首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Gao F  Zhang CT 《The FEBS journal》2006,273(8):1637-1648
The availability of the complete chicken genome sequence provides an unprecedented opportunity to study the global genome organization at the sequence level. Delineating compositionally homogeneous G + C domains in DNA sequences can provide much insight into the understanding of the organization and biological functions of the chicken genome. A new segmentation algorithm, which is simple and fast, has been proposed to partition a given genome or DNA sequence into compositionally distinct domains. By applying the new segmentation algorithm to the draft chicken genome sequence, the mosaic organization of the chicken genome can be confirmed at the sequence level. It is shown herein that the chicken genome is also characterized by a mosaic structure of isochores, long DNA segments that are fairly homogeneous in the G + C content. Consequently, 25 isochores longer than 2 Mb (megabases) have been identified in the chicken genome. These isochores have a fairly homogeneous G + C content and often correspond to meaningful biological units. With the aid of the technique of cumulative GC profile, we proposed an intuitive picture to display the distribution of segmentation points. The relationships between G + C content and the distributions of genes (CpG islands, and other genomic elements) were analyzed in a perceivable manner. The cumulative GC profile, equipped with the new segmentation algorithm, would be an appropriate starting point for analyzing the isochore structures of higher eukaryotic genomes.  相似文献   

2.
Analytical DNA ultracentrifugation revealed that eukaryotic genomes are mosaics of isochores: long DNA segments (>300 kb on average) relatively homogeneous in G+C. Important genome features are dependent on this isochore structure, e.g. genes are found predominantly in the GC-richest isochore classes. However, no reliable method is available to rigorously partition the genome sequence into relatively homogeneous regions of different composition, thereby revealing the isochore structure of chromosomes at the sequence level. Homogeneous regions are currently ascertained by plain statistics on moving windows of arbitrary length, or simply by eye on G+C plots. On the contrary, the entropic segmentation method is able to divide a DNA sequence into relatively homogeneous, statistically significant domains. An early version of this algorithm only produced domains having an average length far below the typical isochore size. Here we show that an improved segmentation method, specifically intended to determine the most statistically significant partition of the sequence at each scale, is able to identify the boundaries between long homogeneous genome regions displaying the typical features of isochores. The algorithm precisely locates classes II and III of the human major histocompatibility complex region, two well-characterized isochores at the sequence level, the boundary between them being the first isochore boundary experimentally characterized at the sequence level. The analysis is then extended to a collection of human large contigs. The relatively homogeneous regions we find show many of the features (G+C range, relative proportion of isochore classes, size distribution, and relationship with gene density) of the isochores identified through DNA centrifugation. Isochore chromosome maps, with many potential applications in genomics, are then drawn for all the completely sequenced eukaryotic genomes available.  相似文献   

3.
Li W 《Gene》2001,276(1-2):57-72
The concept of homogeneity of G+C content is always relative and subjective. This point is emphasized and quantified in this paper using a simple example of one sequence segmented into two subsequences. Whether the sequence is homogeneous or not can be answered by whether the two-subsequence model describes the DNA sequence better than the one-sequence model. There are at least three equivalent ways of looking at the 1-to-2 segmentation: Jensen-Shannon divergence measure, log likelihood ratio test, and model selection using Bayesian information criterion. Once a criterion is chosen, a DNA sequence can be recursively segmented into multiple domains. We use one subjective criterion called segmentation strength based on the Bayesian information criterion. Whether or not a sequence is homogeneous and how many domains it has depend on this criterion. We compare six different genome sequences (yeast S. cerevisiae chromosome III and IV, bacterium M. pneumoniae, human major histocompatibility complex sequence, longest contigs in human chromosome 21 and 22) by recursive segmentations at different strength criteria. Results by recursive segmentation confirm that yeast chromosome IV is more homogeneous than yeast chromosome III, human chromosome 21 is more homogeneous than human chromosome 22, and bacterial genomes may not be homogeneous due to short segments with distinct base compositions. The recursive segmentation also provides a quantitative criterion for identifying isochores in human sequences. Some features of our recursive segmentation, such as the possibility of delineating domain borders accurately, are superior to those of the moving-window approach commonly used in such analyses.  相似文献   

4.
An isochore map of the human genome based on the Z curve method   总被引:4,自引:0,他引:4  
Zhang CT  Zhang R 《Gene》2003,317(1-2):127-135
The distribution of the G+C content in the human genome has been studied by using a windowless technique derived from the Z curve method. The most important findings presented in this paper are twofold. First, abrupt variations of the G+C content along human chromosome sequences are the main variation patterns of G+C content. It is found that at some sites, the G+C content undergoes abrupt changes from a G+C-rich region to a G+C-poor region alternatively and vice versa. Second, it is shown that long domains with relatively homogeneous G+C content along each chromosome do exist. These domains are thought to be isochores, which usually have sharp boundaries. Consequently, 56 isochores longer than 3 Mb have been identified in chromosomes 1-22, X and Y. Boundaries, size and G+C content of each isochore identified are listed in detail. As an example to demonstrate the power of the method, the boundary between the Classes III and II isochores of the MHC sequence has been determined and found to be at 2,477,936, which is in good agreement with the experimental evidence. A homogeneity index is introduced to measure the homogeneity of G+C content in isochores. We emphasize that the homogeneity of G+C content is relative. The isochores in which the G+C content keeps absolutely constant do not exist. Isochore structures appear to be a basic organization of the human genome. Due to the relevance to many important biological functions, the clarification of isochore structures will provide much insight into the understanding of the human genome.  相似文献   

5.
Sequences related to those near chromosome telomeres in the human malaria parasite, Plasmodium falciparum, were extremely unstable during a genetic cross between two different clonal genotypes. Many progeny of the heterologous cross displayed telomere-homologous restriction fragments found in neither parent. A significant number of the new fragments resulted from rearrangements at chromosome-internal locations which were bounded by more complex tracts of DNA sequence. The same instability was not seen to arise during an inbreeding cross, nor during mitotic replication of parasites. Thus, a form of genetic hypervariability results from molecular events which occur during meiotic reduction and is apparent only in a cross between heterologous strains of parasite. Since other sequences were entirely stable under the same conditions, it appears that chromosome-internal blocks of telomeric sequences in the P. falciparum genome may designate conditionally unstable chromosomal domains. We discuss some potential implications of these findings for the population biology of P. falciparum.  相似文献   

6.
Chen LL  Gao F 《The FEBS journal》2005,272(13):3328-3336
Eukaryotic genomes are composed of isochores, i.e. long sequences relatively homogeneous in GC content. In this paper, the isochore structure of Arabidopsis thaliana genome has been studied using a windowless technique based on the Z curve method and intuitive curves are drawn for all the five chromosomes. Using these curves, we can calculate the GC content at any resolution, even at the base level. It is observed that all the five chromosomes are composed of several GC-rich and AT-rich regions alternatively. Usually, these regions, named 'isochore-like regions', have large fluctuations in the GC content. Five isochores with little fluctuations are also observed. Detailed analyses have been performed for these isochores. A GC-rich 'isochore-like region' and a GC-isochore in chromosome II and IV, respectively, are the nucleolar organizer regions (NORs), and genes located in the two regions prefer to use GC-ending codons. Another GC-isochore located in chromosome II is a mitochondrial DNA insertion region, the position and size of this region is precisely predicted by the current method. The amino acid usage and codon preference of genes in this organellar-to-nuclear transfer region show significant difference from other regions. Moreover, the centromeres are located in GC-rich 'isochore-like regions' in all the five chromosomes. The current method can provide a useful tool for analyzing whole genomic sequences of eukaryotes.  相似文献   

7.

Background  

Transposable elements are abundant in the genomes of many filamentous fungi, and have been implicated as major contributors to genome rearrangements and as sources of genetic variation. Analyses of fungal genomes have also revealed that transposable elements are largely confined to distinct clusters within the genome. Their impact on fungal genome evolution is not well understood. Using the recently available genome sequence of the plant pathogenic fungus Magnaporthe oryzae, combined with additional bacterial artificial chromosome clone sequences, we performed a detailed analysis of the distribution of transposable elements, syntenic blocks, and other features of chromosome 7.  相似文献   

8.
A unigene set of 1411 contigs was constructed from 2629 redundant maize expressed sequence tags (ESTs) mapped on the maizeDB genetic map. Rice orthologous sequences were identified by blast alignment against the rice genomic sequence. A total of 1046 (74%) maize contigs were associated with their corresponding homologues in the rice genome and 656 (47%) defined as potential orthologous relationships. One hundred and seventeen (8%) maize EST contigs mapped to two distinct loci on the maize genetic map, reflecting the tetraploid nature of the maize genome. Among 492 mono-locus contigs, 344 (484 redundant ESTs) identify collinear blocks between maize chromosomes 2 and 4 and a single rice chromosome, defining six new collinear regions. Fine-scale analysis of collinearity between rice chromosomes 1 and 5 with maize chromosomes 3, 6 and 8 shows the presence of internal rearrangements within collinear regions. Mapping of maize contigs to two distinct loci on the rice sequence identifies five new duplication events in rice. Detailed analysis of a duplication between rice chromosomes 1 and 5 shows that 11% of the annotated genes from the chromosome 1 locus are found duplicated on the chromosome 5 paralogous counterpart, indicating a high degree of re-organisations. The implications of these findings for map-based cloning in collinear regions are discussed.  相似文献   

9.
The human genome is composed of large sequence segments with fairly homogeneous GC content, namely isochores, which have been linked to many important functions; biological implications of most isochore boundaries, however, remain elusive, partly due to the difficulty in determining these boundaries at high resolution. Using the segmentation algorithm based on the quadratic divergence, we re-determined all 79 boundaries of previously identified human isochores at single-nucleotide resolution, and then compared the boundary coordinates with other genome features. We found that 55.7% of isochore boundaries coincide with termini of repeat elements; 45.6% of isochore boundaries coincide with termini of highly conserved sequences based on alignment of 17 vertebrate genomes, i.e., the highly conserved genome sequence switches to a less or non-conserved one at the isochore boundary; some isochore boundaries coincide with abrupt change of CpG island distribution (note that one boundary can associate with more than one genome feature). In addition, sequences around isochore boundaries are highly conserved. It seems reasonable to deduce that the boundaries of all the isochores studied here would be replication timing sites in the human genome. These results suggest possible key roles of the isochore boundaries and may further our understanding of the human genome organization.  相似文献   

10.
The density and distribution of single-nucleotide polymorphisms (SNPs) across the genome has important implications for linkage disequilibrium mapping and association studies, and the level of simple-sequence microsatellite polymorphisms has important implications for the use of oligonucleotide hybridization methods to genotype SNPs. To assess the density of these types of polymorphisms in P. falciparum, we sampled introns and noncoding DNA upstream and downstream of coding regions among a variety of geographically diverse parasites. Across 36,229 base pairs of noncoding sequence representing 41 genetic loci, a total of 307 polymorphisms including 248 polymorphic microsatellites and 39 SNPs were identified. We found a significant excess of microsatellite polymorphisms having a repeat unit length of one or two, compared to those with longer repeat lengths, as well as a nonrandom distribution of SNP polymorphisms. Almost half of the SNPs localized to only three of the 41 genetic loci sampled. Furthermore, we find significant differences in the frequency of polymorphisms across the two chromosomes (2 and 3) examined most extensively, with an excess of SNPs and a surplus of polymorphic microsatellites on chromosome 3 as compared to chromosome 2 (P=0.0001). Furthermore, at some individual genetic loci we also find a nonrandom distribution of polymorphisms between coding and flanking noncoding sequences, where completely monomorphic regions may flank highly polymorphic genes. These data, combined with our previous findings of nonrandom distribution of SNPs across chromosome 2, suggest that the Plasmodium falciparum genome may be a mosaic with regard to genetic diversity, containing chromosomal regions that are highly polymorphic interspersed with regions that are much less polymorphic.  相似文献   

11.
Incorporated with the Z curve method, the technique of wavelet multiresolution (also known as multiscale) analysis has been proposed to identify the boundaries of isochores in the human genome. The human MHC sequence and the longest contigs of human chromosomes 21 and 22 are used as examples. The boundary between the isochores of Class III and Class II in the MHC sequence has been detected and found to be situated at the position 2,490,368bp. This result is in good agreement with the experimental evidence. An isochore with a length of about 7Mb in chromosome 21 has been identified and found to be gene- and Alu-poor. We have also found that the G+C content of chromosome 21 is more homogeneous than that of chromosome 22. Compared with the window-based methods, the present method has the highest resolution for identifying the boundaries of isochores, even at a scale of single base. Compared with the entropic segmentation method, the present method has the merits of more intuitiveness and less calculations. The important conclusion drawn in this study is that the segmentation points, at which the G+C content undergoes relatively dramatic changes, do exist in the human genome. These 'singularity' points may be considered to be candidates of isochore boundaries in the human genome. The method presented is a general one and can be used to analyze any other genomes.  相似文献   

12.
We compared the exon/intron organization of vertebrate genes belonging to different isochore classes, as predicted by their GC content at third codon position. Two main features have emerged from the analysis of sequences published in GenBank: (1) genes coding for long proteins (i.e., 500 aa) are almost two times more frequent in GC-poor than in GC-rich isochores; (2) intervening sequences (=sum of introns) are on average three times longer in GC-poor than in GC-rich isochores. These patterns are observed among human, mouse, rat, cow, and even chicken genes and are therefore likely to be common to all warm-blooded vertebrates. Analysis of Xenopus sequences suggests that the same patterns exist in cold-blooded vertebrates. It could be argued that such results do not reflect the reality because sequence databases are not representative of entire genomes. However, analysis of biases in GenBank revealed that the observed discrepancies between GC-rich and GC-poor isochores are not artifactual, and are probably largely underestimated. We investigated the distribution of microsatellites and interspersed repeats in introns of human and mouse genes from different isochores. This analysis confirmed previous studies showing that Ll repeats are almost absent from GC-rich isochores. Microsatellites and SINES (Alu, B1, B2) are found at roughly equal frequencies in introns from all isochore classes. Globally, the presence of repeated sequences does not account for the increased intron length in GC-poor isochores. The relationships between gene structure and global genome organization and evolution are discussed.  相似文献   

13.
Chen L  Zhang H H 《农业工程》2012,32(5):232-239
The complete mitochondrial genome sequence of the raccoon dog (Nyctereutes procyonoides) was determined by using the long and accurate polymerase chain reaction. The entire mitochondrial genome sequence is 16,713 bp in length contains two ribosomal RNA genes, 13 protein-coding genes, 22 transfer RNA genes and 1 control region. Most mitochondrial genes are encoded on the H strand, except for the ND6 gene and 8 tRNA genes. The base compositions of mitochondrial genomes present clearly A–T skew. All the transfer RNA genes can be folded into the typical cloverleaf-shaped structure except tRNA-Ser (AGY), which lacks the dihydrouridine arm. Protein-coding genes mainly initiate with ATG and terminate with TAA. Some reading frame intervals and overlaps are found in the mitochondrial genome. The control region can be divided into three domains: the extended termination associated sequences (ETASs) domain, the central conserved domain and the conserved sequence blocks (CSBs) domain. Three conserved sequence blocks (CSBs) and one extended termination associated sequences (ETAS-1) is found in the control region. The phylogenetic analysis based on the concatenated data set of 14 genes in the mitochondrial genome of Canidae shows that the raccoon dog has close phylogenetic position with the red fox (Vulpes vulpes) and they constitute a clade which has an equil evolutionary position with the clade formed by the genera Canis and Cuon.  相似文献   

14.
Abstract

The human genome is composed of large sequence segments with fairly homogeneous GC content, namely isochores, which have been linked to many important functions; biological implications of most isochore boundaries, however, remain elusive, partly due to the difficulty in determining these boundaries at high resolution. Using the segmentation algorithm based on the quadratic divergence, we re-determined all 79 boundaries of previously identified human isochores at single-nucleotide resolution, and then compared the boundary coordinates with other genome features. We found that 55.7% of isochore boundaries coincide with termini of repeat elements; 45.6% of isochore boundaries coincide with termini of highly conserved sequences based on alignment of 17 vertebrate genomes, i.e., the highly conserved genome sequence switches to a less or non-conserved one at the isochore boundary; some isochore boundaries coincide with abrupt change of CpG island distribution (note that one boundary can associate with more than one genome feature). In addition, sequences around isochore boundaries are highly conserved. It seems reasonable to deduce that the boundaries of all the isochores studied here would be replication timing sites in the human genome. These results suggest possible key roles of the isochore boundaries and may further our understanding of the human genome organization.  相似文献   

15.
An international consortium has been formed to sequence the entire genome of the human malaria parasite Plasmodium falciparum. We sequenced chromosome 2 of clone 3D7 using a shotgun sequencing strategy. Chromosome 2 is 947 kb in length, has a base composition of 80.2% A + T, and contains 210 predicted genes. In comparison to the Saccharomyces cerevisiae genome, chromosome 2 has a lower gene density, a greater proportion of genes containing introns, and nearly twice as many proteins containing predicted non-globular domains. A group of putative surface proteins was identified, rifins, which are encoded by a gene family comprising up to 7% of the protein-encoding gene in the genome. The rifins exhibit considerable sequence diversity and may play an important role in antigenic variation. Sixteen genes encoded on chromosome 2 showed signs of a plastid or mitochondrial origin, including several genes involved in fatty acid biosynthesis. Completion of the chromosome 2 sequence demonstrated that the A + T-rich genome of P. falciparum can be sequenced by the shotgun approach. Within 2-3 years, the sequence of almost all P. falciparum genes will have been determined, paving the way for genetic, biochemical, and immunological research aimed at developing new drugs and vaccines against malaria.  相似文献   

16.
Cicer arietinum L. (chickpea) is the third most important food legume crop. We have generated the draft sequence of a desi‐type chickpea genome using next‐generation sequencing platforms, bacterial artificial chromosome end sequences and a genetic map. The 520‐Mb assembly covers 70% of the predicted 740‐Mb genome length, and more than 80% of the gene space. Genome analysis predicts the presence of 27 571 genes and 210 Mb as repeat elements. The gene expression analysis performed using 274 million RNA‐Seq reads identified several tissue‐specific and stress‐responsive genes. Although segmental duplicated blocks are observed, the chickpea genome does not exhibit any indication of recent whole‐genome duplication. Nucleotide diversity analysis provides an assessment of a narrow genetic base within the chickpea cultivars. We have developed a resource for genetic markers by comparing the genome sequences of one wild and three cultivated chickpea genotypes. The draft genome sequence is expected to facilitate genetic enhancement and breeding to develop improved chickpea varieties.  相似文献   

17.
18.
Bread wheat (Triticum aestivum L.) is one of the most important crops globally and a high priority for genetic improvement, but its large and complex genome has been seen as intractable to whole genome sequencing. Isolation of individual wheat chromosome arms has facilitated large-scale sequence analyses. However, so far there is no such survey of sequences from the A genome of wheat. Greater understanding of an A chromosome could facilitate wheat improvement and future sequencing of the entire genome. We have constructed BAC library from the long arm of T. aestivum chromosome 1A (1AL) and obtained BAC end sequences from 7,470 clones encompassing the arm. We obtained 13,445 (89.99%) useful sequences with a cumulative length of 7.57 Mb, representing 1.43% of 1AL and about 0.14% of the entire A genome. The GC content of the sequences was 44.7%, and 90% of the chromosome was estimated to comprise repeat sequences, while just over 1% encoded expressed genes. From the sequence data, we identified a large number of sites suitable for development of molecular markers (362 SSR and 6,948 ISBP) which will have utility for mapping this chromosome and for marker assisted breeding. From 44 putative ISBP markers tested 23 (52.3%) were found to be useful. The BAC end sequence data also enabled the identification of genes and syntenic blocks specific to chromosome 1AL, suggesting regions of particular functional interest and targets for future research.  相似文献   

19.
The human genome is a mosaic of isochores, which are long DNA segments (300 kbp) relatively homogeneous in G+C. Human isochores were first identified by density-gradient ultracentrifugation of bulk DNA, and differ in important features, e.g. genes are found predominantly in the GC-richest isochores. Here, we use a reliable segmentation method to partition the longest contigs in the human genome draft sequence into long homogeneous genome regions (LHGRs), thereby revealing the isochore structure of the human genome. The advantages of the isochore maps presented here are: (1) sequence heterogeneities at different scales are shown in the same plot; (2) pair-wise compositional differences between adjacent regions are all statistically significant; (3) isochore boundaries are accurately defined to single base pair resolution; and (4) both gradual and abrupt isochore boundaries are simultaneously revealed. Taking advantage of the wide sample of genome sequence analyzed, we investigate the correspondence between LHGRs and true human isochores revealed through DNA centrifugation. LHGRs show many of the typical isochore features, mainly size distribution, G+C range, and proportions of the isochore classes. The relative density of genes, Alu and long interspersed nuclear element repeats and the different types of single nucleotide polymorphisms on LHGRs also coincide with expectations in true isochores. Potential applications of isochore maps range from the improvement of gene-finding algorithms to the prediction of linkage disequilibrium levels in association studies between marker genes and complex traits. The coordinates for the LHGRs identified in all the contigs longer than 2 Mb in the human genome sequence are available at the online resource on isochore mapping: http://bioinfo2.ugr.es/isochores.  相似文献   

20.
Complete DNA sequence of yeast chromosome II.   总被引:20,自引:2,他引:18       下载免费PDF全文
In the framework of the EU genome-sequencing programmes, the complete DNA sequence of the yeast Saccharomyces cerevisiae chromosome II (807 188 bp) has been determined. At present, this is the largest eukaryotic chromosome entirely sequenced. A total of 410 open reading frames (ORFs) were identified, covering 72% of the sequence. Similarity searches revealed that 124 ORFs (30%) correspond to genes of known function, 51 ORFs (12.5%) appear to be homologues of genes whose functions are known, 52 others (12.5%) have homologues the functions of which are not well defined and another 33 of the novel putative genes (8%) exhibit a degree of similarity which is insufficient to confidently assign function. Of the genes on chromosome II, 37-45% are thus of unpredicted function. Among the novel putative genes, we found several that are related to genes that perform differentiated functions in multicellular organisms of are involved in malignancy. In addition to a compact arrangement of potential protein coding sequences, the analysis of this chromosome confirmed general chromosome patterns but also revealed particular novel features of chromosomal organization. Alternating regional variations in average base composition correlate with variations in local gene density along chromosome II, as observed in chromosomes XI and III. We propose that functional ARS elements are preferably located in the AT-rich regions that have a spacing of approximately 110 kb. Similarly, the 13 tRNA genes and the three Ty elements of chromosome II are found in AT-rich regions. In chromosome II, the distribution of coding sequences between the two strands is biased, with a ratio of 1.3:1. An interesting aspect regarding the evolution of the eukaryotic genome is the finding that chromosome II has a high degree of internal genetic redundancy, amounting to 16% of the coding capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号