首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The role of tissue transglutaminase 2 (TG2) in cardiac myocyte apoptosis under oxidative stress induced by ischemic injury remains unclear. Here, we investigated the effects of TG2 on apoptosis of cardiomyocytes under oxidative stress. Ectopic expression of TG2 increased caspase-3 activity and calcium overload in cardiomyocytes. Expression levels of TG2 were significantly increased in H2O2-treated cardiomyocytes. Caspase-3 activity assay demonstrated its considerable correlation with TG2 expression, which supported that caspase-3 inhibitor inhibited the apoptosis induced by the ectopic overexpression of TG2. In addition, the other apoptotic signals, such as caspase-8, cytochrome c, and Bax, were increased dependent with TG2 expression in H2O2-treated cardiomyocytes. These results indicated that apoptotic signals had a positive correlation with TG2 expression. The decreased expression of phospholipase C (PLC)-δ1 and phospho-PKC in H2O2-treated cardiomyocytes were rescued by TG2 silencing. Together, our data strongly suggest that oxidative stress up-regulates TG2 expression in cardiomyocytes, leading to apoptosis.  相似文献   

2.
In this study, the effect of puerarin on hydrogen peroxide-induced apoptosis in PC12 cells was studied. Exposure of cells to 0.5mM H(2)O(2)may cause significant viability loss and apoptotic rate increase. When c-Myc, Bcl-2 and Bax expression and caspase-3 activity were measured, using Ac-DEVD-AMC as a substrate, the changes in these apoptosis regulatory and effector proteins suggested that the elevation of c-Myc, decrease in Bcl-2:Bax protein ratio, and caspase-3 activation all play a key role in apoptosis. When cells were treated with puerarin prior to 0.5 mM H(2)O(2)treatment, a reduction in viability loss and apoptotic rate was seen. In addition, c-Myc expression decreased and Bcl-2:Bax ratio increased. Puerarin also reduced the H(2)O(2)-induced elevation of caspase-3 activation. These results suggest that puerarin can protect neurons against oxidative stress. It can block apoptosis in its early stages via the regulation of anti- and pro-apoptotic proteins, as well as by the attenuation of caspase-3 activation in H(2)O(2)-induced PC12 cells.  相似文献   

3.
The mechanism of H(2)O(2) induced oxidative stress leading to male germ cell apoptosis was earlier reported from our laboratory. In the present study, we investigated the mechanisms by which N-acetyl-L-cysteine (NAC, which is highly cell specific with strong antioxidant and anti-genotoxic properties), stimulated cell survival under such conditions. Co-incubation with 5 mM NAC significantly (P<0.001) reduced the germ cell apoptosis induced by 10 μM H(2)O(2). Lipid peroxidation was brought down with significant restoration of activities of antioxidant enzymes, SOD, GST, and catalase. Expression of pro-apoptotic marker, Bax up-regulated following H(2)O(2) exposure, was reversed back to control levels. In contrast, expression of anti-apoptotic Bcl-2 and phospho-Akt revealed a completely opposite trend. While caspase-8 activity remained unaffected, NAC successfully attenuated the increased activities of caspase-3 and -9 in the H(2) O(2) treated cells. Simultaneously, the increased expression of caspase-9, phospho-JNK, and phospho-c-Jun after H(2)O(2) treatment was down-regulated by NAC. The above findings indicate that the mechanism of inhibition of H(2)O(2) induced male germ cell apoptosis by NAC is mediated through regulation of caspase-9 and JNK.  相似文献   

4.
Oxidative stress may cause apoptosis of cardiomyocytes in ischemia-reperfused myocardium, and heat shock pretreatment is thought to be protective against ischemic injury when cardiac myocytes are subjected to ischemia or simulated ischemia. However, the detailed mechanisms responsible for the protective effect of heat shock pretreatment are currently unclear. The aim of this study was to determine whether heat shock pretreatment exerts a protective effect against hydrogen peroxide(H2O2)-induced apoptotic cell death in neonatal rat cardiomyocytes and C2C12 myogenic cells and whether such protection is associated with decreased release of second mitochondria-derived activator of caspase-direct IAP binding protein with low pl (where IAP is inhibitor of apoptosis protein) (Smac/DIABLO) from mitochondria and the activation of caspase-9 and caspase-3. After heat shock pretreatment (42 +/- 0.3 degrees C for 1 hour, recovery for 12 hours), cardiomyocytes and C2C12 myogenic cells were exposed to H2O2 (0.5 mmol/L) for 6, 12, 24, and 36 hours. Apoptosis was evaluated by Hoechst 33258 staining and DNA laddering. Caspase-9 and caspase-3 activities were assayed by caspase colorimetric assay kit and Western analysis. Inducible heat shock proteins (Hsp) were detected using Western analysis. The release of Smac/DIABLO from mitochondria to cytoplasm was observed by Western blot and indirect immunofluorescence analysis. (1) H2O2 (0.5 mmol/L) exposure induced apoptosis in neonatal rat cardiomyocytes and C2C12 myogenic cells, with a marked release of Smac/DIABLO from mitochondria into cytoplasm and activation of caspase-9 and caspase-3, (2) heat shock pretreatment induced expression of Hsp70, Hsp90, and alphaB-crystallin and inhibited H2O2-mediated Smac/DIABLO release from mitochondria, the activation of caspase-9, caspase-3, and subsequent apoptosis. H2O2 can induce the release of Smac/DIABLO from mitochondria and apoptosis in cardiomyocytes and C2C12 myogenic cells. Heat shock pretreatment protects the cells against H2O2-induced apoptosis, and its mechanism appears to involve the inhibition of Smac release from mitochondria.  相似文献   

5.
Youn CK  Jun JY  Hyun JW  Hwang G  Lee BR  Chung MH  Chang IY  You HJ 《DNA Repair》2008,7(11):1809-1823
Although the accumulation of 8-oxo-dGTP in DNA is associated with apoptotic cell death and mutagenesis, little is known about the exact mechanism of hMTH1-mediated suppression of oxidative-stress-induced cell death. Therefore, we investigated the regulation of DNA-damage-related apoptosis induced by oxidative stress using control and hMTH1 knockdown cells. Small interfering RNA (siRNA) was used to suppress hMTH1 expression in p53-proficient GM00637 and H460 cells, resulting in a significant increase in apoptotic cell death after H(2)O(2) exposure; however, p53-null, hMTH1-deficient H1299 cells did not exhibit H(2)O(2)-induced apoptosis. In addition, hMTH1-deficient GM00637 and H460 cells showed increased caspase-3/7 activity, cleaved caspase-8, and Noxa expression, and gamma-H2AX formation in response to H(2)O(2). In contrast, the caspase inhibitors, p53-siRNA, and Noxa-siRNA suppressed H(2)O(2)-induced cell death. Moreover, in 8-week (long-term) cultured H460 and H1299 cells, hMTH1 suppression increased cell death, Noxa expression, and gamma-H2AX after H(2)O(2) exposure, compared to 3-week (short-term) cultured cells. These data indicate that hMTH1 plays an important role in protecting cells against H(2)O(2)-induced apoptosis via a Noxa- and caspase-3/7-mediated signaling pathway, thus conferring a survival advantage through the inhibition of oxidative-stress-induced DNA damage.  相似文献   

6.
Hydrogen peroxide (H(2)O(2)), a representative ROS, has been used to study the apoptosis of cancer cells to oxidative stress. In this study, we exploited the cellular and molecular mechanisms involved in H(2)O(2)-induced apoptosis in human gastric carcinoma MGC803 cells. Exposure of cells to H(2)O(2) might cause significant viability loss and the increase in apoptotic rate. Treatment with 0.4 mmol/L H(2)O(2) up-regulated Bax but down-regulated Bcl-2 in a time-dependent manner, while Bcl-xL expression remained unchanged. Our results also showed that the levels of Fas and Fas-L were increased, the pro-caspase-3 and pro-caspase-9 were down-regulated in H(2)O(2)-treated MGC803 cells. Under H(2)O(2) stress, we found that the protein p53 also participated in MGC803 cells apoptosis. Taken together, the present study indicated that Fas-mediated cell surface death receptor pathway and mitochondria-mediated pathway may participate in regulating the MGC803 cells apoptosis under oxidative stress.  相似文献   

7.
Oxidants such as H(2)O(2) can induce a low level of apoptosis at low concentrations but at higher concentrations cause necrosis. Higher concentrations of H(2)O(2) also inhibit the induction of apoptosis by chemotherapy drugs. One theory is that, at higher concentrations, H(2)O(2) causes direct oxidative inactivation of caspase-3 activity, thus preventing the apoptotic pathway from being used. We find that treatment of recombinant caspase-3 with H(2)O(2) can partially reduce its enzymatic activity: However, the following findings show that this does not occur in the cell. (1) The inhibition by H(2)O(2) of VP-16-induced apoptosis and cellular caspase-3 activity can be overcome by adding inhibitors of poly(ADP-ribose) polymerase (PARP) at sub-stoichiometric concentrations. (2) Delayed addition of H(2)O(2) to VP-16-treated cells prevents additional caspase induction but does not inhibit the caspase activity that has already been generated. (3) H(2)O(2) is a poor inhibitor of caspase-3 activity in cell lysates. (4) Addition of H(2)O(2) to cells inhibits activation of caspase-9, which is required for activation of caspase-3. We conclude that inhibition of caspase-3 activity in the cell occurs indirectly at a step located upstream of caspase-3 activation. H(2)O(2) acts in part by inducing DNA strand breaks and activating PARP, thus depleting the cells of ATP. When this pathway is blocked, even high concentrations of H(2)O(2) can induce caspase-9 and -3 activation and cause apoptosis.  相似文献   

8.
We have studied the effects of different concentrations of H(2)O(2) on the proliferation of PC-3 prostate carcinoma cells. Since this cell line lacks functional p53, we sought to characterize whether apoptotic response to the oxidative insult was altered such that, unlike in cells containing functional p53 apoptosis may be reduced and replaced by other mechanisms of cellular arrest and death. We did not observe necrosis in PC-3 cells treated with H(2)O(2) concentrations of up to 500 microM. In the presence of 50 microM H(2)O(2), arrest was observed in the G2-phase of the cell cycle, along with p53-independent apoptosis. In the presence of 500 microM H(2)O(2), addition of l-buthionine sulfoximine increased the percentage of apoptotic cell death. Senescence-associated cell arrest was never observed. Moreover, some of the treated cells seemed to be resistant to oxidative damage. These cells re-entered the cell cycle and proliferated normally. Analysis of the expression of p21(waf1) and of p21 protein levels, as well as the activity of caspase-3 and caspase-8, allowed us to characterize some aspects of the arrest of PC-3 cells in G2 and the apoptotic response to oxidative stress in the absence of functional p53.  相似文献   

9.
Endoplasmic reticulum (ER) stress induced apoptosis plays a pivotal role in myocardial ischemia/reperfusion (I/R)-injury. Inhibiting ER stress is a major therapeutic target/strategy in treating cardiovascular diseases. Our previous studies revealed that lycopene exhibits great pharmacological potential in protecting against the I/R-injury in vitro and vivo, but whether attenuation of ER stress (and) or ER stress-induced apoptosis contributes to the effects remains unclear. In the present study, using neonatal mouse cardiomyocytes to establish an in vitro model of hypoxia/reoxygenation (H/R) to mimic myocardium I/R in vivo, we aimed to explore the hypothesis that lycopene could alleviate the ER stress and ER stress-induced apoptosis in H/R-injury. We observed that lycopene alleviated the H/R injury as revealed by improving cell viability and reducing apoptosis, suppressed reactive oxygen species (ROS) generation and improved the phosphorylated AMPK expression, attenuated ER stress as evidenced by decreasing the expression of GRP78, ATF6 mRNA, sXbp-1 mRNA, eIF2α mRNA and eIF2α phosphorylation, alleviated ER stress-induced apoptosis as manifested by reducing CHOP/GADD153 expression, the ratio of Bax/Bcl-2, caspase-12 and caspase-3 activity in H/R-treated cardiomyocytes. Thapsigargin (TG) is a potent ER stress inducer and used to elicit ER stress of cardiomyocytes. Our results showed that lycopene was able to prevent TG-induced ER stress as reflected by attenuating the protein expression of GRP78 and CHOP/GADD153 compared to TG group, significantly improve TG-caused a loss of cell viability and decrease apoptosis in TG-treated cardiomyocytes. These results suggest that the protective effects of lycopene on H/R-injury are, at least in part, through alleviating ER stress and ER stress-induced apoptosis in neonatal mouse cardiomyocytes.  相似文献   

10.
Many studies have indicated that oxidative stress induces apoptosis in cardiomyocytes, but its mechanism remains unknown. We examined whether tumor necrosis factor-alpha (TNF-alpha) is involved in oxidative stress-induced cardiomyocyte apoptosis. Pretreatment with anti-TNF-alpha antibody significantly decreased the number of H(2)O(2)-induced TUNEL-positive cardiomyocytes. Expression of TNF-alpha gene was upregulated by H(2)O(2), and H(2)O(2) mildly but significantly increased the concentration of TNF-alpha in the culture medium. Although neither low dose of H(2)O(2) nor TNF-alpha induced apoptosis, stimulation with H(2)O(2) and TNF-alpha synergistically increased apoptosis. These results suggest that oxidative stress induces apoptosis of cardiac myocytes partly through TNF-alpha.  相似文献   

11.
Xu FF  Liu XH  Zhu XM 《生理学报》2008,60(1):29-37
本文旨在探讨钙网蛋(calreticulin,CRT)是否参与低氧预处理(hypoxic preconditioning,HPC)对心肌细胞氧化应激损伤的保护及其信号转导过程.将原代培养的Sprague.Dawley乳鼠心肌细胞随机分为8组:氧化应激(H2O2)组、短暂低氧(HPC)组、HPC H202组、SB203580(p38 MAPK特异性抑制剂) HPC H2O2组、干扰心肌细胞CRT表达的反义寡核苷酸(antiscnse oligodeoxynucleotides,AS)组、AS H2O2组、AS HPC H202组和对照组,以细胞存活率、乳酸脱氢酶(1actate dehydrogenase,LDH)漏出及流式细胞术检测细胞损伤情况;采用RT-PCR和Western blot分别检测CRT表达和p38MAPK磷酸化水平.结果表明:(1)HPC可减轻氧化应激损伤,与H202组比较,HPC H2O2组细胞存活率增高18.0%,细胞凋亡率和LDH漏出分别降低19.4%和53.0%(均P<0.05);HPC前以SB203580预孵育可消除HPC保护作用,与HPC H202组相比,SB203580 HPC H2O2组细胞凋亡率和LDH漏出分别增高13.1%和96.0%,存活率降低7.3%(均P<0.05);(2)氧化应激明显上调CRT表达(H202组较对照组高7.1倍,P<0.05);HPC也诱导CRT表达上调(HPC组较对照组高2.4倍,P<0.05),但上调程度较H2O2组低59%(P<0.05);即HPC可减轻氧化应激诱导的CRT过表达:(3)AS干扰CRT表达后,HPC保护作用降低,相关性分析显示HPC诱导的CRT适度表达与细胞存活率呈正相关(r=0.8023,P<0.05);(4)HPC前SB203580预孵育可抑制CRT表达上调(分别较HPC H2O2组和HPC组低75%和53%,均P<0.05).上述结果提示,HPC可能通过p38 MAPK信号途径诱导CRT表达上调,减轻心肌细胞氧化应激损伤.  相似文献   

12.
Zhu Y  Shi YP  Wu D  Ji YJ  Wang X  Chen HL  Wu SS  Huang DJ  Jiang W 《DNA and cell biology》2011,30(10):809-819
Oxidative stress induces serious tissue injury in cardiovascular diseases. Salidroside, with its strong antioxidative and cytoprotective actions, is of particular interest in the development of antioxidative therapies for oxidative injury in cardiac diseases. We examined the pharmacological effects of salidroside on H9c2 rat cardiomyoblast cells under conditions of oxidative stress induced by hydrogen peroxide (H2O2) challenge. Salidroside attenuated H2O2-impaired cell viability in a concentration-dependent manner, and effectively inhibited cellular malondialdehyde production, lethal sarcolemmal disruption, cell necrosis, and apoptosis induced by H2O2 insult. Salidroside significantly augmented Akt phosphorylation at Serine 473 in the absence or presence of H2O2 stimulation; wortmannin, a specific inhibitor of PI3K, abrogated salidroside protection. Salidroside increased the intracellular mRNA expression and activities of catalase and Mn-superoxide dismutases in a PI3K-dependent manner. Our results indicated that salidroside protected cardiomyocytes against oxidative injury through activating the PI3K/Akt pathway and increasing the expression and activities of endogenous PI3K dependent antioxidant enzymes.  相似文献   

13.
Cadmium (Cd) is a well-known toxic heavy metal that accumulates in the aquatic environment. Cd has been reported to induce oxidative damage and apoptosis. We investigated the regulation mechanism of hydrogen peroxide (H(2)O(2)) on Cd-induced apoptosis. We show that in the gills of the freshwater crab Sinopotamon henanense Cd induced apoptosis, in a time- and concentration-dependent manner, as confirmed by DNA fragmentation analysis and transmission electron microscopy. Additionally, Cd caused production of H(2)O(2) after 2h of treatment at 58mg L(-1) Cd, and significantly increased the caspase-3/8/9 activity in crabs relative to the control group. Pre-treatment with the scavenger for H(2)O(2), dimethylthiourea (DMTU) and antioxidant, N-acetyl cysteine (NAC), effectively inhibited the activities of caspase-3 and caspase-9, eventually blocked Cd-induced DNA fragmentation and the appearance of markers for apoptotic cell death. These results suggest that Cd might induce intracellular H(2)O(2) generation to trigger the crab apoptotic processes by regulating the activities of caspase enzymes.  相似文献   

14.
An inexorable loss of terminally differentiated heart muscle cells is a crucial causal factor for heart failure. Here, we have provided several lines of evidence to demonstrate that mitofusin-2 (Mfn-2; also called hyperplasia suppressor gene), a member of the mitofusin family, is a major determinant of oxidative stress-mediated cardiomyocyte apoptosis. First, oxidative stress with H(2)O(2) led to concurrent increases in Mfn-2 expression and apoptosis in cultured neonatal rat cardiomyocytes. Second, overexpression of Mfn-2 to a level similar to that induced by H(2)O(2) was sufficient to trigger myocyte apoptosis, which is associated with profound inhibition of Akt activation without altering ERK1/2 signaling. Third, Mfn-2 silencing inhibited oxidative stress-induced apoptosis in H9C2 cells, a cardiac muscle cell line. Furthermore, Mfn-2-induced myocyte apoptosis was abrogated by inhibition of caspase-9 (but not caspase-8) and by overexpression of Bcl-x(L) or enhanced activation of phosphatidylinositol 3-kinase-Akt, suggesting that inhibition of Akt signaling and activation of the mitochondrial death pathway are essentially involved in Mfn-2-induced heart muscle cell apoptosis. These results indicate that increased cardiac Mfn-2 expression is both necessary and sufficient for oxidative stress-induced heart muscle cell apoptosis, suggesting that Mfn-2 deregulation may be a crucial pathogenic element and a potential therapeutic target for heart failure.  相似文献   

15.
We investigated through which mechanisms ceramide increased oxidative damage to induce leukemia HL-60 cell apoptosis. When 5 microm N-acetylsphingosine (C(2)-ceramide) or 20 microm H(2)O(2) alone induced little increase of reactive oxygen species (ROS) generation as judged by the 2'-7'-dichlorofluorescin diacetate method, 20 microm H(2)O(2) enhanced oxidative damage as judged by ROS accumulation, and thiobarbituric acid-reactive substance production after pretreatment with 5 microm C(2)-ceramide at least for 12 h. The treatment with a catalase inhibitor, 3-amino-1h-1,2,4-triazole, increased oxidative damage and apoptosis induced by H(2)O(2), and in contrast, purified catalase inhibited the enhancement of oxidative damage by H(2)O(2) in ceramide-pretreated cells, suggesting that the oxidative effect of ceramide is involved in catalase regulation. Indeed, C(2)-ceramide inhibited the activity of immunoprecipitated catalase and decreased the levels of catalase protein in a time-dependent manner. Moreover, acetyl-Asp-Met-Gln-Asp-aldehyde, which dominantly inhibited caspase-3 and blocked the increase of oxidative damage and apoptosis due to C(2)-ceramide-induced catalase depletion at protein and activity levels. In vitro, active and purified caspase-3, but not caspase-6, -8, and -9, inhibited catalase activity and induced the proteolysis of catalase protein whereas these in vitro effects of caspase-3 were blocked by acetyl-Asp-Met-Gln-Asp-aldehyde. Taken together, it is suggested that H(2)O(2) enhances apoptosis in ceramide-pretreated cells, because ceramide increases oxidative damage by inhibition of ROS scavenging ability through caspase-3-dependent proteolysis of catalase.  相似文献   

16.
Although the prion protein is abundantly expressed in the CNS, its biological functions remain unclear. To determine the endogenous function of the cellular prion protein (PrP(c)), we compared the effects of oxidative stress and endoplasmic reticulum (ER) stress inducers on apoptotic signaling in PrP(c)-expressing and PrP(ko) (knockout) neural cells. H(2)O(2), brefeldin A (BFA), and tunicamycin (TUN) induced increases in caspase-9 and caspase-3, PKCdelta proteolytic activation, and DNA fragmentation in PrP(c) and PrP(ko) cells. Interestingly, ER stress-induced activation of caspases, PKCdelta, and apoptosis was significantly exacerbated in PrP(c) cells, whereas H(2)O(2)-induced proapoptotic changes were suppressed in PrP(c) compared to PrP(ko) cells. Additionally, caspase-12 and caspase-8 were activated only in the BFA and TUN treatments. Inhibitors of caspase-9, caspase-3, and PKCdelta significantly blocked H(2)O(2)-, BFA-, and TUN-induced apoptosis, whereas the caspase-8 inhibitor attenuated only BFA- and TUN-induced cell death, and the antioxidant MnTBAP blocked only H(2)O(2)-induced apoptosis. Overexpression of the kinase-inactive PKCdelta(K376R) or the cleavage site-resistant PKCdelta(D327A) mutant suppressed both ER and oxidative stress-induced apoptosis. Thus, PrP(c) plays a proapoptotic role during ER stress and an antiapoptotic role during oxidative stress-induced cell death. Together, these results suggest that cellular PrP enhances the susceptibility of neural cells to impairment of protein processing and trafficking, but decreases the vulnerability to oxidative insults, and that PKCdelta is a key downstream mediator of cellular stress-induced neuronal apoptosis.  相似文献   

17.
Yao H  Tang X  Shao X  Feng L  Wu N  Yao K 《Cell research》2007,17(6):565-571
The apoptosis of lens epithehal cells has been proposed as the common basis of cataract formation, with oxidative stress as the major cause. This study was performed to investigate the protective effect of the herbal constituent parthenolide against oxidative stress-induced apoptosis of human lens epithelial (HLE) cells and the possible molecular mechanisms involved. HLE cells (SRA01-04) were incubated with 50 μM H2O2 in the absence or presence of different doses of parthenolide (10, 20 and 50 μM). To study apoptosis, the cells were assessed by morphologic examination and Annexin V-propidium iodide double staining flow cytometry; to investigate the underlying molecular mechanisms, the expression of caspase-3 and caspase-9 were assayed by Western blot and quantitative RT-PCR, and the activities of caspase-3 and caspase-9 were measured by a Chemicon caspase colorimetric activity assay kit. Stimulated with H202 for 18 h, a high fraction of riLE cells underwent apoptosis, while in the presence ofparthenolide of different concentrations, dose-dependent blocking of HLE cell apoptosis was observed. The expression of caspase-3 and caspase-9 induced by H202 in HLE cells was significantly reduced by parthenolide both at the protein and mRNA levels, and the activation ofcaspase-3 and caspase-9 was also suppressed by parthenolide in a dose-dependent manner. In conclusion, parthenolide prevents HLE cells from oxidative stress-induced apoptosis through inhibition of the activation ofcaspase-3 and caspase-9, suggesting a potential protective effect against cataract formation.  相似文献   

18.
19.
20.
Oxidative stress may cause apoptosis of cardiomyocytes in ischemic-reperfused myocardium. We investigated whether ischemia-reperfusion modifies the susceptibility of cardiomyocyte induction of apoptosis by oxidative stress. Ischemia was simulated by incubating isolated cardiomyocytes from adult rats in an anoxic, glucose-free medium, pH 6.4, for 3 h. Annexin V-fluorescein isothiocyanate/propidium iodide staining and the detection of DNA laddering were used as apoptotic markers. H(2)O(2) (7.5 micromol/l) induced apoptosis in 20.1 +/- 1.8% of cells under normoxic conditions but only 14.4 +/- 1.6% (n = 6, P < 0.05) after ischemia-reoxygenation. This partial protection of ischemic-reoxygenated cells was observed despite a reduction in their cellular glutathione content, from 11.4 +/- 1.9 in normoxic controls to 2.9 +/- 0.8 nmol/mg protein (n = 3, P < 0.05). Elevation of end-ischemic glutathione contents by pretreatment with 1 mmol/l N-acetylcysteine entirely protected ischemic-reoxygenated cells against induction of apoptosis by H(2)O(2). In conclusion, ischemia-reperfusion can protect cardiomyocytes against induction of apoptosis by exogenous oxidative stress. This endogenous protective effect is most clearly demonstrated when control and postischemic cardiomyocytes are compared at similar glutathione levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号