首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of phospholipids in the binding of 125I-choriogonadotropin to bovine corpus luteum plasma membranes has been investigated with the use of purified phospholipase A and phospholipase C to alter membrane phospholipids. The phospholipase C-digested plasma membrane preparation showed 85 to 90% inhibition of 125I-choriogonadotropin binding activity when 70% of the membrane phospholipid was hydrolyzed. Similarly treatment of plasma membranes with phospholipase A resulted in 45 to 55% hydrolysis of membrane phospholipid and almost 75% inhibition of receptor activity. Both these enzymes hydrolyzed membrane-associated phosphatidylcholine to a greater extent than phosphatidylethanolamine and phosphatidylserine. Phosphorylaminoalcohols of phospholiphase C end products were completely released into the medium, while phospholipase A by-products remained associated with plasma membranes. Addition of a phospholipids suspension or liposomes to plasma membranes pretreated with phospholipase A and C did not restore gonadotropin binding activity. Soluble phosphorylcholine, phosphorylethanolamine, and phosphorylserine and insoluble diglyceride products of phospholipase C action had no effect on receptor activity. In contrast, end products of the phospholipase A action, such as lysophosphatides and fatty acids, inhibited both on the membrane-associated and solubilized receptor activity. Lysophosphatidylcholine was the most effective end product inhibiting the binding of gonadotropin to the receptor, followed by lysophosphatidylethanolamine and lysophosphatidylserine. The inhibitory effects of phospholipase A or lysophosphatides were completely reversed upon removal of membrane-bound phospholipid end products by washing the membranes with defatted bovine serum albumin. However, phospholipase C inhibition could not be overcome by defatted albumin washings. Solubilization of plasma membranes with detergents which had been pretreated with phospholipase C partially restored the inhibited activity. It is concluded that the phospholipase-mediated inhibition of gonadotropin binding activity was due to hydrolysis and alterations of the phospholipid environment in the case of phospholipase C and by direct inhibition by end products in the case of phospholipase A.  相似文献   

2.
Summary The role of phospholipids in the binding of [3H] tetrodotoxin to garfish olfactory nerve axon plasma membrane was studied by the use of purified phospholipases. Treatment of the membranes with low concentrations of either phospholipase A2 (Crotalus adamanteus andNaja naja) or phospholipase C (Bacillus cereus andClostridium perfringens) resulted in a marked reduction in tetrodotoxin binding activity. A 90% reduction in the activity occurred with about 45% hydrolysis of membrane phospholipids by phospholipase A2, and with phospholipase C the lipid hydrolysis was about 60–70% for a 70–80% reduction in the binding activity. Phospholipase C fromB. cereus andCl. perfringens had similar inhibitory effects. Bovine serum albumin protected the tetrodotoxin binding activity of the membrane from the inhibitory effect of phospholipase A2 but not from that of phospholipase C. In the presence of albumin about 25% of the membrane phospholipids remained unhydrolyzed by phospholipase A2. It is suggested that these unhydrolyzed phospholipids are in a physical state different from the rest of the membrane phospholipids and that these include the phospholipids which are directly related to the tetrodotoxin binding component. It is concluded that phospholipids form an integral part of the tetrodotoxin binding component of the axon membrane and that the phospholipase-caused inhibition of the binding activity is due to effects resulting from alteration of the phospholipid components.  相似文献   

3.
I examined whether the phorbol ester-mediated inhibition of glycerol 3-phosphate dehydrogenase (GPDH) induction could be mimicked by raising the cellular diacylglycerol levels. Phorbol ester tumor promoters and diacylglycerols activate protein kinase C. An increase in radiolabeled diacylglycerol levels in C6 rat glioma cells was observed when cells were prelabeled overnight with [3H]arachidonic acid and treated with either phospholipase C (Clostridium perfringens) or 2-bromooctanoate. The increase was dose dependent. The diacylglycerols competed with [20-3H]phorbol 12,13-dibutyrate in binding to the phorbol ester receptor. A Scatchard analysis of the binding of cells treated with 0.1 unit/ml of phospholipase C demonstrated that the inhibition was mainly due to a decrease in binding affinity and not in the total number of binding sites. 2-Bromooctanoate and phospholipase C, but not the synthetic diacylglycerol 1-oleoyl 2-acetyl glycerol, inhibited the glucocorticoid induction of GPDH levels. Boiled phospholipase C, phospholipase A2, or phospholipase D was ineffective in inhibiting induction, a result suggesting that the inhibition was not due to nonspecific membrane perturbation. Thus, inhibition of the glucocorticoid-mediated increase in GPDH induction is most likely mediated by protein kinase C, and not by an alternate phorbol ester receptor.  相似文献   

4.
A protein isolated from Naja naja siamensis venom on the basis of its phospholipase A activity inhibits acetylcholine receptor function in post-synaptic membrane vesicles from Torpedo californica. Specifically, the phospholipase A prevents the large increase in sodium efflux that can normally be induced by carbamylcholine, a receptor agonist. The phospholipase A inhibition shows the following properties: 1) it occurs at concentrations 50 times lower than the concentrations required for inhibition by α-neurotoxins; 2) the phospholipase A has no effect on the binding properties of the receptor; 3) the inhibition is abolished by removal of calcium ions; and 4) some phospholipid hydrolysis accompanies inhibition. It is suggested that the phospholipase A acts enzymatically to uncouple ligand binding from ion permeability in the receptor containing membrane vesicles.  相似文献   

5.
[3H]Spiperone specific binding by microsomal membranes isolated from sheep caudate nucleus is decreased by trypsin and phospholipase A2 (Vipera russeli), but is insensitive to neuraminidase. The inhibitory effect of phospholipase A2 is correlated with phospholipid hydrolysis. After 15 min of phospholipase (5 micrograms/mg protein) treatment, a maximal effect is observed; the maximal lipid hydrolysis is about 56% and produces 82% reduction in [3H]spiperone binding. Equilibrium binding studies in nontreated and treated membranes showed a reduction in Bmax from a value of 388 +/- 9.2 fmol/mg protein before phospholipase treatment to a value of 52 +/- 7.8 fmol/mg protein after treatment, but no change in affinity (KD = 0.24 +/- 0.042 nM) was observed. Albumin washing of treated membranes removes 47% of lysophosphatidylcholine produced by phospholipid hydrolysis without recovering [3H]spiperone binding activity. However, the presence of 2.5% albumin during phospholipase A2 action (1.5 micrograms/mg protein) prevents the inhibitory effect of phospholipase on [3H]spiperone binding to the membranes, although 28% of the total membrane phospholipid is hydrolysed. Lysophosphatidylcholine, a product of phospholipid hydrolysis, mimics the phospholipase A2 effect on receptor activity, but the [3H]spiperone binding inhibition can be reversed by washing with 2.5% defatted serum albumin. Addition of microsomal lipids to microsomal membranes pretreated with phospholipase does not restore [3H]spiperone stereospecific binding. It is concluded that the phospholipase-mediated inhibition of [3H]spiperone binding activity results not only from hydrolysis of membrane phospholipids, but also from an alteration of the lipid environment by the end products of phospholipid hydrolysis.  相似文献   

6.
Treatment of neural membranes from rat cerebral cortex with phospholipase C (phosphatidylcholine cholinephosphohydrolase) inhibited the binding of radiolabelled antagonists to muscarinic acetylcholine receptors. This inhibition was incomplete, was not competitive, and did not appear to be related to the production of inhibitory products. The affinity of carbamylcholine for cortex muscarinic receptors was increased by phospholipase C action. The distribution of receptors between states of high and low affinity was not affected by phospholipase C; rather, the affinity for carbamylcholine of the lowest affinity receptors was selectively increased. This suggests that membrane lipids influence the interaction of the receptor binding subunit with other structures in the synaptic membrane.  相似文献   

7.
This study was undertaken to explore putative regulatory mechanisms involved in the inhibition of nuclear T3 binding (INB) by fatty acids. Ether extracts of intact rat liver nuclei contained INB-activity. Removement of the nuclear membrane resulted in the loss of INB-activity of the nuclei. Incubation of intact nuclei with phospholipase A2 increased nuclear INB-activity in a time- and dose-dependent manner; this was correlated with a rise of free fatty acid concentration in the ether extract. We conclude that fatty acids present in the nuclear membrane can be released by phospholipase A2, and are capable of inhibiting nuclear T3 binding.  相似文献   

8.
The role of membrane phospholipids in enkephalin receptor-mediated inhibition of adenylate cyclase (EC 4.6.1.1) activity in neuroblastoma X glioma NG108-15 hybrids was studied by selective hydrolysis of lipids with phospholipases. When NG108-15 cells were treated with phospholipase C from Clostridium welchii at 37 degrees C, an enzyme concentration--dependent decrease in adenylate cyclase activity was observed. The basal and prostaglandin E1 (PGE1)-stimulated adenylate cyclase activities were more sensitive to phospholipase C (EC 3.1.4.3) treatment than were the NaF-5'-guanylylimidodiphosphate (Gpp(NH)p)-sensitive adenylate cyclase activities. Further, Leu5-enkephalin inhibition of basal or PGE1-stimulated adenylate cyclase activity was attenuated by phospholipase C treatment, characterized by a decrease of enkephalin potency and of maximal inhibitory level. [3H]D-Ala2-Met5-enkephalinamide binding revealed a decrease in receptor affinity with no measurable reduction in number of binding sites after phospholipase C treatment. Although opiate receptor was still under the regulation of guanine nucleotide after phospholipase C treatment, adenylate cyclase activity was more sensitive to the stimulation of Gpp(NH)p. Thus, the reduction of opiate agonist affinity was not due to the uncoupling of opiate receptor from N-component. Further, treatment of NG108-15 hybrid cell membrane with phospholipase C at 24 degrees C produced analogous attenuation of enkephalin potency and efficacy without alteration in receptor binding. The reduction in enkephalin potency could be reversed by treating NG108-15 membrane with phosphatidylcholine, but not with phosphatidylserine, phosphatidylinositol, or cerebroside sulfate. The enkephalin activity in NG108-15 cells was not altered by treating the cells with phospholipase A2 o phospholipase C from Bacillus cereus. Hence, apparently, there was a specific lipid dependency in enkephalin inhibition of adenylate cyclase activity.  相似文献   

9.
The ability of bovine corpus luteum plasma membranes to bind 125I-choriogonadotropin has been examined after prior treatment of the membranes with phospholipases A, C, and D. Treatment of the purified membranes with low concentrations of phospholipases A and C resulted in the inhibition of the binding of 125I-choriogonadotropin to its receptors, whereas phospholipase D had no effect. Receptor activity was decreased by low concentrations of phospholipase A from either bee venom, Vipera russelli or Crotalus terrificus terrificus. Similarly, low concentrations of phospholipase C from Clostridium perfringens and Clostridium welchii also inhibited the binding activity while comparatively higher concentrations of phospholipase C from Bacillus cereus were required to achieve comparable inhibition. The time required to produce 50% inhibition of in vitro binding by phospholipases A and C was found to be 6 and 23 min, respectively. Upon either removal or chelation of calcium ions by ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid (EGTA) both enzymes were completely inhibited as evidenced by the complete retention of the membrane binding activity. The decrease in the specific binding of choriogonadotropin to membranes after phospholipase digestion resulted in a decrease in the number of binding sites and was not accompanied by a change in the affinity of the hormone-receptor complex. The rates of association and dissociation of the 125I-choriogonadotropin-receptor complex and the equilibrium dissociation constant (Kd) were nearly identical in untreated and phospholipase-treated membranes. Phospholipases did not have any effect on the preformed hormone-receptor complex or on solubilized receptor. Filtration through Sepharose 6B of solubilized 125I-choriogonadotropin-receptor complex from untreated membranes or membranes which had been pretreated with phospholipase C prior to carrying out hormone binding did not alter the profile (Kav 0.38). Gel filtration of membranes treated with phospholipase A showed two peaks of bound radioactivity with distribution coefficients (Kav) of 0.08 and 0.35, respectively.  相似文献   

10.
There are conflicting data in the literature as to whether or not the Ca2+ activation of phospholipase A2 is mediated by the calcium binding protein calmodulin. In the present study the membrane-bound phospholipase A2 enzymes in rat and human platelets were shown to be absolutely Ca2+ dependent but were not stimulated by the addition of calmodulin. A partially purified phospholipase A2 from rat platelet membrane, which contained little endogenous calmodulin, also was not stimulated by calmodulin addition. Both isolated and membrane-bound phospholipase A2 were inhibited by the non-specific calmodulin antagonist trifluoperazine but the inhibition was not overcome by adding calmodulin. There was thus no evidence from these studies that phospholipase A2 is calmodulin regulated.  相似文献   

11.
The relationship between Fc receptor specific for IgG2b (Fc gamma 2bR) and membrane adenylate cyclase was investigated. The specific binding of IgG2b immune complexes to P388D1 cell surface Fc gamma 2bR was found to inhibit the basal, forskolin-stimulated, and NaF-stimulated activities of membrane adenylate cyclase by 53%, 57%, and 31%, respectively. On the other hand, the binding of IgG2a immune complexes to cell surface Fc gamma 2aR increased the basal activity about 2.5-fold and the forskolin- and NaF-stimulated activities slightly. The fusion of liposomes containing Fc gamma 2bR, which was obtained as phosphatidylcholine (PC) binding protein as previously described, with the cyc- membrane preparations resulted in the marked suppression of membrane adenylate cyclase, whereas the fusion of liposomes containing Fc gamma 2a, which was obtained as IgG-binding protein, led to about a 2.7-fold increase. The Fc gamma 2bR-mediated inhibition of adenylate cyclase may be due to the temporary change of the lipid environment caused by the action of phospholipase A2, which was previously shown to be associated with Fc gamma 2bR, since (1) addition of snake venom phospholipase A2 or cholate-solubilized PC-binding protein to P388D1 membrane was found to inhibit adenylate cyclase in a dose-dependent manner, (2) prior treatment of snake venom phospholipase A2 or PC-binding protein with a specific inhibitor, p-bromophenacyl bromide, significantly reduced their inhibitory action, and (3) a product of phospholipase A2 action, arachidonic acid, was found to be an effective inhibitor of membrane adenylate cyclase, whereas the other product, lysophosphatidylcholine, was much less inhibitory than arachidonic acid. Arachidonic acid appeared to interfere with the functions of both guanine nucleotide-binding stimulatory (Gs) protein and the catalytic subunit of adenylate cyclase, since exogenously added arachidonic acid significantly suppressed the GTPase activity of P388D1 membrane and the forskolin response of the adenylate cyclase activity of Gs protein deficient cyc- membrane. The primary site of action of lysophosphatidylcholine is not clear but may be other than Gs protein and/or the catalytic subunit, since it did not change either GTPase activity of P388D1 membrane or the response to forskolin of adenylate cyclase of cyc- membrane. The Fc gamma 2bR/phospholipase A2 mediated inhibition of adenylate cyclase would be a transient event in viable cells, since phospholipase A2 did not inhibit adenylate cyclase in the presence of microsomal fraction, mitochondria, and coenzyme A, suggesting the occurrence of rapid acylation of CoA and reacylation of lysolecithin.  相似文献   

12.
The effect of phospholipase C treatment on the binding activity of the Fc receptor of guinea pig macrophage was studied to analyze the interaction of the Fc receptor with membrane phospholipids necessary for the activity. It was confirmed by subcellular fractionation that the receptor is localized on the plasma membrane. Treatment of the whole cell or isolated plasma membrane with phospholipase C of Clostridium perfringens diminished the binding of soluble IgG2-immune complex to Fc receptors on the cell or membrane. On the other hand, phospholipase C of Bacillus cereus did not affect the activity when it acted on the whole cell but it did diminish the activity when it acted on the isolated plasma membrane. Analysis of the phospholipids of untreated and treated macrophages or plasma membrane showed that phosphatidylcholine molecules, particularly those located in the membrane (not accessible to attack from the cell surface by phospholipase C of B. cereus), appear to be crucial for efficient interaction of macrophage Fc receptors with immune complex. Ligand-binding experiments with macrophages showed that the diminished binding activity was due to a decrease of the avidity for immune complex, but did not seem to be due to a decrease in the number or affinity of Fc receptors for monomeric IgG2. Taken together with the previous results which demonstrated that Fc receptors which had apparently lost the activity due to delipidation could be reconstituted with phosphatidylcholine but not with most other phospholipids, the results seem to indicate that the diminution of the binding activity to the immune complex of macrophage or its plasma membrane caused by phospholipase C treatment is due to the impairment of multivalent interaction between Fc receptor molecules on the membrane and IgG2 molecules in the immune complex, probably as a result of the loss of interaction of the head groups of phospholipids with Fc receptor molecules and the change in membrane properties resulting from the increase of diglycerides.  相似文献   

13.
[3-H]Epinephrine binding to isolated purified rat liver plasma membranes is a reversible process. An initial peak in binding occurs at about 15 min and a plateau occurs by 50 min. Optimal binding occurred at a membrane protein concentration of 125mug. Rat liver plasma membranes stored at-70 degrees C up to 4 weeks showed no difference in epinephrine binding capacity as compared to control fresh membranes. Epinephrine binding to liver plasma membranes was decreased by 79% by phospholipase A2 (phosphatide acylhydrolase EC 3.1.1.4), 81% by phospholipase C (phosphatidylcholine choline phosphohydrolase EC 3.1.4.3) and 59% by phospholipase D (phosphatidylcholine phosphatidohydrolase EC 3.1.4.4). Trypsin and pronase digestion of the membrane decreased epinephrine binding by 97 and 47% respectively. In the presence of 10-3M Mg-2+ ions, increasing concentrations of QTP decreased epinephrine binding to liver plasma membranes. A maximal effect was demonstrated with 10-5M GTP, representing an inhibition of 52% of the control. In a Mg-2+ -free system, epinephrine binding was unaffected by GTP. However, in a Mg-2+ -free system, increasing concentrations of ATP cause increasing inhibition of hormone binding. ATP at 10-3 M reduced epinephrine binding to 28% of the control. GRP (10-5 M) was shown to inhibit epinephrine uptake rather than epinephrine release from the membrane. [3-H]Epinephrine binding to isolated rat epididymal fat cells shows an initial peak within 5 min followed by a gradual rise which plateaus after 60 min. Epinephrine binding increased nearly linearly with increasing fat cell protein concentration (40-200 mug protein). GTP (10-5 M) and ATP (10-4 M) decreased epinephrine binding to rat epididymal fat cells by 41%. Nearly complete inhibition of binding was demonstrated with 10-2-10-3M ATP. Epinephrine analogs that contain two hydroxyl groups in the 3 and 4 position on the benzene ring act as inhibitors of [3-H]epinephrine binding to rat adipocytes. Alteration of the epinephrine side chain has relatively little influence on binding. Analogs in which one of the ring hydroxyl groups is missing or methylated are poor inhibitors of [3-H]epinephrine binding. Alpha-(phentolamine and phenoxybenzamine) and beta-(propranolol and dichorisoproterenol) adrenergic blocking agents were tested with respect to their ability to influence [3-H]epinephrine binding and their influence on epinephrine-stimulated lipolysis. Only dichloroisoproterenol significantly inhibited epinephrine binding (by 25%). The two beta-adrenergic blocking agents caused an inhibition of epinephrine-stimulated glycerol release, with propranolol being most effective. Phentolamine and phenoxybenzamine had no significant effect on the epinephrine stimulation of glycerol release by fat cells.  相似文献   

14.
Thermal perturbation techniques have been used to probe structural alteration of the nicotinic acetylcholine receptor as a function of perturbations of its native membrane environment. Differential scanning calorimetry and a technique involving heat inactivation of the alpha-bungarotoxin-binding sites on the receptor protein reveal that there is a profound destabilization of the acetylcholine receptor structure when receptor-containing membranes are exposed to phospholipase A2. The characteristic calorimetric transition assigned to irreversible denaturation of the receptor protein and the heat inactivation profile of alpha-bungarotoxin-binding sites are shifted to lower temperatures by approx. 7 and 5 C degrees, respectively, upon exposure to phospholipase A2 at a phospholipase/neurotoxin binding site molar ratio of about 1:100. The effects of phospholipase A2 on receptor structure can be (i) reversed by using bovine serum albumin as a scavenger of phospholipase hydrolysis products of membrane phospholipids, and (ii) stimulated by incorporation into the membranes of free, polyunsaturated fatty acids. In particular, linolenic acid (18:3(n-3] causes detectable destabilization of the alpha-bungarotoxin binding sites on the receptor at free fatty acid/receptor molar ratios as low as 10:1. Furthermore, alteration of receptor structure by added phospholipase occurs very rapidly, which is consistent with the observation of rapid in situ phospholipase A2 hydrolysis of membrane phospholipids, particularly highly unsaturated phosphatidylethanolamine and phosphatidylserine. Based on previously published data on the inhibition of acetylcholine receptor cation-gating activity caused by the presence of either phospholipase A2 or free fatty acids (Andreasen T.J. and McNamee M.G. (1980) Biochemistry 19, 4719), we interpret our data as indicative of a correlation between structural and functional alterations of the membrane-bound acetylcholine receptor induced by phospholipase A2 hydrolysis products.  相似文献   

15.
M E Goldman  J J Pisano 《Life sciences》1985,37(14):1301-1308
Phospholipase A2 from several sources inhibited [3H]nitrendipine binding to membranes from brain, heart and ileal longitudinal muscle. The enzymes from bee venom and Russell's viper venom were most potent, having IC50 values of approximately 5 and 14 ng/ml, respectively, in all three membrane preparations. Inhibition of binding by bee venom phospholipase A2 was time- and dose-dependent. Mastoparan, a known facilitator of phospholipase A2 enzymatic activity, shifted the bee venom phospholipase A2 dose-response curve to the left. Pretreatment of brain membranes with bee venom phospholipase A2 (10 ng/ml) for 15 min caused a 2-fold increase in the Kd without changing the Bmax compared with untreated membranes. Extension of the preincubation period to 30 min caused no further increase in the Kd but significantly decreased the Bmax to 71% the value for untreated membranes. [3H]Nitrendipine, preincubated with bee venom phospholipase A2, was recovered and found to be fully active, indicating that the phospholipase A2 did not modify the ligand. It is concluded that phospholipase A2 acts on the membrane at or near the [3H]nitrendipine binding site and that phospholipids play a key role in the interactions of 1,4 dihydropyridine calcium channel antagonists with the dihydropyridine binding site.  相似文献   

16.
The gonadotropin receptors associated with plasma membrane fractions were solubilized by detergents, including Triton X-100, Lubrol WX, Lubrol PX and sodium deoxycholate before and after equilibration with 125I-labelled human chorionic gonadotropin. The binding activity remained in solution even after centrifugation at 300 000 X g for 3 h. The solubilized gonadotropin receptor or gonadotropin receptor complex was characterized by gel filtration and sucrose density gradient centrifugation. Sucrose density gradient centrifugation of solubilized gonadotropin-receptor complex in the presence of Triton X-100 had a sedimentation coefficient of 6.5 S whereas the solubilized uncomplexed receptor had a sedimentation coefficient of 5.1 S. In the absence of the detergent, solubilized hormone receptor complex from plasma membrane fractions I and II sedimented with an apparent sedimentation coefficient of 6.6 S and 7.4 S, respectively. Similarly, the free receptor also showed higher sedimentation profile with an apparent sedimentation coefficient of 6.7 S for fraction I and 7.2 S for fraction II. Treatment of plasma membranes with phospholipase A and C inhibited the binding of 125I-labelled human chorionic gonadotropin in a dose dependent manner, whereas phospholipase D was without any effect. Doses of 1.4 mI. U. of phospholipase A or 0.6 mI.U. of phospholipase C were required to produce 50% inhibition of the binding activity. These phospholipases had no effect on the preformed 125I-labelled human chorionic gonadotropin-receptor complex nor on the sedimentation profile of solubilized gonadotropin receptor complex.  相似文献   

17.
An acidic phospholipase A2 (EC 3.1.1.4) isolated from Naja naja siamensis venom blocks acetylcholine receptor function in excitable post synaptic membrane vesicles from Torpedo californica electroplax. Specifically, the phospholipase acts catalytically to prevent the large increase in sodium efflux induced by carbamylcholine. The efflux inhibition can be correlated with specific hydrolysis of phospholipids in the membrane. During the time course of inhibition, the binding affinity of the receptor for carbamylcholine increases 10-fold, a phenomenon associated with receptor desensitization. Prolonged treatment of the membranes with phospholipase A2 causes nonspecific lysis of the vesicles. Incorporation of unsaturated fatty acids or lysophosphatidylcholine into Torpedo membranes also blocks carbamylcholine-induced sodium efflux. The fatty acids have no effect on the binding affinity of the receptor, and lysophosphatidylcholine causes a small decrease in receptor affinity for carbamylcholine. Lysophosphatidylethanolamine and most saturated fatty acids have no direct effect on sodium efflux, but the lysophosphatides cause vesicle lysis. All of the inhibitory effects of the phospholipase and the fatty acids can be reversed and/or prevented by treatment of the vesicles with bovine serum albumin.  相似文献   

18.
The phospholipid composition of the electron transport particles and coupling factor-depleted electron transport particles of Mycobacterium phlei are the same, but they differ in contents. The accessibility of partially purified phospholipase A to these membrane phospholipids was found to be different. Treatment of membranes of Mycobacterium phlei with phospholipase A impairs the rate of oxidation as well as phosphorylation. The inhibition of phosphorylation can be reversed by washing the membranes with defatted bovine serum albumin. The reconstitution of membrane-bound coupling factor-latent ATPase activity to phospholipase A-treated depleted electron transport particles and their capacity to couple phosphorylation to oxidation of substrates remained unaffected after phospholipase A treatment. However, the pH gradient as measured by bromthymol blue was not restored after reconstitution of phospholipase A-treated depleted electron transport particles with membrane-bound coupling factor-latent ATPase. These findings show that the phosphorylation coupled to the oxidation of substrates can take place without a pronounced pH gradient in these membrane vesicles. The dye 1-anilino-8-naphthalene sulfonic acid (ANS) exhibited low levels of energized and nonenergized fluorescence in phospholipase A-treated membranes. This decrease in the level of ANS fluorescence in phospholipase A-treated membranes was found to be directly related to the amount of phospholipids cleaved. The decrease in the energy-dependent ANS response in phospholipase A-treated electron transport particles, as compared with untreated electron transport particles, was shown to be a result of a change in the apparent K-d of the dye-membrane complex, and of a decrease in the number of irreversible or slowly reversible binding sites, with no change in the relative quantum efficiency of the dye. The decrease in ANS fluorescence in phospholipase A-treated particles appears to be due to a decrease in the hydrophobicity of the membranes.  相似文献   

19.
There are several bacterial polysaccharides (PSs) which contain a terminal lipid moiety. It has been postulated that these terminal lipid moieties anchor the PSs to the outer membrane of the bacteria. Our studies have shown that incubation of native PS from group C Neisseria meningitidis or Haemophilus influenzae type b with isolated outer membrane vesicles results in association of a portion of the PS with the vesicles. Removal of the terminal lipid from the PS by treatment with phospholipase A2 or phospholipase D eliminates this association. In other studies, it was shown that delipidated PSs are not suitable as solid-phase antigens in a currently used enzyme-linked immunosorbent assay (ELISA). Measurement of antibody units in the reference sera by using delipidated PSs as antigens in an ELISA yielded negligible absorbance compared with native PSs when methylated human serum albumin was used to coat the PSs to the plate. Nevertheless, phospholipase A2 and phospholipase D treatment did not noticeably affect antigenic epitopes, since soluble group C PS without the terminal lipid bound antibody as effectively as the native PS did, as measured by a competitive inhibition assay. Both hydrophobic and electrostatic interactions are important for the binding of group C N. meningitidis PS to the ELISA plate, while charge interactions seem to be sufficient for binding the more negatively charged H. influenzae type b PS.  相似文献   

20.
Suramin is a polysulphonated naphthylurea with inhibitory activity against the human secreted group IIA phospholipase A(2) (hsPLA2GIIA), and we have investigated suramin binding to recombinant hsPLA2GIIA using site-directed mutagenesis and molecular dynamics (MD) simulations. The changes in suramin binding affinity of 13 cationic residue mutants of the hsPLA2GIIA was strongly correlated with alterations in the inhibition of membrane damaging activity of the protein. Suramin binding to hsPLA2GIIA was also studied by MD simulations, which demonstrated that altered intermolecular potential energy of the suramin/mutant complexes was a reliable indicator of affinity change. Although residues in the C-terminal region play a major role in the stabilization of the hsPLA2GIIA/suramin complex, attractive and repulsive hydrophobic and electrostatic interactions with residues throughout the protein together with the adoption of a bent suramin conformation, all contribute to the stability of the complex. Analysis of the hsPLA2GIIA/suramin interactions allows the prediction of the properties of suramin analogues with improved binding and higher affinities which may be candidates for novel phospholipase A(2) inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号