首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Functional reconstitution of rat liver cytochrome P-450 with mesohemin   总被引:1,自引:0,他引:1  
After allylisopropylacetamide-mediated "suicide" destruction of their prosthetic heme moieties, certain rat liver cytochrome P-450 isozymes can be effectively reconstituted by addition of exogenous hemin in vitro. We now report that two of these isozymes will equally accept mesohemin , a 2,4-diethyl heme-analog and result in a "meso-hemoprotein" with altered spectral but not functional characteristics.  相似文献   

2.
Spectrophotometric, affinity chromatography and cross-linking experiments provided evidence that cytochrome P-450scc from bovine adrenocortical mitochondria forms a tight complex with cytochrome b5 from rabbit liver microsomes. In the reconstituted system cholesterol side chain activity of cytochrome P-450scc was enhanced by the addition of cytochrome b5.  相似文献   

3.
Is cytochrome P-450scc a transmembrane protein?   总被引:1,自引:0,他引:1  
The topology of cytochrome P-450scc in the inner mitochondrial membrane of adrenal cortex has been investigated using monospecific antibodies to cytochrome P-450scc and its fragments F1 (Ile1-Arg250), F2 (Asn257-Ala481) and F3 (Asn257-Arg399). Antibodies to F1 and F2 were shown to effectively bind to the matrix and cytosolic sides of the inner membrane. Antibodies to F3 specifically interacted only with the matrix side of the membrane. These data are consistent with a model of molecular organization which shows that cytochrome P-450scc is a transmembrane protein, both N- and C-terminal sequences of the cytochrome being able to span the membrane.  相似文献   

4.
5.
Selective chemical modification of adrenocortical cytochrome P-450scc, responsible for key stages of steroid biogenesis, with tetranitromethane has been carried out. Nitration of the cytochrome P-450scc tyrosine residues results in heme protein inactivation with syncatalytic loss of enzyme activity. Analysis of the cytochrome P-450scc inactivation kinetics indicates that there are several pools of tyrosine residues, differing in their accessibility to tetranitromethane. The modification of cytochrome P-450scc results in changes in the hemeprotein spectral properties and its conformation which indicates to the involvement of essential tyrosine residue(s) in the heme-protein interaction. Cholesterol and adrenodoxin (high-spin effectors) prevent the inactivation of cytochrome P-450scc with tetranitromethane, i.e., protect the essential tyrosine residue(s) from modification. Possible functions of the tyrosine residues in the cytochrome P-450scc molecule are discussed.  相似文献   

6.
Cytochrome P-450scc (P-450 XIA1) from bovine adrenocortical mitochondria was investigated using a suicide substrate: [14C]methoxychlor. [14C]Methoxychlor irreversibly abolished the activity of the side-chain cleavage enzyme for cholesterol (P-450scc) and the inactivation was prevented in the presence of cholesterol. The binding of [14C]methoxychlor and cytochrome P-450scc occurred in a molar ratio of 1:1 and the cholesterol-induced difference spectrum of cytochrome P-450scc was similar with the methoxychlor-induced difference spectrum. [14C]Methoxychlor-binding peptides were purified from tryptic-digested cytochrome P-450scc modified with [14C]methoxychlor. Determination of the sequence of the amino-acid residues of a [14C]methoxychlor-binding peptide allowed identification of the peptide comprising the amino-terminal amino-acid residues 8 to 28.  相似文献   

7.
Cytochrome P-450scc (P-450scc), a cholesterol side-chain cleavage enzyme from bovine adrenocortical mitochondria, has been crystallized for the first time. Upon removal of glycerol from the solution of the native enzyme complexed with pyridoxal 5'-phosphate (PLP) by microdialysis against distilled water, reddish and planar crystals appeared. The crystals of native P-450scc were also obtained by the same procedure. We identified the crystals as the P-450scc-PLP complex or native P-450scc by absorption spectroscopy and SDS-polyacrylamide gel electrophoresis, and characterized them under a polarization microscope.  相似文献   

8.
The interaction of cholesterol with phospholipids has been studied with a variety of techniques; however, the possible consequences of such interactions in vivo have not been demonstrated. In this study, the cholesterol-dependent absorbance spectrum of cytochrome P-450scc was used to monitor cholesterol availability in both micellar and vesicular environments. By use of this approach, in conjunction with titration of putative cholesterol binding species, a tight, approximately equimolar complex of cholesterol and digitonin was demonstrated. Sphingomyelin (SM) (both the synthetic N-palmitoyl and bovine brain forms) gave sigmoidal titration curves, suggesting a cooperative interaction between this lipid and cholesterol. The interaction of bovine brain glycerolipids and cholesterol was weaker than that of SM and showed no cooperativity. The importance of the phospholipid head group in these interactions was established by the differences in the ability of synthetic 1-palmitoyl-2-oleoylphosphatidylcholine, -phosphatidylethanolamine, and -phosphatidylserine to affect cholesterol availability. Comparison of these results with those of the bovine brain phospholipids indicates that the acyl chain composition of these molecules is also important to these interactions. Titrations of SM in phospholipid vesicles containing cytochrome P-450scc and different types of phosphatidylcholine established that the SM-cholesterol interactions also occur in a bilayer membrane. This study demonstrates that the association of cholesterol with cytochrome P-450scc is inhibited by concentrations of SM commonly found in biological membranes. Therefore, such cholesterol-lipid interactions can potentially affect the function of membrane enzymes.  相似文献   

9.
The cholesterol analogue 25-doxyl-27-nor-cholesterol (CNO), was found to be a substrate for cytochrome P-450scc. Upon incubation with the cytochrome P-450scc electron transfer system, CNO is transformed to pregnenolone (Km = 33 microM, Vmax = 0.32 min-1). The pregnenolone formation from endogenous cholesterol is strongly inhibited by CNO (50% at 5 microM). It binds tightly to cytochrome P-450scc as evidenced by a reversed type I spectral absorbance change (Kd = 5.9 microM) which is paralleled by a greater hyperfine splitting of the room-temperature CNO ESR spectrum due to an enhanced probe immobilization (Kd = 1.9 microM). This finding is in accord with a rotational correlation time of about 10(-7) s, which is close to the tumbling rate of the protein. At 110 K the CNO-bound cytochrome P-450scc displays the ESR g-values gx = 2.404/2.456, gy = 2.245 and gz = 1.916; these are different from those of cholesterol-liganded cytochrome P-450scc and may thus serve as a marker for cytochrome P-450scc. Our data indicate that the stereospecificity of the cytochrome P-450scc side-chain-cleaving activity is not dependent on the nature of the cholesterol side-chain termination (C25 to C27). The substrate binding site is however rather sensitive to a modification of the side chain. The doxyl ring confers a stronger affinity of the substrate to the enzyme. Upon binding it becomes embedded in the protein matrix, and we estimate that its final position is 0.6-1.0 nm from the heme moiety.  相似文献   

10.
Covalent modification of cytochrome P-450scc (purified from bovine adrenocortical mitochondria) with pyridoxal 5'-phosphate (PLP) was found to cause inhibition of the electron-accepting ability of this enzyme from its physiological electron donor, adrenodoxin, without conversion to the "P-420" form. Reaction conditions leading to the modification level of 0.82 and 2.85 PLP-Lys residues per cytochrome P-450scc molecule resulted in 60% and 98% inhibition, respectively, of electron-transfer rate from adrenodoxin to cytochrome P-450scc (with beta-NADPH as an electron donor via NADPH-adrenodoxin reductase and with phenyl isocyanide as the exogenous heme ligand of the cytochrome). It was found that covalent PLP modification caused a drastic decrease of cholesterol side-chain cleavage activity when the cholesterol side-chain cleavage enzyme system was reconstituted with native (or PLP-modified) cytochrome P-450scc, adrenodoxin, and NADPH-adrenodoxin reductase. Approximately 60% of the original enzymatic activity of cytochrome P-450scc was protected against inactivation by covalent PLP modification when 20% mole excess adrenodoxin was included during incubation with PLP. Binding affinity of substrate (cholesterol) to cytochrome P-450scc was found to be increased slightly upon covalent modification with PLP by analyzing a substrate-induced spectral change. The interaction of adrenodoxin with cytochrome P-450scc in the absence of substrate (cholesterol) was analyzed by difference absorption spectroscopy with a four-cuvette assembly, and the apparent dissociation constant (Ks) for adrenodoxin binding was found to be increased from 0.38 microM (native) to 33 microM (covalently PLP modified).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Molecular modeling of the 3-D structure of cytochrome P-450scc.   总被引:1,自引:0,他引:1  
Sequence-alignment studies of the bovine mitochondrial cholesterol side-chain cleavage enzyme cytochrome P-450scc with the bacterial cytochrome P-450cam (camphor hydroxylating enzyme) have been undertaken. Our novel alignment of the sequences revealed 69 identical residues and many highly conserved regions. The results of the sequence alignment studies were used to model the 3-D structure of P-450scc based on the available crystal structure of P-450cam. The major insertions in the sequence are found mainly on four external-loop regions of the molecule, while the core structure of P-450cam is retained with subtle internal modifications. The most hydrophobic of these four external loops is proposed as a candidate for membrane attachment.  相似文献   

12.
Highly purified beef adrenal cytochrome P-450 specific for cholesterol side chain cleavage (P-450-scc) has been reconstituted with sonicated vesicles containing cholesterol and either dimyristoyl phosphatidylcholine (DMPC) or dioleoyl phosphatidylcholine (DOPC). When cholesterol was present in DMPC vesicles at 1:15 molar ratio, cardiolipin and L-alpha-phosphatidylinositol 4-monophosphate (DPI) increased side chain cleavage by at least 5-fold (0.7 min-1-3.5 min-1). In DOPC vesicles, a smaller increase was observed (2.8 min-1-5.0 min-1). Activator phospholipids increased the rate of transference of cholesterol both to and from the cytochrome when, respectively, cholesterol-free P-450scc and cholesterol-P-450scc complex are combined with either DMPC or DOPC vesicles. Transfer of cholesterol to and from cytochrome P-450 occurred with similar first order rate constants and was also independent of the concentrations of cholesterol vesicles and P-450. It is suggested that transfer in both directions is limited by the rate of insertion of P-450scc into the membrane. Phospholipid stimulatory effects for both cholesterol transfer and for activation of side chain cleavage occurred with the same ranking, even though cholesterol transfer, following reconstitution, was 5-10 times slower than the turnover of side chain cleavage. DPI increased Vmax for side chain cleavage in both DMPC and DOPC vesicles to the same rate (12 min-1) without effect on the Km for cholesterol, while cardiolipin both produced a similar increase in Vmax and decreased Km (cholesterol). This activation by DPI is attributed to more favorable incorporation of P-450scc in these membranes and is consistent with previously reported effects of acidic phospholipids on other mitochondrial proteins.  相似文献   

13.
The intramolecular site of P-450scc for conversion of cholesterol to pregnenolone involves a substrate site, an active site, and a site for transmission of electrons. The substrate site was studied with a high-affinity, high-potency nitroxide spin-labeled inhibitor of cholesterol side-chain cleavage. This substance, 17 alpha-hydroxy-11-deoxycorticosterone nitroxide (SL-V), has an affinity comparable to that of the most active substrate inhibitors ever reported and 2-50 times greater than that of the natural substrate cholesterol. Competition experiments with cholesterol and its analogues confirmed that SL-V binds reversibly to the substrate site. Titration experiments showed a single binding site on the P-450 molecule. The substrate site is on the apoprotein and has little or no direct interaction with the heme. Spin-spin interactions between the Fe3+ and side-chain or A-ring spin-labeled groups could not be demonstrated, which is consistent with carbons 22 and 20 being closest to the heme iron. We postulate that substrate disrupts a histidine nitrogen coordination with the heme iron and induces conformational changes in the apoprotein. These changes lead to increased affinity for iron-sulfur protein.  相似文献   

14.
Primary cultures of glial cells from newborn rat forebrain were tested after 3 to 4 weeks. Oligodendrocytes and astrocytes were characterized by immunofluorescence with monoclonal antibodies to galactocerebroside and glial fibrillary acidic protein, respectively. The cytoplasm of oligodendrocytes was specifically and intensely immunostained with monospecific polyclonal antibodies to the cytochrome P-450scc involved in the synthesis of pregnenolone from cholesterol. This observation brings additional support to the concept of "neurosteroids".  相似文献   

15.
Cytochrome P-450scc (cholesterol side-chain cleavage enzyme) was purified from porcine adrenocortical mitochondria. 2. The purified cytochrome P-450scc was found to be homogeneous on SDS-polyacrylamide gel electrophoresis. 3. The heme content of the purified enzyme was 20.6 nmol/mg protein. 4. The enzymatic activity of the reconstituted cytochrome P-450scc-linked monooxygenase system amounted to 7.8 nmol of pregnenolone formed per nmole of P-450 per minute, with cholesterol as a substrate. 5. The amino acid sequence of the amino-terminal region of the cytochrome P-450scc and the amino acid residue at the carboxyl terminal were determined and compared with those of other mammalian cytochromes P-450scc.  相似文献   

16.
Apoprotein formation and heme reconstitution of cytochrome P-450cam   总被引:1,自引:0,他引:1  
Apoprotein suitable for heme reconstitution has been prepared by an acid/butanone extraction of cytochrome P-450cam at pH 2.5. Absorption spectra of apo-P-450cam indicate less than 2% residual holoenzyme. Four tryptophan residues per molecule were estimated from the aromatic absorbance region of denatured apoprotein. Heme-reconstituted holoprotein was purified in 30% yield to a specific activity equivalent to the native enzyme. Absorption and EPR spectra of 57Fe- and 54Fe-heme-enriched P-450cam reveal complete restoration of the native active site.  相似文献   

17.
A highly purified (12 nmol of P-450-heme per milligram of protein) bovine adrenal cortex mitochondrial cytochrome P-450, termed P-450sce, which cleaves the side chain of cholesterol to yield pregnenolone, is obtained in the substrate-bound ferric form with observed absorption maxima at 393 nm and 645 nm and a shoulder around 540 nm. The absorption spectra of the P-450scc, whether in the substrate-bound ferric form or in the CO-complexed ferrous form, are subject to environmental perturbation. The addition of adrenal ferredoxin readily restores full ferric high spin type spectrum of the substrate-bound P-450scc or, together with cholesterol and Tween 20, restores the CO-spectrum of the P-450scc, exhibiting stable and typical spectra of cytochrome P-450. Tween 20, at concentration of 0.3%, remarkably increases the P-450scc-catalyzed cholesterol side chain cleavage activity. Based on these findings, a highly reactive and reliable assay has been developed for the conversion of cholesterol to pregnenolone. The specific activity of the P-450scc, thus determined in the presence of NADPH, NADPH:adrenal ferredoxin oxidoreductase (EC 1.6.7.1), adrenal ferredoxin, cholesterol, and molecular oxygen, is 16 mol of pregnenolone formed per minute per mole of P-450-heme and V of enzyme catalyzed reaction was 30 mol/min/mol of P-450-heme. Apparent Km values are 120 μm for cholesterol and 1.5 μm for adrenal ferredoxin. The P-450scc has a pH optimum at pH 7.2 and is most active at ionic strength of 0.1.  相似文献   

18.
Purified rat liver microsomal cytochrome P-450 and NADPH-cytochrome P-450 reductase were co-reconstituted in phosphatidylcholine-phosphatidylethanolamine-phosphatidylserine vesicles using a cholate dialysis technique. The co-reconstitution of the enzymes was demonstrated in proteoliposomes fractionated by centrifugation in a glycerol gradient. The proteoliposomes catalyzed the N-demethylation of a variety of substrates. Rotational diffusion of cytochrome P-450 was measured by detecting the decay of absorption anisotropy r(t), after photolysis of the heme.CO complex by a vertically polarized laser flash. The rotational mobility of cytochrome P-450, when reconstituted alone, was found to be dependent on the lipid to protein ratio by weight (L/P450) (Kawato, S., Gut, J., Cherry, R. J., Winterhalter, K. H., and Richter, C. (1982) J. Biol. Chem. 257, 7023-7029). About 35% of cytochrome P-450 was immobilized and the rest was rotating with a mean rotational relaxation time phi 1 of about 95 mus in L/P450 = 1 vesicle. In L/P450 = 10 vesicles, about 10% of P-450 was immobile and the rest was rotating with phi 1 congruent to 55 mus. Co-reconstitution of equimolar amounts of NADPH-cytochrome P-450 reductase into the above vesicles results in completely mobile cytochrome P-450 with a phi 1 congruent to 40 mus. Only a small decrease in the immobile fraction of cytochrome P-450 is observed when the molar ratio of cytochrome P-450 to the reductase is 5. The results suggest the formation of a monomolecular 1:1 complex between cytochrome P-450 and NADPH-cytochrome P-450 reductase in the liposomes.  相似文献   

19.
20.
The green pigment accumulated in the livers of phenobarbital pretreated rats after administration of 2-(14C)-2-isopropyl-4-pentenamide (allylisopropylacetamide, AIA) is radiolabeled. The single primary green prophyrin component isolated by HPLC (λmax (CHCl3) 417, 512, 545, 594, 652 nm) is cleanly converted to a zinc complex (λmax (CHCl3) 431, 547, 591, 634, 669 nm). The radiolabel quantitatively shifts with the chromophore on TLC and HPLC upon formation of the zinc complex. Correlation of chromophore absorbance with radiolabel content suggests the formation of a 1:1 porphyrin-AIA adduct. Cytochrome P-450 is therefore destroyed by self-catalyzed addition of AIA to its heme prosthetic group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号