首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract

The transport of glucose across cell membranes is mediated by a family of facilitative glucose transporters (GLUTs). The class III glucose transporters GLUT8 and GLUT12 both contain a similar [DE]XXXL[LI] dileucine sorting signal in their amino terminus. This type of dileucine motif facilitates protein trafficking to various organelles or to the plasma membrane via interactions with adaptor protein (AP) complexes. The [DE]XXXL[LI] motif in GLUT8 is thought to direct it to late endosomal/lysosomal compartments via its interactions with AP1 and AP2. Unlike GLUT8, the [DE]XXXL[LI] motif does not direct GLUT12 to a lysosomal compartment. Rather, GLUT12 resides in the Golgi network and at the plasma membrane. In a previous study, we found that exchanging the XXX (TQP) residues in GLUT8 with the corresponding residues in GLUT12 (GPN) resulted in a dramatic missorting of GLUT8 to the cell surface. We postulated that the XXX amino acids upstream of the dileucine motif in GLUT8 influence the degree of interaction between the [DE]XXXL[LI] motif and adaptor proteins. To further explore its trafficking mechanisms, we created mutant constructs to identify the role that each of the individual XXX amino acids has for regulating the intracellular sorting of GLUT8. Here we find that the XXX amino acids, specifically the position of a proline -2 from the dileucine residues, influence the affinity of APs for GLUT8 and GLUT12.  相似文献   

2.
Aminotransferases, which catalyze the last step of biosynthesis of most amino acids and the first step of their catabolism, may be involved in the growth of Lactococcus lactis in milk. Previously, we isolated two aminotransferases from L. lactis, AraT and BcaT, which are responsible for the transamination of aromatic amino acids, branched-chain amino acids, and methionine. In this study, we demonstrated that double inactivation of AraT and BcaT strongly reduced the growth of L. lactis in milk. Supplementation of milk with amino acids and keto acids that are substrates of both aminotransferases did not improve the growth of the double mutant. On the contrary, supplementation of milk with isoleucine or a dipeptide containing isoleucine almost totally inhibited the growth of the double mutant, while it did not affect or only slightly affected the growth of the wild-type strain. These results suggest that AraT and BcaT play a major role in the growth of L. lactis in milk by degrading the intracellular excess isoleucine, which is responsible for the growth inhibition. The growth inhibition by isoleucine is likely to be due to CodY repression of the proteolytic system, which is necessary for maximal growth of L. lactis in milk, since the growth of the CodY mutant was not affected by addition of isoleucine to milk. Moreover, we demonstrated that AraT and BcaT are part of the CodY regulon and therefore are regulated by nutritional factors, such as the carbohydrate and nitrogen sources.  相似文献   

3.
4.
5.
6.
7.
In spite of the many key cellular functions of chloride channels, the mechanisms that mediate their subcellular localization are largely unknown. ClC-2 is a ubiquitous chloride channel usually localized to the basolateral domain of epithelia that regulates cell volume, ion transport, and acid–base balance; mice knocked out for ClC-2 are blind and sterile. Previous work suggested that CLC-2 is sorted basolaterally by TIFS812LL, a dileucine motif in CLC-2''s C-terminal domain. However, our in silico modeling of ClC-2 suggested that this motif was buried within the channel''s dimerization interface and identified two cytoplasmically exposed dileucine motifs, ESMI623LL and QVVA635LL, as candidate sorting signals. Alanine mutagenesis and trafficking assays support a scenario in which ESMI623LL acts as the authentic basolateral signal of ClC-2. Silencing experiments and yeast three-hybrid assays demonstrated that both ubiquitous (AP-1A) and epithelium-specific (AP-1B) forms of the tetrameric clathrin adaptor AP-1 are capable of carrying out basolateral sorting of ClC-2 through interactions of ESMI623LL with a highly conserved pocket in their γ1-σ1A hemicomplex.  相似文献   

8.
The role ofintracellular pH (pHi) in regulation of AE2 function inXenopus oocytes remains unclear. We therefore compared AE2-mediated 36Cl efflux fromXenopus oocytes during imposed variation of extracellular pH(pHo) or variation of pHi at constantpHo. Wild-type AE2-mediated 36Clefflux displayed a steep pHo vs. activity curve, withpHo(50) = 6.91 ± 0.04. SequentialNH2-terminal deletion of amino acid residues in tworegions, between amino acids 328 and 347 or between amino acids 391 and510, shifted pHo(50) to more acidic values by nearly 0.6 units. Permeant weak acids were then used to alter oocytepHi at constant pHo and were shown to beneither substrates nor inhibitors of AE2-mediated Cltransport. At constant pHo, AE2 was inhibited byintracellular acidification and activated by intracellularalkalinization. Our data define structure-function relationships withinthe AE2 NH2-terminal cytoplasmic domain, which demonstratesdistinct structural requirements for AE2 regulation by intracellularand extracellular protons.

  相似文献   

9.
Many soluble plant vacuolar proteins are sorted away from secreted proteins into small vesicles at the trans-Golgi network by transmembrane cargo receptors. Cleavable vacuolar sorting signals include the NH(2)-terminal propeptide (NTPP) present in sweet potato sporamin (Spo) and the COOH-terminal propeptide (CTPP) present in barley lectin (BL). These two proteins have been found to be transported by different mechanisms to the vacuole. We examined the ability of the vacuolar cargo receptor AtELP to interact with the sorting signals of heterologous and endogenous plant vacuolar proteins in mediating vacuolar transport in Arabidopsis thaliana. AtELP extracted from microsomes was found to interact with the NTPPs of barley aleurain and Spo, but not with the CTPPs of BL or tobacco chitinase, in a pH-dependent and sequence-specific manner. In addition, EM studies revealed the colocalization of AtELP with NTPP-Spo at the Golgi apparatus, but not with BL-CTPP in roots of transgenic Arabidopsis plants. Further, we found that AtELP interacts in a similar manner with the NTPP of the endogenous vacuolar protein AtALEU (Arabidopsis thaliana Aleu), a protein highly homologous to barley aleurain. We hypothesize that AtELP functions as a vacuolar sorting receptor involved in the targeting of NTPP-, but not CTPP-containing proteins in Arabidopsis.  相似文献   

10.
Bcr-Abl, a fusion protein generated by t(9;22)(q34;q11) translocation, plays a critical role in the pathogenesis of chronic myelogenous leukemia (CML). It has been shown that Bcr-Abl contains multiple functional domains and motifs and can disrupt regulation of many signaling pathways and cellular functions. However, the role of specific domains and motifs of Bcr-Abl or of specific signaling pathways in the complex in vivo pathogenesis of CML is not completely known. We have previously shown that expression of Bcr-Abl in bone marrow cells by retroviral transduction efficiently induces a myeloproliferative disorder (MPD) in mice resembling human CML. We have also shown that the Abl kinase activity within Bcr-Abl is essential for Bcr-Abl leukemogenesis, yet activation of the Abl kinase without Bcr sequences is not sufficient to induce MPD in mice. In this study we investigated the role of Bcr sequences within Bcr-Abl in inducing MPD using this murine model for CML. We found that the NH(2)-terminal coiled-coil (CC) domain was both essential and sufficient, even though not efficient, to activate Abl to induce an MPD in mice. Interestingly, deletion of the Src homology 3 domain complemented the deficiencies of the CC-deleted Bcr-Abl in inducing MPD in mice. We further demonstrated that the Grb2 binding site at Y177 played an important role in efficient induction of MPD. These studies directly demonstrated the important roles of Bcr sequences in induction of MPD by Bcr-Abl.  相似文献   

11.
12.
13.
Unlike most mitochondrial matrix proteins, the mitochondrial 3-oxoacyl-CoA thiolase [EC 2.3.1.16] is synthesized with no cleavable presequence and possesses information for mitochondrial targeting and import in the mature protein. This mitochondrial thiolase is homologous with the mature portion of peroxisomal 3-oxoacyl-CoA thiolase and acetoacetyl-CoA thiolase [EC 2.3.1.9] of Zoogloea ramigera along the entire sequence. A hybrid gene encoding the NH2-terminal 16 residues (MALLRGVFIVAAKRTP) of the mitochondrial thiolase fused to the mature portion of rat ornithine carbamoyltransferase [EC 2.1.3.3] (lacking its own presequence) was transfected into COS cells, and subcellular localization of the fusion protein was analyzed. Cell fractionation and immunocytochemical analyses showed that the fusion protein was localized in the mitochondria. These results indicate that the NH2-terminal 16 residues of the mitochondrial thiolase function as a noncleavable signal for mitochondrial targeting and import of this enzyme protein. The fusion protein containing the NH2-terminal 14 residues (MSTPSIVIASARTA) of the bacterial thiolase was also localized in the mitochondria. On the other hand, the fusion protein containing the corresponding portion (MQASASDVVVVHGQRTP) of the peroxisomal thiolase appeared not to be localized to the mitochondria. These results show that the import signal of mitochondrial 3-oxoacyl-CoA thiolase originated from the NH2-terminal portion of the ancestral thiolase. The ancestral enzyme might have already possessed a mitochondrial import activity when mitochondria appeared first, or that it might have acquired the import activity during evolution by accumulation of point mutations in the NH2-terminal portion of the enzyme.  相似文献   

14.
15.
It has been shown for a Shaker channel (H-4) that its NH2-terminal cytoplasmic domain may form a "ball and chain" structure, with the "chain" tethering the "ball" to the channel while the "ball" capable of binding to the channel in its open state and causing inactivation. Equivalent structures have not been identified in mammalian Shaker homologues. We studied the functional role of the NH2-terminal region of a fast-inactivating mammalian K channel, RHK1 (Kv1.4), by deleting different domains in this region and examining the resultant changes in channel properties at whole cell and single channel levels. Deleting the NH2-terminal hydrophobic domain (domain A) or the subsequent positive charges (domain I) from RHK1 greatly slowed the decay of whole cell currents, suggesting the existence of a ball-like structure in RHK1 similar to that in the Shaker channel. The function of the ball appeared to be abolished by deleting domain A, while modified but maintained by deleting domain I. In the latter case, the data suggest that the positive charges needed for the function of the ball can be replaced by amino acids from a following region (domain III) that has a high positive charge density. Deleting multiple domains from the NH2 terminus of RHK1 corresponding to the chain in Shaker H-4 did not induce expected changes in channel properties that might result from a shortening of a chain. A comparison of single channel kinetics of selected mutant channels with those of the wild-type channel indicated that these deletion mutations slowed whole cell currents by prolonging burst durations and by increasing the probability of reopening during depolarization. There were no changes in single channel current amplitude or latency to first opening. In conclusion, our observations indicate that the inactivation mechanism of RHK1 is similar to that of Shaker H-4 in that a positively charged cytoplasmic domain is important for such a process. The NH2-terminal domain is not involved in channel activation or ion permeation process.  相似文献   

16.
Approximately half of the NH(2) terminus of inward rectifier (Kir) channels can be deleted without significant change in channel function, but activity is lost when more than approximately 30 conserved residues before the first membrane spanning domain (M1) are removed. Systematic replacement of the positive charges in the NH(2) terminus of Kir6.2 with alanine reveals several residues that affect channel function when neutralized. Certain mutations (R4A, R5A, R16A, R27A, R39A, K47A, R50A, R54A, K67A) change open probability, whereas an overlapping set of mutants (R16A, R27A, K39A, K47A, R50A, R54A, K67A) change ATP sensitivity. Further analysis of the latter set differentiates mutations that alter ATP sensitivity as a consequence of altered open state stability (R16A, K39A, K67A) from those that may affect ATP binding directly (K47A, R50A, R54A). The data help to define the structural determinants of Kir channel function, and suggest possible structural motifs within the NH(2) terminus, as well as the relationship of the NH(2) terminus with the extended cytoplasmic COOH terminus of the channel.  相似文献   

17.
Angiotensin II (AII) AT(1) receptor mutants with replacements of aliphatic amino acids in the distal region of helix VI and the adjoining region of the third extracellular loop (EC-3) were expressed in Chinese hamster ovary (CHO) cells to determine their role in ligand binding and activation. The triple mutant [L262D, L265D, L268D]AT(1) (L3D) showed a marked reduction in affinity for AII and for non-peptide (losartan) and peptide ([Sar(1)Leu(8) ]AII) antagonists; in functional assays using inositol phosphate (IP) accumulation, the relative potency and the maximum effect of AII were reduced in L3D. Replacement of Leu(268) (in EC-3) and Leu(262) (in the transmembrane domain) by aspartyl residues did not cause significant changes in the receptor's affinity for the ligands and in IP production. In contrast, the point mutation L265D, at helix VI, markedly decreased affinity and ability to stimulate phosphatidylinositol turnover. Molecular modeling of the AT(1) receptor based on a recent crystal structure of rhodopsin, suggests that the side chain of Leu(265) but not that of Leu(262) is facing a cleft between helices V and VI and interacts with the lipid bilayer, thus helping to stabilize the receptor structure near the Lys(199) residue of helix V in the agonist binding site which is necessary for full activity.  相似文献   

18.
Hexose transporters play a pivotal role in the absorption of food-derived monosaccharides in the gastrointestinal tract. Although a basic knowledge of the hexose transporters has already been gained, their detailed distribution and comparative intensities of expression throughout the gastrointestinal tract have not been fully elucidated. In this study, we quantitatively evaluated the expression of SGLT1, GLUT1, GLUT2, and GLUT5 by in situ hybridization and real-time PCR techniques using a total of 28 segments from the gastrointestinal tract of 9-week-old mice. GLUT2 and GLUT5 mRNA expressions were detected predominantly from the proximal to middle parts of the small intestine, showing identical expression profiles, while SGLT1 mRNA was expressed not only in the small intestine but also in the large intestine. Notably, GLUT1 mRNA was expressed at a considerable level in both the stomach and large intestine but was negligible in the small intestine. Immunohistochemistry demonstrated the polarized localization of hexose transporters in the large intestine: SGLT1 on the luminal surface and GLUT1 on the basal side of epithelial cells. The present study provided more elaborate information concerning the localization of hexose transporters in the small intestine. Furthermore, this study revealed the significant expression of glucose transporters in the large intestine, suggesting the existence of the physiological uptake of glucose in that location in mice.  相似文献   

19.
A synthetic, channel-forming peptide, derived from the alpha-subunit of the glycine receptor (M2GlyR), has been synthesized and modified by adding four lysine residues to the NH(2) terminus (N-K(4)-M2GlyR). In Ussing chamber experiments, apical N-K(4)-M2GlyR (250 microM) increased transepithelial short-circuit current (I(sc)) by 7.7 +/- 1.7 and 10.6 +/- 0.9 microA/cm(2) in Madin-Darby canine kidney and T84 cell monolayers, respectively; these values are significantly greater than those previously reported for the same peptide modified by adding the lysines at the COOH terminus (Wallace DP, Tomich JM, Iwamoto T, Henderson K, Grantham JJ, and Sullivan LP. Am J Physiol Cell Physiol 272: C1672-C1679, 1997). N-K(4)-M2GlyR caused a concentration-dependent increase in I(sc) (k([1/2]) = 190 microM) that was potentiated two- to threefold by 1-ethyl-2-benzimidazolinone. N-K(4)-M2GlyR-mediated increases in I(sc) were insensitive to changes in apical cation species. Pharmacological inhibitors of endogenous Cl(-) conductances [glibenclamide, diphenylamine-2-dicarboxylic acid, 5-nitro-2-(3-phenylpropylamino)benzoic acid, 4,4'-dinitrostilben-2,2'-disulfonic acid, indanyloxyacetic acid, and niflumic acid] had little effect on N-K(4)-M2GlyR-mediated I(sc). Whole cell membrane patch voltage-clamp studies revealed an N-K(4)-M2GlyR-induced anion conductance that exhibited modest outward rectification and modest time- and voltage-dependent activation. Planar lipid bilayer studies yielded results indicating that N-K(4)-M2GlyR forms a 50-pS anion conductance with a k([1/2]) for Cl(-) of 290 meq. These results indicate that N-K(4)-M2GlyR forms an anion-selective channel in epithelial monolayers and shows therapeutic potential for the treatment of hyposecretory disorders such as cystic fibrosis.  相似文献   

20.
Mild acid treatment of in vitro translated cytochrome P-450(SCC) (pre-P-450(SCC] peptide cleaved the peptide into two fragments. Comparison of the sizes and the NH2-terminal amino acids of the fragments with those of the corresponding fragments from mature P-450(SCC) suggested that the prepiece of pre-P-450(SCC) was present at the NH2-terminal end of the peptide. This conclusion was confirmed by radio-sequencing of the NH2-terminal portion of pre-P-450(SCC).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号