of bovine median eminence formed spherical structures mostly constituted by tanycytes. These tanycyte spheres were xenotransplanted to rats, and the antibodies raised by the host animals against the transplanted living tanycytes were used for immunochemical studies of the bovine and rat median eminence. This antiserum immunoreacted with two compounds of 60 kDa and 85 kDa present in extracts of bovine and rat median eminence. The individual immunoblotting analysis of rat medial basal hypothalami showed a decrease in the amount of the 85-kDa compound in castrated rats as compared to control rats processed at oestrus and dioestrus. The antiserum, labeled as anti-P85, when used for immunostaining of sections throughout the rat central nervous system, immunoreacted specifically with the hypothalamic tanycytes. Within tanycytes, P-85 immunoreactivity was exclusively present in the basal processes. It is suggested that the 85-kDa and 60-kDa compounds correspond to two novel proteins selectively expressed by tanycytes. The possibility that they are secretory proteins involved in GnRH release is discussed. Anti-P85 appears to be the first specific marker of hypothalamic tanycytes.  相似文献   

8.
D1 receptor mechanisms in the median eminence have been studied by means of immunocytochemistry using antisera against dopamine and cyclic AMP-regulated phosphoprotein-32 (DARPP-32) and tyrosine hydroxylase (TH) and by autoradiography using the iodinated analogue of the D1 receptor antagonist SCH-23390. The co-distribution of DARPP-32 and TH immunoreactivity (IR) and of DARPP-32 and luteinizing hormone releasing hormone (LHRH) IR was analysed in the median eminence by means of computer-assisted morphometry and microdensitometry. Functional analysis involved studies on the role of D1 receptors in the regulation of LH serum levels in rats treated with nicotine in the absence and presence of the D1 receptor antagonist. LH serum levels were measured by means of radioimmunoassay procedures.The results on the co-distribution of TH and DARPP-32 IR in the median eminence which were obtained both by analysis of adjacent sections and by two-colour immunocytochemistry on the same section, demonstrated a high degree of overlap of TH and DARPP-32 IR nerve terminals and tanycytes within the medial and lateral palisade zone. Furthermore, studies on LHRH and DARPP-32 IR nerve terminals and tanycytes in the median eminence with the same methodologies demonstrated preferential overlaps within the lateral palisade zone. The overlap area was about 50% of the LHRH or DARPP-32 immunoreactive area in this region. Density maps were also obtained on the distribution of LHRH and DARPP-32 immunoreactive profiles at various rostrocaudal levels. Correlation studies demonstrated a significant and positive co-distribution of LHRH and DARPP-32 immunoreactive terminals and tanycytes within the lateral palisade zone and the subependymal layer (when all DARPP-32 positive squares were considered) of the median eminence. Instead within the medial palisade zone a significant negative correlation coefficient was found, when all the LHRH positive squares were considered.In the receptor autoradiographical analysis a weak-to-moderate labelling was obtained of the part outside the mediobasal hypothalamus using the D1 receptor radioligand [125I]SCH-23982, while hardly any labelling was found within the median eminence and the arcuate nucleus.SCH-23390 was found to counteract, in a dose-related way, the inhibitory effects of intermittent nicotine treatment on serum LH levels. The D2 receptor antagonist raclopride in a dose of 1 mg/kg did not counteract the inhibitory effects of nicotine on serum LH levels.The present immunocytochemical, autoradiographic and functional studies suggest the existence of a D1 receptor in the median eminence which can be blocked by the D1 receptor antagonist SCH-23390 in behaviourally relevant doses and which is masked under basal conditions in the male rat. It is proposed that one type of median eminence D1 receptor is located on the axon terminals, not linked to DARPP-32, and which may make possible a rapid regulation of hypothalamic hormone release, e.g. LHRH release from the nerve terminals in the lateral palisade zone as indicated in the present morphological and functional experiments. The other type of median eminence D1 receptor may be located on the tanycytes and linked to DARPP-32. It is suggested that this D1 receptor is responsible for a long-term regulation of hypothalamic hormone release inter alia LHRH release from the terminal and preterminal parts of the LHRH axons in the lateral palisade zone and subependymal layer, respectively.  相似文献   

9.
Summary Formaldehyde and glyoxylic acid histochemical methods were employed to examine monoamine fluorescence of the rat median eminence. Tanycytes of the median eminence contained a yellow histofluorescence which was verified with microspectrofluorometry as due to the presence of serotonin. Catecholamine-containing varicosities, arranged in linear profiles throughout the depth of the median eminence, were observed. These linear profiles appeared to follow the contours of serotonin-containing tanycytes. Organculture experiments supported the hypothesis that the serotonin associated with tanycytes is localized within the tanycytes and does not arise from an extrahypothalamic source of nerve terminals. These data provide evidence that a tanycytic catecholamine-indoleamine morphological juxtaposition occurs in a manner reminiscent of that of another circumventricular organ, the pineal.Supported by USPHS Grants NS11642 and AM-19761USPHS Career Development Awardee NS-00259  相似文献   

10.
Summary A well developed system of ependymal glial cells with long basilar processes stretching to the surface of the brain (tanycytes, Horstmann, 1954) has been described in the basal hypothalamus of Coturnix quail. The tanycytes both in the median eminence and the ventro-lateral hypothalamus form a link between the third ventricle and the hypophysial circulation. The processes of the ventro-lateral tanycytes terminate in the region of the infundibular sulcus in apposition to a loose network of vessels which are continuous with the primary plexus of the hypophysial portal system.Within the median eminence, the subependymal capillary network connects the vasculature of the contra-lateral sides of hypothalamus. There are no direct connections with the hypophysial portal vessels.With the aid of the light and electron microscope the ventricular ependyma was divided into a dorsal typical region and two glandular regions (ventro-lateral and ventral). Each region contains different forms of tanycyte. One of the two forms of tanycyte (designated type 3) associated with the ventro-lateral glandular ependyma has no contact with the third ventricle.Ultrastructural studies on the glandular ependyma failed to show any obvious differences between castrated, oestrogen or testosterone implanted, and sexually mature or immature quail.The possibility that the tanycyte-vascular system may have a neuroendocrine role is discussed.I am indebted to Professor A. Oksche, Dept. of Anatomy, University of Giessen for providing research facilities and to The Royal Society for additional financial support.  相似文献   

11.
Summary Peroxidase injected into the subarachnoid space in mice is absorbed by ependymal cells of the median eminence. The ependymal cells of the median eminence of the rat and Japanese quail absorb peroxidase injected into the third ventricle. The processes of these ependymal cells terminate at the capillaries of the primary plexus or those surrounding the ventromedial nucleus of the hypothalamus. In all three species, peroxidase is absorbed by the ependymal cells of the paraventricular organ and by those in close proximity to it. Some ependymal cells send processes to the capillaries in the lateral nucleus of the hypothalamus. These phenomena are discussed in relation to adenohypophysial function.A part of this investigation was effected while the senior author held a Visiting Professorship at the University of Giessen [Department of Anatomy (Professor A. Oksche, Director)].  相似文献   

12.
Glucose transporters play an essential role in the acquisition of glucose by the brain. Elevated expression of glucose transporter-1 has been detected in endothelial cells of the blood-brain barrier and in choroid plexus cells of the blood-cerebrospinal fluid barrier. On the other hand, there is a paucity of information on the expression of glucose transporters in the ependymal cells that line the walls of the cerebral ventricles. The tanycytes are specialized ependymal cells localized in circumventricular organs such as the median eminence that can be segregated into at least three types, alpha, beta1 and beta2. The beta2 tanycytes form tight junctions and participate in the formation of the cerebrospinal fluid-median eminence barrier. Using immunocytochemistry and in situ hybridization, we analyzed the expression of hexose transporters in rat and mouse hypothalamic tanycytes. In both species, immunocytochemical analysis revealed elevated expression of glucose transporter-1 in alpha and beta1 tanycytes. Intense anti-glucose transporter-1 staining was observed in cell processes located throughout the arcuate nucleus, in the end-feet reaching the lateral sulcus of the infundibular region, and in cell processes contacting the hypothalamic capillaries. On the other hand, there was very low expression of glucose transporter-1 in beta2 tanycytes involved in barrier function. In contrast with the results of the cytochemical analysis, in situ hybridization revealed that tanycytes alpha, beta1, and beta2 express similar levels of glucose transporter-1 mRNA. Further analysis using anti-glial fibrillary acidic protein antibodies to identify areas rich in astrocytes revealed that astrocytes were absent from areas containing alpha and beta1 tanycytes, but were abundant in regions containing the barrier-forming beta2 tanycytes. Overall, our data reveal a lack of correlation between participation in barrier function and expression of glucose transporter-1 in hypothalamic tanycytes. Given the virtual absence of astrocytes in areas rich in alpha and beta1 tanycytes, we speculate whether the tanycytes might have astrocyte-like functions and participate in the metabolic coupling between glia and neurons in the hypothalamic area.  相似文献   

13.
Summary Glial cells that contain the glial fibrillary acidic protein (GFAP; the major protein constituent of glial filaments) were stained immunohistochemically in thick frozen sections of the neurohypophysis of the Mongolian gerbil (Meriones unguiculatus). The resulting Golgi-like images provided informations on cytological features and distributional patterns of tanycytes and pituicytes. In the proximal median eminence, numerous bundled processes of tanycytes were revealed. They emerged from the ependymal and subependymal layer and mostly reached the brain surface. Several tanycytic processes extended into the anatomical neural stalk. In the whole neural lobe, a dense network of GFAP-immunoreactive pituicyte processes was visualized. Stained pituicytes were highly asymmetric and exhibited a great morphological variability. Immunopositive fibers which were encountered in the intermediate lobe might be derived from pituicytes. Electron-microscopically further evidence was obtained that GFAP-positive pituicytes correspond to filament-rich fibrous pituicytes at the ultrastructural level.  相似文献   

14.
P Redecker 《Histochemistry》1987,87(6):585-595
Glial cells that contain the glial fibrillary acidic protein (GFAP; the major protein constituent of glial filaments) were stained immunohistochemically in thick frozen sections of the neurohypophysis of the Mongolian gerbil (Meriones unguiculatus). The resulting Golgi-like images provided informations on cytological features and distributional patterns of tanycytes and pituicytes. In the proximal median eminence, numerous bundled processes of tanycytes were revealed. They emerged from the ependymal and sub-ependymal layer and mostly reached the brain surface. Several tanycytic processes extended into the anatomical neural stalk. In the whole neural lobe, a dense network of GFAP-immunoreactive pituicyte processes was visualized. Stained pituicytes were highly asymmetric and exhibited a great morphological variability. Immunopositive fibers which were encountered in the intermediate lobe might be derived from pituicytes. Electron-microscopically further evidence was obtained that GFAP-positive pituicytes correspond to filament-rich fibrous pituicytes at the ultrastructural level.  相似文献   

15.
Kinetic analysis of vitamin C uptake has demonstrated that specialized cells take up ascorbic acid (AA), the reduced form of vitamin C, through sodium-AA cotransporters. Recently, two different isoforms of sodium-vitamin C cotransporters (SVCT 1, 2) that mediate high affinity Na+-dependent l -ascorbic acid have been cloned. SVCT2 was detected mainly in choroid plexus cells and neurons, however, there are no evidences of SVCT2 expression in glial cells. High concentrations of vitamin C has been demonstrated in brain hypothalamic area. The hypothalamic glial cells, known as alpha and beta tanycytes, are specialized ependymal cells that bridge the cerebrospinal fluid and the portal blood of the median eminence. Our hypothesis postulates that tanycytes take up reduced vitamin C from the portal blood and cerebrospinal fluid generating an high concentration of this vitamin in brain hypothalamic area. In situ immunohistochemical analyses demonstrated that SVCT2 transporter is selectively expressed in apical region of tanycytes. A newly developed primary culture of mouse hypothalamic tanycytes was used to confirm the expression and function of SVCT2 isoform in these cells. Reduced vitamin C uptake was temperature and sodium dependent. Kinetic analysis showed an apparent Km of 20 μ m and a Vmax of 45 pmol/min per million cells for the transport of ascorbic acid. The expression of SVCT2 was confirmed by immunoblots and RT–PCR. Tanycytes may perform a neuroprotective role concentrating the vitamin C in the hypothalamic area.
Acknowledgements:   Supported by Grands FONDECYT 1010843 and DIUC-GIA 201.034.006-1.4 from Concepción University.  相似文献   

16.
Kinetic analysis of vitamin C uptake has demonstrated that specialized cells take up ascorbic acid (AA), the reduced form of vitamin C, through sodium‐AA cotransporters. Recently, two different isoforms of sodium‐vitamin C cotransporters (SVCT 1, 2) that mediate high affinity Na+‐dependent l ‐ascorbic acid have been cloned. SVCT2 was detected mainly in choroid plexus cells and neurons, however, there are no evidences of SVCT2 expression in glial cells. High concentrations of vitamin C has been demonstrated in brain hypothalamic area. The hypothalamic glial cells, known as alpha and beta tanycytes, are specialized ependymal cells that bridge the cerebrospinal fluid and the portal blood of the median eminence. Our hypothesis postulates that tanycytes take up reduced vitamin C from the portal blood and cerebrospinal fluid generating an high concentration of this vitamin in brain hypothalamic area. In situ immunohistochemical analyses demonstrated that SVCT2 transporter is selectively expressed in apical region of tanycytes. A newly developed primary culture of mouse hypothalamic tanycytes was used to confirm the expression and function of SVCT2 isoform in these cells. Reduced vitamin C uptake was temperature and sodium dependent. Kinetic analysis showed an apparent Km of 20 μm and a Vmax of 45 pmol/min per million cells for the transport of ascorbic acid. The expression of SVCT2 was confirmed by immunoblots and RT–PCR. Tanycytes may perform a neuroprotective role concentrating the vitamin C in the hypothalamic area. Acknowledgements: Supported by Grands FONDECYT 1010843 and DIUC‐GIA 201.034.006‐1.4 from Concepción University.  相似文献   

17.
Summary Immuno-enzyme histochemical investigations showed the presence, in the external region of the bovine median eminence, of accumulations of vasopressin-neurophysin II-and oxytocin-neurophysin I-complexes. These two hormone-neurophysin complexes are located in separate fine varicose nerve fibres. The results strongly plead against an important role of tanycytes in the transport of vasopressin, oxytocin and neurophysins from the cerebrospinal fluid to the hypophysial portal blood-vessels.This work was supported by a grant from the Belgian Nationaal Fonds voor Geneeskundig Wetenschappelijk Onderzoek.  相似文献   

18.
Summary The hypothalamic neurosecretory system of the bullfrog, Rana catesbeiana, was studied with light- and electron microscopy. The median eminence is roughly divided into two portions. The upper portion mostly consists of ependymal cells, glial cells and preoptico-hypophysial nerve tract, whereas in the lower portion, neurosecretory axons, glial cells, processes of glial and ependymal cells, and fine blood vessels of the hypothalamic portal vein are located. A part of the neurosecretory axons of the preoptico-hypophysial tract proceeds to the lower portion of the median eminence. These axons are arranged perpendicularly to the capillaries of the hypothalamic portal vein. The glial cells are densely located in the area of the median eminence where neurosecretory material is abundant. The neurosecretory material in the neurosecretory cells, their axons, the median eminence and the pars nervosa of the bullfrog shows a positive reaction to PAS treatment.The neurohemal area of the median eminence is occupied by many neurosecretory and non-neurosecretory axons, containing neurosecretory granules and/or synaptic vesicles. The axonal portions with the synaptic vesicles which are considered to be the nerve endings abut on the capillaries of the portal system. The size of synaptic vesicles in the axon terminals containing few neurosecretory granules is larger than those in the endings with many neurosecretory granules. Infrequently glial and ependymal processes are interposed between the nerve endings and the capillary wall.In the hilar region of the infundibulum, synapses are frequently observed between the thin fibers with or without neurosecretory granules and dendrites of non-neurosecretory neurons. The probable functions of these synapses are briefly discussed on the basis of our findings. Both in the hilar region of the infundibulum and in the pars nervosa, electron-dense neurosecretory granules of two different sizes were observed. The median eminence contains only one type of granules.The fine structure of the pars nervosa shows similar structures to those of the median eminence. Both in the median eminence and the pars nervosa, the fenestrated endothelium of the capillaries was frequently observed. The thick perivascular connective tissue space containing fibroblasts and collagen fibrils was observed both in the median eminence and the pars nervosa. Vesicles in the cytoplasm of the endothelial cells which appear to take a part in the transendothelial transport were observed.This investigation was supported in part by United States Public Health Service Research Grant, No. A-3678, to Hideshi Kobayashi from the National Institute of Arthritis and Metabolic Diseases and partly by a grant for Fundamental Scientific Research from the Ministry of Education of Japan. The authors wish to express their thanks to Prof. K. Takewaki for his kind encouragement.  相似文献   

19.
The GLUT2 glucose transporter and the K-ATP-sensitive potassium channels have been implicated as an integral part of the glucose-sensing mechanism in the pancreatic islet beta cells. The expression of GLUT2 and K-ATP channels in the hypothalamic region suggest that they are also involved in a sensing mechanism in this area. The hypothalamic glial cells, known as tanycytes alpha and beta, are specialized ependymal cells that bridge the cerebrospinal fluid and the portal blood of the median eminence. We used immunocytochemistry, in situ hybridization and transport analyses to demonstrate the glucose transporters expressed in tanycytes. Confocal microscopy using specific antibodies against GLUT1 and GLUT2 indicated that both transporters are expressed in alpha and beta tanycytes. In addition, primary cultures of mouse hypothalamic tanycytes were found to express both GLUT1 and GLUT2 transporters. Transport studies, including 2-deoxy-glucose and fructose uptake in the presence or absence of inhibitors, indicated that these transporters are functional in cultured tanycytes. Finally, our analyses indicated that tanycytes express the K-ATP channel subunit Kir6.1 in vitro. As the expression of GLUT2 and K-ATP channel is linked to glucose-sensing mechanisms in pancreatic beta cells, we postulate that tanycytes may be responsible, at least in part, for a mechanism that allows the hypothalamus to detect changes in glucose concentrations.  相似文献   

20.
Summary The ultrastructural organization of the perinatal hypothalamus and the dynamics of neuronal and ependymal growth and plasticity were examined in this investigation. The brains of fetal rats 16, 17 and 18 days in utero and those of postnatal rats 1–16 days post partum were fixed with aldehyde fixatives and prepared for combined SEM/TEM analysis. By day 17 in utero the ventricular (ependymal) surfaces of the fetal thalamic wall, cerebral vesicle and rhomboid fossa were relatively well differentiated with cilia and microvilli. Type II histiocytes were the first supraependymal cell to appear upon the ventricular lumen and were evident by day 17 in utero. In contrast, the apical surfaces of tanycytes of the infundibular recess as well as those of most other circumventricular organs were poorly differentiated and unremarkable. Tanycytes of the infundibular recess exhibited a simple hexagonal mosaic pattern of apposed plasmalemmata and even by day 1 post partum few cilia or microvilli were evident.By day 5–6 post partum Type I supraependymal neurons and axonal processes began to make their appearance with some emerging from the underlying parenchyma of the median eminence. By day 16 post partum the ventricular surface of the infundibular recess was comparable with that of the adult.The Type I supraependymal neurons are remarkably similar in their ultrastructural organization with parvicellular neurosecretory neurons elsewhere in the endocrine hypothalamus. Their emergence at day 5–6 post partum suggests a possible correlation with the critical period of sexual differentiation and a potential receptor role for this cell line. On the contrary this phenomenon may simply be a developmental anomaly. Nonetheless, the mergence of such elements upon the lumen of the third cerebral ventricle underscores a remarkable degree of neuronal plasticity in the perinatal hypothalamus.Supported by USPHS Program Project Grant NS 11642-04 and USPHS-BRSG Grant RR-05403.The authors wish to thank N. Kutryeff for her excellent technical assistance  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号