首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
ABSTRACT

Many physiological and pathological processes involve tissue cells sensing the rigidity of their environment. In general, tissue cells have been shown to react to the stiffness of their environment by regulating their level of contractility, and in turn applying traction forces on their environment to probe it. This mechanosensitive process can direct early cell adhesion, cell migration and even cell differentiation. These processes require the integration of signals over time and multiple length scales. Multiple strategies have been developed to understand force- and rigidity-sensing mechanisms and much effort has been concentrated on the study of cell adhesion complexes, such as focal adhesions, and cell cytoskeletons. Here, we review the major biophysical methods used for measuring cell-traction forces as well as the mechanosensitive processes that drive cellular responses to matrix rigidity on 2-dimensional substrates.  相似文献   

2.
The roles of JSAP1 and JIP1 in cell adhesion and spreading were examined using mouse embryonic fibroblasts (MEFs) deficient in JIP1 (JIP1-KO), JSAP1 (JSAP1-KO), and in both JIP1 and JSAP1 (double-KO), and by using their wild type. After being plated on fibronectin-coated culture plates, wild type MEFs rapidly adhered and differentiated to typical longitudinal fibroblasts in 4 h. JSAP1-KO MEFs showed a similar sequence of adhesion and cell spreading, but their adhesion was weak, and cell spreading sequence proceeded in a delayed manner compared with the wild type. In spreading JSAP1-KO MEFs, adhesion-triggered actin cytoskeleton reorganization and FAK activation proceeded at a slower pace than in wild type MEFs. The cellular properties of double-KO MEFs and JIP1-KO MEFs were similar to those of JSAP1-KO MEFs and wild type MEFs, respectively. These results suggest that JSAP1 plays a role in adhesion and cell spreading by regulating the rapid reorganization of the actin cytoskeleton.  相似文献   

3.
In this review, we summarize recent results on the understanding of actin organization and cell polarization with an emphasis on the critical role of actin during this process. We first report on the advances made in understanding the function and mechanism of formin family proteins in the nucleation of actin filaments. We also discuss how formins and other regulators of actin dynamics are thought to be involved in the generation of cell polarity. In the second part we discuss new findings indicating that, rather than using a linear pathway from signal transduction to cytoskeleton re-organization, cell polarity is established through bidirectional interplay between these processes. We describe the various types of feedback loops identified and point out common schemes. Finally we briefly summarize the emerging role of actinlike proteins in the generation of polarity in prokaryotes that implies an early origin of actin's role in cell polarity.  相似文献   

4.
Endothelial cell-cell contact via VE-cadherin plays an important role in regulating numerous cell functions, including proliferation. However, using different experimental approaches to manipulate cell-cell contact, investigators have observed both inhibition and stimulation of proliferation depending on the adhesive context. In this study, we used micropatterned wells combined with active positioning of cells by dielectrophoresis in order to investigate whether the number of contacting neighbors affected the proliferative response. Varying cell-cell contact resulted in a biphasic effect on proliferation; one contacting neighbor increased proliferation, while two or more neighboring cells partially inhibited this increase. We also observed that cell-cell contact increased the formation of actin stress fibers, and that expression of dominant negative RhoA (RhoN19) blocked the contact-mediated increase in stress fibers and proliferation. Furthermore, examination of heterotypic pairs of untreated cells in contact with RhoN19-expressing cells revealed that intracellular, but not intercellular, tension is required for the contact-mediated stimulation of proliferation. Moreover, engagement of VE-cadherin with cadherin-coated beads was sufficient to stimulate proliferation in the absence of actual cell-cell contact. In all, these results demonstrate that cell-cell contact signals through VE-cadherin, RhoA, and intracellular tension in the actin cytoskeleton to regulate proliferation.  相似文献   

5.
Restricted expression of activated leukocyte cell adhesion molecule (ALCAM) by hematopoietic cells suggests an important role in the immune system and hematopoiesis. To get insight into the mechanisms that control ALCAM-mediated adhesion we have investigated homotypic ALCAM-ALCAM interactions. Here, we demonstrate that the cytoskeleton regulates ALCAM-mediated cell adhesion because inhibition of actin polymerization by cytochalasin D (CytD) strongly induces homotypic ALCAM-ALCAM interactions. This induction of cell adhesion is likely due to clustering of ALCAM at the cell surface, which is observed after CytD treatment. Single-particle tracking demonstrated that the lateral mobility of ALCAM in the cell membrane is increased 30-fold after CytD treatment. In contrast, both surface distribution and adhesion of a glycosylphosphatidylinositol (GPI)-anchored ALCAM mutant are insensitive to CytD, despite the increase in lateral mobility of GPI-ALCAM upon CytD treatment. This demonstrates that clustering of ALCAM is essential for cell adhesion, whereas enhanced diffusion of ALCAM alone is not sufficient for cluster formation. In addition, upon ligand binding, both free diffusion and the freely dragged distance of wild-type ALCAM, but not of GPI-ALCAM, are reduced over time, suggesting strengthening of the cytoskeleton linkage. From these findings we conclude that activation of ALCAM-mediated adhesion is dynamically regulated through actin cytoskeleton-dependent clustering.  相似文献   

6.
Focal adhesions are clusters of integrin transmembrane receptors that mechanically couple the extracellular matrix to the actin cytoskeleton during cell migration. Focal adhesions sense and respond to variations in force transmission along a chain of protein-protein interactions linking successively actin filaments, actin binding proteins, integrins and the extracellular matrix to adapt cell-matrix adhesion to the composition and mechanical properties of the extracellular matrix. This review focuses on the molecular mechanisms by which actin binding proteins integrate actin dynamics, mechanotransduction and integrin activation to control force transmission in focal adhesions.  相似文献   

7.
Cell biology is moving from observing molecules to controlling them in real time, a critical step towards a mechanistic understanding of how cells work. Initially developed from light-gated ion channels to control neuron activity, optogenetics now describes any genetically encoded protein system designed to accomplish specific light-mediated tasks. Recent photosensitive switches use many ingenious designs that bring spatial and temporal control within reach for almost any protein or pathway of interest. This next generation optogenetics includes light-controlled protein–protein interactions and shape-shifting photosensors, which in combination with live microscopy enable acute modulation and analysis of dynamic protein functions in living cells. We provide a brief overview of various types of optogenetic switches. We then discuss how diverse approaches have been used to control cytoskeleton dynamics with light through Rho GTPase signaling, microtubule and actin assembly, mitotic spindle positioning and intracellular transport and highlight advantages and limitations of different experimental strategies.  相似文献   

8.
Gastrulation is a key developmental stage with striking changes in morphology. Coordinated cell movements occur to bring cells to their correct positions in a timely manner. Cell movements and morphological changes are accomplished by precisely controlling dynamic changes in cytoskeletal proteins, microtubules, and actin filaments. Among those cellular movements, epiboly produces the first distinct morphological changes in teleosts. In this review, I describe epiboly and its mechanics, and the dynamic changes in microtubule networks and actin structures, mainly in zebrafish embryos. The factors regulating those cytoskeletal changes will also be discussed.  相似文献   

9.
Cytoplasmic actin and cochlear outer hair cell motility   总被引:2,自引:0,他引:2  
Summary Isolated outer hair cells of the guinea pig lacking a cuticular plate and its associated infracuticular network retain the ability to shorten longitudinally and become thinner. Membrane ghosts lacking cytoplasm retain the cylindrical shape of the hair-cell, and although they do not shorten, they retain the ability to constrict and become thinner. These data suggest that cytoplasmic components are associated with outer hair-cell longitudinal shortening and that the lateral wall is responsible for maintaing cell shape and for constriction. Actin, a protein associated with the cytoskeleton and cell motility, is thought to be involved in outer hair-cell motility. To study its role, actin was localized in isolated outer hair cells by use of phalloidin labeled with fluorescein and antibodies against actin coupled to colloidal gold. In permeabilized guinea-pig hair cells stained with phalloidin, actin filaments are found along the lateral wall. In frozen-fixed hair cells actin filaments are distributed uniformly throughout the cytoplasm. Electron-microscopic studies show that antibodies label actin throughout the outer hair-cell body. Thus cytoplasmic actin filaments may provide the structural basis for the contraction-like events.  相似文献   

10.
The atypical Rho GTPase Wrch-1 has been proposed roles in cell migration, focal adhesion dissolution, stress fibre break down and tight junction heterogeneity. A screen for Wrch-1 binding-partners identified the novel RhoGAP protein, ARHGAP30, as a Wrch-1 interactor. ARHGAP30 is related to the Cdc42- and Rac1-specific RhoGAP CdGAP, which was likewise found to bind Wrch-1. In contrast to CdGAP, ARHGAP30 serves as a Rac1- and RhoA-specific RhoGAP. Ectopic expression of ARHGAP30 results in membrane blebbing and dissolution of stress-fibres and focal adhesions. Our data suggest roles for ARHGAP30 and CdGAP in regulation of cell adhesion downstream of Wrch-1.  相似文献   

11.
《Cell reports》2023,42(4):112381
  1. Download : Download high-res image (92KB)
  2. Download : Download full-size image
  相似文献   

12.
13.
Cell responses regulated by early reorganization of actin cytoskeleton   总被引:1,自引:0,他引:1  
Microfilaments exist in a dynamic equilibrium between monomeric and polymerized actin and the ratio of monomers to polymeric forms is influenced by a variety of extracellular stimuli. The polymerization, depolymerization and redistribution of actin filaments are modulated by several actin-binding proteins, which are regulated by upstream signalling molecules. Actin cytoskeleton is involved in diverse cellular functions including migration, ion channels activity, secretion, apoptosis and cell survival. In this review we have outlined the role of actin dynamics in representative cell functions induced by the early response to extracellular stimuli.  相似文献   

14.
Gangliosides have been implicated in exerting multiple physiological functions, and it is important to understand how their distribution is regulated in the cell membrane. By using freeze-fracture immunolabeling electron microscopy, we showed that GM1 and GM3 make independent clusters that are significantly reduced by cholesterol depletion. In the present study, we examined the effects of actin depolymerization/polymerization and Src-family kinase inhibition on the GM1 and GM3 clusters. Both GM1 and GM3 clustering was reduced when the actin cytoskeleton was perturbed by latrunculin A or jasplakinolide, but the decrease was less significant than that induced by cholesterol depletion. On the other hand, inhibition of Src-family kinases decreased GM3 clustering more drastically than did cholesterol depletion, whereas its effect on GM1 clustering was less significant. GM1 and GM3 were segregated from each other in unperturbed cells, but co-clustering increased significantly after actin depolymerization. Our results indicate that the GM1 and GM3 clusters in the cell membrane are regulated in different ways and that segregation of the two gangliosides depends on the intact actin cytoskeleton.  相似文献   

15.
The role of the actin cytoskeleton during receptor-mediated endocytosis (RME) has been well characterized in yeast for many years. Only more recently has the interplay between the actin cytoskeleton and RME been extensively explored in mammalian cells. These studies have revealed the central roles of BAR proteins in RME, and have demonstrated significant roles of BAR proteins in linking the actin cytoskeleton to this cellular process. The actin cytoskeleton generates and transmits mechanical force to promote the extension of receptor-bound endocytic vesicles into the cell. Many adaptor proteins link and regulate the actin cytoskeleton at the sites of endocytosis. This review will cover key effectors, adaptors and signalling molecules that help to facilitate the invagination of the cell membrane during receptor-mediated endocytosis, including recent insights gained on the roles of BAR proteins. The final part of this review will explore associations of alterations to genes encoding BAR proteins with cancer.  相似文献   

16.
Eukaryotic initiation factor 5A (eIF5A) is the only protein in nature that contains hypusine, an unusual amino acid derived from the modification of lysine by spermidine. Two genes, TIF51A and TIF51B, encode eIF5A in the yeast Saccharomyces cerevisiae. In an effort to understand the structure–function relationship of eIF5A, we have generated yeast mutants by introducing plasmid-borne tif51A into a double null strain where both TIF51A and TIF51B have been disrupted. One of the mutants, tsL102A strain (tif51A L102A tif51aΔ tif51bΔ) exhibits a strong temperature-sensitive growth phenotype. At the restrictive temperature, tsL102A strain also exhibits a cell shape change, a lack of volume change in response to temperature increase and becomes more sensitive to ethanol, a hallmark of defects in the PKC/WSC cell wall integrity pathway. In addition, a striking change in actin dynamics and a complete cell cycle arrest at G1 phase occur in tsL102A cells at restrictive temperature. The temperature-sensitivity of tsL102A strain is due to a rapid loss of mutant eIF5A with the half-life reduced from 6 h at permissive temperature to 20 min at restrictive temperature. Phenylmethyl sulfonylfluoride (PMSF), an irreversible inhibitor of serine protease, inhibited the degradation of mutant eIF5A and suppressed the temperature-sensitive growth arrest. Sorbitol, an osmotic stabilizer that complement defects in PKC/WSC pathways, stabilizes the mutant eIF5A and suppresses all the observed temperature-sensitive phenotypes.  相似文献   

17.
HSP90, a major molecular chaperone, plays an essential role in the maintenance of several signaling molecules. Inhibition of HSP90 by inhibitors such as 17-allylamino-demethoxy-geldanamycin (17AAG) is known to induce apoptosis in various cancer cells by decreasing the activation or expression of pro-survival molecules such as protein kinase B (Akt). While we did not observe either decrease in expression or activation of pro-survival signaling molecules in human breast cancer cells upon inhibiting HSP90 with 17AAG, we did observe a decrease in cell motility of transformed cells, and cell motility and invasion of cancer cells. We found a significant decrease in the number of filopodia and lamellipodia, and in the F-actin bundles upon HSP90 inhibition. Our results show no change in the active forms or total levels of FAK and Pax, or in the activation of Rac-1 and Cdc-42; however increased levels of HSP90, HSP90α and HSP70 were observed upon HSP90 inhibition. Co-immuno-precipitation of HSP90 reveals interaction of HSP90 with G-actin, which increases upon HSP90 inhibition. FRET results show a significant decrease in interaction between actin monomers, leading to decreased actin polymerization upon HSP90 inhibition. We observed a decrease in the invasion of human breast cancer cells in the matrigel assay upon HSP90 inhibition. Over-expression of αB-crystallin, known to be involved in actin dynamics, did not abrogate the effect of HSP90 inhibition. Our work provides the molecular mechanism by which HSP90 inhibition delays cell migration and should be useful in developing cancer treatment strategies with known anti-cancer drugs such as cisplatin in combination with HSP90 inhibitors.  相似文献   

18.
Paracingulin is an M(r) 150-160 kDa cytoplasmic protein of vertebrate epithelial tight and adherens junctions and comprises globular head, coiled-coil rod, and globular tail domains. Unlike its homologous tight junction protein cingulin, paracingulin has been implicated in the control of junction assembly and has been localized at extrajunctional sites in association with actin filaments. Here we analyze the role of paracingulin domains, and specific regions within the head and rod domains, in the function and localization of paracingulin by inducible overexpression of exogenous proteins in epithelial Madin Darby canine kidney (MDCK) cells and by expression of mutated and chimeric constructs in Rat1 fibroblasts and MDCK cells. The overexpression of the rod + tail domains of paracingulin perturbs the development of the tight junction barrier and Rac1 activation during junction assembly by the calcium switch, indicating that regulation of junction assembly by paracingulin is mediated by these domains. Conversely, only constructs containing the head domain target to junctions in MDCK cells and Rat1 fibroblasts. Furthermore, expression of chimeric cingulin and paracingulin constructs in Rat1 fibroblasts and MDCK cells identifies specific sequences within the head and rod domains of paracingulin as critical for targeting to actin filaments and regulation of junction assembly, respectively. In summary, we characterize the functionally important domains of paracingulin that distinguish it from cingulin.  相似文献   

19.
Rho GTPases regulate fundamental processes including cell morphology and migration in various organisms. Guanine nucleotide exchange factor (GEF) has a crucial role in activating small GTPase by exchange GDP for GTP. In fission yeast Schizosaccharomyces pombe, six members of the Rho small GTPase family were identified and reported to be involved in cell morphology and polarized cell growth. We identified seven genes encoding Rho GEF domain from genome sequence and analyzed. Overexpressions of identified genes in cell lead to change of morphology, suggesting that all of them are involved in the regulation of cell morphology. Although all of null mutants were viable, two of seven null cells had morphology defects and five of seven displayed altered actin cytoskeleton arrangements. Most of the double mutants were viable and biochemical analysis revealed that each of GEFs bound to several small G proteins. These data suggest that identified Rho GEFs are involved in the regulation of cell morphology and share signals via small GTPase Rho family.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号