首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The development and modulation of Sertoli cell junctions was studied in newborn and adult mink during the active and inactive spermatogenic phases. The techniques used were electron microscopy of freeze-fractured replicas and thin sections of tissues infused with horseradish peroxidase as a junction permeability tracer. In the newborn, freeze-fractured developing junctions had either spherical or fibrillar particles. In addition, junctional domains where particles were associated preferentially with the E-face, and others where particles were associated preferentially with the P-face, were found developing either singly or conjointly within a given membrane segment, thus yielding a heterogeneous junctional segment. Coincidently with the development of a tubular lumen and the establishment of a competent blood-testis barrier, junctional strands were composed primarily of particulate elements associated preferentially with the E-face. In adult mink during active spermatogenesis, cell junctions were found on the entire lateral Sertoli cell plasma membrane from the basal to the luminal pole of the cell. In the basal third of the Sertoli cell, membranous segments that faced a spermatogonium or a migrating spermatocyte displayed forming tight, gap, and adherens junctions. In the middle third, abutting membrane segments localized above germ cells were involved in continuous zonules and in adherens junctions. In the apical or luminal third, the zonules were discontinuous, and the association of junctional particles with the E-face furrow was lost. Gap junctions increased in both size and numbers. Junctional vesicles that appeared as annular gap and tight-junction profiles in thin sections or as hemispheres in freeze-fracture replicas were present. Reflexive tight and gap junctions were formed through the interaction of plasma membrane segments of the same Sertoli cell. Internalized junctional vesicles were also present in mature spermatids. During the inactive spermatogenic phase, cell junctions were localized principally in the basal third of the Sertoli cell; junctional strands resembled those of the newborn mink. During the active spermatogenic phase, continuous zonules were competent in blocking passage of the protein tracer. During the inactive phase the blood-testis barrier was incompetent in blocking entry of the tracer into the seminiferous epithelium. It is proposed that modulation of the Sertoli cell zonules being formed at the base and dismantled at the apex of the seminiferous epithelium follows the direction of germ cell migration and opposes the apicobasal direction of junction formation reported for most epithelia.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
The seminiferous epithelial cycle and spermatogenic wave are conserved features of vertebrate spermatogenic organisation that reflect the need for the rigorous maintenance of sperm production. Although the cycle and the wave of the adult seminiferous epithelium have been well characterised, particularly in rodent species, their developmental origins are unknown. We show that the Sertoli cells of the pre-pubertal mouse, including those of the germ cell-deficient XXSxra mutant, exhibit coordinated, cyclical patterns of gene expression, presaging the situation in the adult testis, where Sertoli cell function is coupled to the spermatogenic cycle. In the case of the galectin 1 gene (Lgals1), localised differential expression in the Sertoli cells can be traced back to neonatal and embryonic stages, making this the earliest known molecular marker of functional heterogeneity in mammalian testis cords. In addition, the timing of germ cell apoptosis in normal pre-pubertal testes is linked to the temporal cycle of the Sertoli cells. These data show that the cycle and wave of the murine seminiferous epithelium originate at a much earlier stage in development than was previously known, and that their maintenance in the early postnatal cords depends exclusively on the somatic cell lineages.  相似文献   

3.
The influence of the blood-testis barrier on the synthetic capabilities of male germ cells in the mouse as investigated by quantitative radioautography in aggregates of seminiferous tubules incubated in a modified Rose chamber, in the presence of tritiated leucine. In the seminiferous tubule, a distribution gradient of radioactivity could be seen : radioactivity decreased from the periphery towards the lumen. Labelling intensity was approximately equivalent in type B spermatogonia and pachytene primary spermatocytes but was only one third as heavy in spermatids (steps 4-5). These results which confirm prior observations carried out in both animal and germ cells isolated from the seminiferous epithelium by differential sedimentation velocity indicate that the blood-testis barrier has no significant effect on the capacity for synthesis peculiar to each germ-cell population.  相似文献   

4.
In order to further characterize the Sertoli cell state of differentiation, we investigated the expression of connexin 43 (cx43) protein in the testis of adult men both with normal spermatogenesis and associated with spermatogenic impairment, since cx43 is first expressed during puberty. Cx43 protein was found as a single 43-kDa band on western blots of extracts of normal human testicular material. Cx43 immunoreactivity was generally present between Leydig cells. Within the normal seminiferous epithelium cx43 immunoreactivity was localized between adjacent Sertoli cells, except at stages II and III of the seminiferous epithelial cycle when primary spermatocytes cross from the basal to the adluminal compartment suggesting a stage-dependent Sertoli cell function. While testes with hypospermatogenesis and spermatogenic arrest at the level of round spermatids or spermatocytes revealed a staining pattern similar to that of normal adult testis, the seminiferous tubules showing spermatogenic arrest at the level of spermatogonia and Sertoli-cell-only syndrome were completely immunonegative. We therefore assume that severe spermatogenic impairment is associated with a population of Sertoli cells exhibiting a stage of differentiation deficiency. Accepted: 10 June 1999  相似文献   

5.
Zhang L  Han XK  Qi YY  Liu Y  Chen QS 《Theriogenology》2008,69(9):1148-1158
To elucidate the processes involved in the spatial and temporal maturation of spermatogenic cells in the testes of the soft-shelled turtle, Pelodiscus sinensis, we used a histological morphology method, TdT-mediated dUTP nick end-labeling (TUNEL) assay, the proliferating-cell nuclear antigen (PCNA), and electron microscopy. Seminiferous tubules from 100 turtles, normal for size of testes and semen quality, were collected during 10 months of a complete annual cycle (10 turtles/month). The seminiferous epithelium was spermatogenically active through the summer and fall, but quiescent throughout the rest of the year; germ cells progressed through spermatogenesis in a temporal rather than a spatial pattern, resulting in a single spermatogenic event that climaxed with one massive sperm release in November. The TUNEL method detected few apoptotic cells in spermatogenic testis, with much larger numbers during the spermatogenically quiescent phase. Spermatocytes were the most common germ cell types labeled by the TUNEL assay (a few spermatogonia were also labeled). Apoptotic spermatocytes had membrane blebbing and chromatin condensation during the resting phase, but not during active spermatogenesis. We inferred that accelerated apoptosis of spermatogonia and spermatocytes partly accounted for germ cell loss during the nonspermatogenic phase. The PCNA was expressed in nuclei of spermatogonia and primary spermatocytes during the spermatogenically active phase. During the regressive phase, PCNA-positive cells also included spermatogonia and spermatocytes, but the number of positive spermatocytes was less than that during the spermatogenically active phase. We concluded that seasonal variations in spermatogenesis in the soft-shelled turtle were both stage- and process-specific.  相似文献   

6.
The relationship between the intactness of sustentacular (Sertoli) cell tight junctions and the status of spermatogenesis was examined in rats fed a vitamin-A-deficient diet after weaning (VAD rats). Both serum and testicular retinol concentrations of the VAD rats declined to a nadir by 80 days of age. At this time, it was observed that Sertoli cell tight junctions of the VAD animals were intact and complete spermatogenesis was maintained. Leakage in Sertoli cell tight junctions, as demonstrated by the presence of lanthanum in the adluminal compartment of the seminiferous epithelium, was first observed in 90-day-old VAD rats. Severe regression of spermatogenic cells was noted in 100-day or older VAD animals. These results suggest that severe germ cell loss observed during chronic vitamin A deficiency may result from abnormal intratubular environment due to the disruption of the blood-testis barrier.  相似文献   

7.
The role of cholesterol differs in the two compartments of the testis. In the interstitial tissue, cholesterol is necessary for the synthesis of testosterone, whereas in the seminiferous tubules, membrane cholesterol content in developing germ cells will influence the gametes' fertility. Here we evaluate the hormone-sensitive lipase (HSL) modulation of the cholesterol metabolism in each compartment of the testis. Two HSL immunoreactive bands of 104- and 108-kDa were detected in Western blots performed with polyclonal anti-human HSL antibodies in the interstitial tissue (ITf)- and seminiferous tubule (STf)-enriched fractions generated from testes harvested at 30-day intervals during puberty and, in the adult mink, during the annual seasonal reproductive cycle. Epididymal spermatozoa expressed a 104-kDa HSL isoform, and HSL was active in these cells. Immunolabeling localized HSL to interstitial macrophages; Sertoli cells, where its distribution was stage specific; spermatids; and the equatorial segment of spermatozoa. Total HSL protein levels, specific enzymatic activity, and free cholesterol (FC):esterified cholesterol (EC) ratios varied concomitantly in STf and ITf and reached maximal values in the adult during the period of maximal spermatogenic activity. In STf, HSL-specific activity correlated with FC:EC ratios but not with triglyceride levels. In STf, high HSL-specific activity occurred concomitantly with high FSH serum levels. In ITf, HSL-specific activity was high during periods of low serum prolactin levels and high serum testosterone levels. The results suggest that 1) modulation of cholesterol metabolism in individual testicular compartments may be regulated by HSL isoforms expressed by distinct cells; 2) interstitial macrophages may be part of a system involved in the synthesis of steroid hormones and in the recycling of sterols in the interstitium, whereas in the tubules, recycling could be ensured by Sertoli cells; 3) there is distinctive substrate preference for testicular HSL; and 4) HSL may be the only cholesterol esterase in this location.  相似文献   

8.
The occurrence of degenerating germ cells in the cycle of the seminiferous epithelium was measured in testicular tissues from eight normal adult rats. Testes were perfusion fixed, embedded in epoxy resin and, after sectioning a total of 180 randomly selected blocks at 1 microns, stained sections were examined by light microscopy; all cross-sectioned seminiferous tubules were categorized into one of 14 stages of the spermatogenic cycle. The number of degenerating cells per tubule was recorded in 2103 tubules. Degenerating germ cells were not detected at stages II-VI, and only rarely at stage VII (n = 366 tubules) in which one primary spermatocyte and one step 19 spermatid degenerated. All other stages exhibited a greater incidence of degenerative germ cells, particularly at stage XIV where, on average, the frequency of degenerating cells per round seminiferous tubule was about 40 times greater than at stage VII. The results indicated that, in the normal adult rat testis, the germ cells are least at risk of degeneration as they pass through stage VII.  相似文献   

9.
Autoantigenic germ cells exist outside the blood testis barrier   总被引:4,自引:0,他引:4  
Preleptotene spermatocytes and spermatogonia are germ cells located outside the blood-testis barrier provided by the Sertoli cells. These cells have been found to express autoantigens accessible to circulating antibodies. Mice immunized with syngeneic testis with or without bacterial adjuvant had detectable IgG on cells at the periphery of seminiferous tubules. Sera from orchiectomized but not from testes-intact mice immunized with testis and adjuvants readily transferred similar IgG deposits to testes of normal recipients. When testis-specific antisera from orchiectomized mice and testis-intact mice were compared for their reactivity on prepuberal testicular cells, serum from orchiectomized donors had significantly higher reactivity. Ig was eluted from IgG-positive testes with acid buffer and was shown to be highly enriched in antibody to prepuberal testicular cells, confirming the Ag-specific nature of the IgG deposits. The testis IgG deposits reacted with antisera to IgG1 and IgG3 but not IgG2a or IgG2b. This finding can explain lack of association of C3 in the deposits. Only 30 to 40% of seminiferous tubules had IgG deposits and they coincided with stages 7 to 12 of the spermatogenic cycle. Thus, the expression of the autoantigens is stage specific. The in situ formation of immune complexes by circulating autoantibodies demonstrates conclusively that testis autoantigens are not completely sequestered, and the blood-testis barrier as an immunologic barrier is incomplete.  相似文献   

10.
Summary In seven hypo- or aspermic patients, electron microscopic investigations of the intercellular connections of the seminiferous tubule were performed. The analysis of cell junctions of Sertoli cells and germ cells revealed irregularities of the Sertoli-cell junctions, hypoplasias of occluding junctions, hypo- and hyperplasias of the Sertoli-spermatid cell junctions and abnormal formation of Sertoli cell junctions with early spermatids, spermatocytes, and spermatogonia. Gap junction-like cell membrane specializations were very rare. Intercellular cytoplasmic bridges of germ cells were always present together with these cells. One hypoplastic bridge connecting two spermatogonia was found.The results allow a preliminary classification of impaired spermatogenesia. The changes of intercellular connections might disturb the blood-testis barrier as well as the intercellular communication in the seminiferous tubule. Evidence is available to support the suggestion that genetic causes play a considerable role in the etiology of the germ cell aplasia and the spermatogenic maturation arrest.  相似文献   

11.
N-Myc downstream regulated gene 2 (NDRG2) is expressed in the testis of adult animals and is involved in cell differentiation and development. However, little is known about the expression pattern of NDRG2 in the testis during postnatal development. Here, we show that NDRG2 is consistently expressed in Leydig cells in the rat testis during postnatal development. However, its expression has also been detected at a high frequency in spermatogenic cells of the seminiferous tubules in young rats but at a much lower frequency in adult rats. Furthermore, high levels of NDRG2 expression have been found in methoxyacetic-acid-induced apoptotic germ cells, particularly at stages X–XIII of the seminiferous epithelium cycle of adult rats. Interestingly, high levels of NDRG2 expression have also been observed in spontaneously apoptotic germ cells in the seminiferous tubules of young and adult rats. Thus, the expression of NDRG2 in germ cells seems to alter during spermatogenesis. These findings suggest that NDRG2 regulates testicular development and spermatogenesis in rats and is involved in the physiological and pathological apoptosis of germ cells. Wu-Gang Hou, Yong Zhao, and Lan Shen contributed equally to this study. This study was supported by the Natural Science Foundation of China (2006: no. 30600340; 2007: no. 30771138; 2008: no. 30871309).  相似文献   

12.
The elucidation of how individual components of the Sertoli cell junctional complexes form and are dismantled to allow not only individual cells but whole syncytia of germinal cells to migrate from the basal to the lumenal compartment of the seminiferous epithelium without causing a permeability leak in the blood-testis barrier is amongst the most enigmatic yet, challenging and timely questions in testicular physiology. The intriguing key event in this process is how the barrier modulates its permeability during the periods of formation and dismantling of individual Sertoli cell junctions. The purpose of this review is therefore to first provide a reliable account on the normal formation, maintenance and dismantling process of the Sertoli cells junctions, then to assess the influence of the expression of their individual proteins, of the cytoskeleton associated with the junctions, and of the lipid content in the seminiferous tubules on the regulation of the their permeability barrier function. To help focus on the formation and dismantling of the Sertoli cell junctions, several considerations are based on data gleaned not only from rodents but from seasonal breeders as well because these animal models are characterized by exhaustive periods of junction assembly during development and the onset of the seasonal re-initiation of spermatogenesis as well as by an extensive junction dismantling period at the beginning of testicular regression, something unavailable in normal physiological conditions in continual breeders. Thus, the modulation of the permeability barrier function of the Sertoli cell junctions is analyzed in the physiological context of the blood-epidydimis barrier and in particular of the blood-testis barrier rather than in the context of a detailed account of the molecular composition and signalisation pathways of cell junctions. Moreover, the considerations discussed in this review are based on measurements performed on seminiferous tubule-enriched fractions gleaned at regular time intervals during development and the annual reproductive cycle.  相似文献   

13.
支持细胞紧密连接与男性避孕   总被引:2,自引:0,他引:2  
支持细胞的紧密连接是血睾屏障的主要组成成分,对支持细胞紧密连接结构与功能的深入研究有助于探讨男性避孕的新的研究方法。对紧密连接动力学的影响因素以及其与精子发生和男性避孕间的关系进行了分析。为进一步探讨男性避孕的研究方法提供新思路。  相似文献   

14.
Bisphenol A, an estrogenic environmental toxicant, has been implicated to have hazardous effects on reproductive health in humans and rodents. However, there are conflicting reports in the literature regarding its effects on male reproductive function. In this study, it was shown that in adult rats treated with acute doses of bisphenol A, a small but statistically insignificant percentage of seminiferous tubules in the testes displayed signs of germ cell loss, consistent with some earlier reports. It also failed to disrupt the blood-testis barrier in vivo. This is possibly due to the low bioavailability of free bisphenol A in the systemic circulation. However, bisphenol A disrupted the blood-testis barrier when administered to immature 20-day-old rats, consistent with earlier reports concerning the higher susceptibility of immature rats towards bisphenol A. This observation was confirmed using primary Sertoli cells cultured in vitro with established tight junction-permeability barrier that mimicked the blood-testis barrier in vivo. The reversible disruption of Sertoli cell tight junction barrier by bisphenol A was associated with an activation of ERK, and a decline in the levels of selected proteins at the tight junction, basal ectoplasmic specialization, and gap junction at the blood-testis barrier. Studies by dual-labeled immunofluorescence analysis and biotinylation techniques also illustrated declining levels of occludin, connexin 43, and N-cadherin at the cell–cell interface following bisphenol A treatment. In summary, bisphenol A reversibly perturbs the integrity of the blood-testis barrier in Sertoli cells in vitro, which can also serve as a suitable model for studying the dynamics of the blood-testis barrier.  相似文献   

15.
The universal importance of iron, its high toxicity, and complex chemistry present a challenge to biological systems in general and to protected compartments in particular. The high mitotic rate and avid mitochondriogenesis of developing male germ cells imply high iron requirements. Yet access to germ cells is tightly regulated by the blood-testis barrier that protects the meiotic and postmeiotic germ cells. To elucidate how iron is supplied to developing male germ cells, we analyzed iron deposition and iron transport proteins in testes of mice with iron overload and with genetic ablation of the iron regulators Hfe and iron regulatory protein 2. Iron accumulated mainly around seminiferous tubules, and only small amounts localized within the seminiferous tubules. The localization and regulation of proteins involved in iron import, storage, and export such as transferrin, transferrin receptor, the divalent metal transporter-1, cytosolic ferritin, and ferroportin strongly support a model of a largely autonomous iron cycle within seminiferous tubules. We show evidence that ferritin secretion from Sertoli cells may play an important role in iron acquisition of primary spermatocytes. During spermatogenic development iron is carried along from primary spermatocytes to spermatids, and from spermatids iron is recycled to the apical compartment of Sertoli cells, which traffic it back to a new generation of spermatocytes. Losses are replenished by the peripheral circulation. Such an internal iron cycle essentially detaches the iron homeostasis within the seminiferous tubule from the periphery and protects developing germ cells from iron fluctuations. This model explains how compartmentalization can optimize cellular and systemic nutrient homeostasis.  相似文献   

16.
It was established that the local X-irradiation (1000 R) of testes of the adult rats results a total destruction of seminiferous tubules. The restitution of the organ structure proceeds via formation of new seminiferous tubules in which spermatogenic epithelium later develops. Rete testis and germ cells preserved in its epithelium from embryogenesis are a source of regeneration material. The results obtained favour the suggestion about the dynamic structure of mammalian testis.  相似文献   

17.
Scavenger receptor class B type I (SR-BI) contributes to HDL-mediated cellular cholesterol efflux and is a phagocytosis-inducing phospholipid phosphatidylserine receptor in rat Sertoli cells, whereas the spliced variant of the SR-B gene, SR-BII, is implicated in the efflux of free cholesterol in macrophages. This study aimed to assess whether spontaneous autoimmune orchitis (AIO), which causes impaired clearance of apoptotic germ cells and spermatogenic arrest, involves SR-BI, SR-BII, and/or cholesterol. The levels measured during development and the annual reproductive cycle in normal mink were compared with those in mink with spontaneous AIO. Time periods with lowest tubular esterified cholesterol (EC) levels showed maximal SR-BI and SR-BII levels, and the periods when one or the other SR-BI isoform predominated showed increased EC levels and spermatogenic arrest in normal mink seminiferous tubules. In tubules with AIO, the predominance of only one or the other SR-BI isoform was the reverse of that measured in normal tubules, and it was associated with an increase in EC levels but not with apoptosis levels. SR-BI and SR-BII levels were not correlated with serum testosterone levels. SR-BI mainly localized to the Leydig cell, germ cell, and Sertoli cell surface, where its distribution was stage-specific. SR-BII was principally intracellular. Tubules from testes with AIO showed a deregulation of cholesterol homeostasis and SR-BI expression but relatively unchanged apoptosis levels. These results suggest that the expression of both SR-BI isoforms is required for the maintenance of low EC levels and that the predominance of only one isoform is associated with the accumulation of EC but not with apoptosis in the tubules.  相似文献   

18.
During spermatogenesis, the blood-testis barrier (BTB) segregates the adluminal (apical) and basal compartments in the seminiferous epithelium, thereby creating a privileged adluminal environment that allows post-meiotic spermatid development to proceed without interference of the host immune system. A key feature of the BTB is its continuous remodeling within the Sertoli cells, the major somatic component of the seminiferous epithelium. This remodeling is necessary to allow the transport of germ cells towards the seminiferous tubule interior, while maintaining intact barrier properties. Here we demonstrate that the actin nucleation promoting factor Neuronal Wiskott-Aldrich Syndrome Protein (N-WASP) provides an essential function necessary for BTB restructuring, and for maintaining spermatogenesis. Our data suggests that the N-WASP-Arp2/3 actin polymerization machinery generates branched-actin arrays at an advanced stage of BTB remodeling. These arrays are proposed to mediate the restructuring process through endocytic recycling of BTB components. Disruption of N-WASP in Sertoli cells results in major structural abnormalities to the BTB, including mis-localization of critical junctional and cytoskeletal elements, and leads to disruption of barrier function. These impairments result in a complete arrest of spermatogenesis, underscoring the critical involvement of the somatic compartment of the seminiferous tubules in germ cell maturation.  相似文献   

19.
The localization of albumin and transferrin was examined immunohistochemically in germ cells and Sertoli cells during rat gonadal morphogenesis and postnatal development of the testis. These proteins appeared as early as the 13th day of gestation in migrating primordial germ cells before Sertoli cell differentiation. In the fetal testis, strong immunoreactivity was only detected in the gonocytes. In the prepubertal testis, spermatogonia, primary spermatocytes, and some Sertoli cells accumulate albumin and transferrin. At puberty, different patterns of immunostaining of the germ cells were observed at the various stages of the cycle of the seminiferous epithelium. Diplotene spermatocytes at stage XIII, spermatocytes in division at stage XIV, and round spermatids at stages IV–VIII showed maximal staining. Labeling was evident in the cytoplasm of adult Sertoli cells. Albumin and transferrin staining patterns paralleled each other during ontogenesis.  相似文献   

20.
Fluoride was orally administered to rabbits at 10 mg NaF/kg body weight for 18 or 29 months. The animals were then killed and the structure of the testis, epididymis and vas deferens studied under light and scanning electron microscopes. In animals treated for 29 months, the spermatogenic cells in the seminiferous tubules were disrupted, degenerated and devoid of spermatozoa. In animals treated for 18 or 29 months, loss of cilia on the epithelial cells lining the lumen of the ductuli efferentes of the caput epididymidis and of stereocilia on the epithelial cells lining the lumen of the vas deferens was observed. In some regions of the epithelial lining of the lumen of the ductuli efferentes and vas deferens, the boundaries of the cells were not clear and appeared to be peeled off. Mucus droplets were abundant in the vas deferens of control animals, but absent in both the treated groups. Spermatogenesis ceased only in animals treated for 29 months. The difference in the structural changes observed in the testes of the 2 treated groups may have been due to the blood-testis barrier. It is concluded that ingestion of high concentrations of fluoride has harmful effects on the male reproductive system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号