首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Saccharomyces cerevisiae zip1 mutant, which exhibits defects in synaptonemal complex formation and meiotic recombination, triggers a checkpoint that causes cells to arrest at the pachytene stage of meiotic prophase. Overproduction of either the meiotic chromosomal protein Red1 or the meiotic kinase Mek1 bypasses this checkpoint, allowing zip1 cells to sporulate. Red1 or Mek1 overproduction also promotes sporulation of other mutants (zip2, dmc1, hop2) that undergo checkpoint-mediated arrest at pachytene. In addition, Red1 overproduction antagonizes interhomolog interactions in the zip1 mutant, substantially decreasing double-strand break formation, meiotic recombination, and homologous chromosome pairing. Mek1 overproduction, in contrast, suppresses checkpoint-induced arrest without significantly decreasing meiotic recombination. Cooverproduction of Red1 and Mek1 fails to bypass the checkpoint; moreover, overproduction of the meiotic chromosomal protein Hop1 blocks the Red1 and Mek1 overproduction phenotypes. These results suggest that meiotic chromosomal proteins function in the signaling of meiotic prophase defects and that the correct stoichiometry of Red1, Mek1, and Hop1 is needed to achieve checkpoint-mediated cell cycle arrest at pachytene.  相似文献   

2.
Summary The temperature sensitivity of sporulation in a well-characterized yeast strain lacking any known temperature sensitive genes has been investigated. Cytological observations by electron microscopy demonstrate that cells incubated in sporulation medium at a temperature inhibitory to sporulation became arrested in meiotic prophase. The stage of arrest was identified as pachytene by the presence of duplicated (but unseparated) spindle pole bodies and synaptonemal complex. Transfer of the arrested culture to lower temperature permitted resumption of meiosis and sporulation; transfer to vegetative medium resulted in reversion to mitotic division. Genetic analysis of cells that had reverted to mitosis revealed that commitment to intragenic recombination had occurred by the time of arrest. Prolonged incubation at the elevated temperature resulted in the enhancement of intragenic recombination above normal levels, suggesting that some aspect of recombination continued to occur during the pachytene arrest. Evidence is presented that DNA replication, although depressed overall in the arrested cultures, had occurred to completion in many arrested cells.  相似文献   

3.
The motor protein Kar3p and its associated protein Cik1p are essential for passage through meiosis I. In the absence of either protein, meiotic cells arrest in prophase I. Experiments were performed to determine whether the arrest was caused by a structural inability to proceed through meiosis, or by a regulatory mechanism. The data demonstrate that the meiotic arrest is not structural; kar3 and cik1 mutants are able to form normal looking bipolar spindles and divide their DNA into two masses in spo11 mutant backgrounds. To identify the regulatory system necessary for the kar3/cik1 meiotic arrest, we tested whether the arrest could be bypassed by eliminating the pachytene checkpoint or the spindle checkpoint. The arrest is not solely dependent upon the pachytene checkpoint that monitors recombination and aspects of chromosome synapsis. Elimination of the spindle checkpoint failed to allow kar3 mutants to undergo meiosis I nuclear division, but phenotypes of the kar3/spindle checkpoint double mutants suggest that the kar3 meiotic arrest may be mediated by the spindle checkpoint.  相似文献   

4.
We describe the identification of a new meiosis-specific gene of Saccharomyces cerevisiae, NDT80. The ndt80 null and point mutants arrest at the pachytene stage of meiosis, with homologs connected by full-length synaptonemal complexes and spindle pole bodies duplicated but unseparated. Meiotic recombination in an ndt80 delta mutant is relatively normal, although commitment to heteroallelic recombination is elevated two- to threefold and crossing over is decreased twofold compared with those of the wild type. ndt80 arrest is not alleviated by mutations in early recombination genes, e.g., SPO11 or RAD50, and thus cannot be attributed to an intermediate block in prophase chromosome metabolism like that observed in several other mutants. The ndt80 mutant phenotype during meiosis most closely resembles that of a cdc28 mutant, which contains a thermolabile p34, the catalytic subunit of maturation-promoting factor. Cloning and molecular analysis reveal that the NDT80 gene maps on the right arm of chromosome VIII between EPT1 and a Phe-tRNA gene, encodes a 627-amino-acid protein which exhibits no significant homology to other known proteins, and is transcribed specifically during middle meiotic prophase. The NDT80 gene product could be a component of the cell cycle regulatory machinery involved in the transition out of pachytene, a participant in an unknown aspect of meiosis sensed by a pachytene checkpoint, or a SPO11- and RAD50-independent component of meiotic chromosomes that is the target of cell cycle signaling.  相似文献   

5.
The motor protein Kar3p and its associated protein Cik1p are essential for passage through meiosis I. In the absence of either protein, meiotic cells arrest in prophase I. Experiments were performed to determine whether the arrest was caused by a structural inability to proceed through meiosis, or by a regulatory mechanism. The data demonstrate that the meiotic arrest is not structural; kar3 and cik1 mutants are able to form normal looking bipolar spindles and divide their DNA into two masses in spo11 mutant backgrounds. To identify the regulatory system necessary for the kar3/cik1 meiotic arrest, we tested whether the arrest could be bypassed by eliminating the pachytene checkpoint or the spindle checkpoint. The arrest is not solely dependent upon the pachytene checkpoint that monitors recombination and aspects of chromosome synapsis. Elimination of the spindle checkpoint failed to allow kar3 mutants to undergo meiosis I nuclear division, but phenotypes of the kar3/spindle checkpoint double mutants suggest that the kar3 meiotic arrest may be mediated by the spindle checkpoint.  相似文献   

6.
Leu JY  Roeder GS 《Molecular cell》1999,4(5):805-814
Mutants defective in meiotic recombination and synaptonemal complex formation undergo checkpoint-mediated arrest in mid-meiotic prophase. In S. cerevisiae, this checkpoint requires Swe1, which phosphorylates and inactivates the cyclin-dependent kinase Cdc28. A swe1 deletion allows mutants that normally arrest in meiotic prophase to sporulate at wild-type levels, though sporulation is delayed. This delay is eliminated by overproducing Clb1, the major cyclin required for meiosis I. The Swe1 protein accumulates and is hyperphosphorylated in checkpoint-arrested cells. Our results suggest that meiotic arrest is mediated both by increasing Swe1 activity and limiting cyclin production, with Swe1 being the primary downstream target of checkpoint control. The requirement for Swe1 distinguishes the pachytene checkpoint from the DNA damage checkpoints operating in vegetative cells.  相似文献   

7.
The molecular cause of germ cell meiotic defects in azoospermic men is rarely known. During meiotic prophase I, a proteinaceous structure called the synaptonemal complex (SC) appears along the pairing axis of homologous chromosomes and meiotic recombination takes place. Newly-developed immunofluorescence techniques for SC proteins (SCP1 and SCP3) and for a DNA mismatch repair protein (MLH1) present in late recombination nodules allow simultaneous analysis of synapsis, and of meiotic recombination, during the first meiotic prophase in spermatocytes. This immunofluorescent SC analysis enables accurate meiotic prophase substaging and the identification of asynaptic pachytene spermatocytes. Spermatogenic defects were examined in azoospermic men using immunofluorescent SC and MLH1 analysis. Five males with obstructive azoospermia, 18 males with nonobstructive azoospermia and 11 control males with normal spermatogenesis were recruited for the study. In males with obstructive azoospermia, the fidelity of chromosome pairing (determined by the percentage of cells with gaps [discontinuities]/splits [unpaired chromosome regions] in the SCs, and nonexchange SCs [bivalents with 0 MLH1 foci]) was similar to those in normal males. The recombination frequencies (determined by the mean number of MLH1 foci per cell at the pachytene stage) were significantly reduced in obstructive azoospermia compared to that in controls. In men with nonobstructive azoospermia, a marked heterogeneity in spermatogenesis was found: 45% had a complete absence of meiotic cells; 5% had germ cells arrested at the zygotene stage of meiotic prophase; the rest had impaired fidelity of chromosome synapsis and significantly reduced recombination in pachytene. In addition, significantly more cells were in the leptotene and zygotene meiotic prophase stages in nonobstructive azoospermic patients, compared to controls. Defects in chromosome pairing and decreased recombination during meiotic prophase may have led to spermatogenesis arrest and contributed in part to this unexplained infertility.  相似文献   

8.
The meiotic effects of several cell division cycle (cdc) mutations of Saccharomyces cerevisiae have been investigated by electron microscopy and by genetic and biochemical methods. Diploid strains homozygous for cdc mutations known to confer defects on vegetative DNA synthesis were subjected to restrictive conditions during meiosis. Electron microscopy revealed that all four mutants were conditionally arrested in meiosis after duplication of the spindle pole bodies but before spindle formation for the first meiotic division. None of these mutants became committed to recombination or contained synaptonemal complex at the meiotic arrest. — The mutants differed in their ability to undergo premeiotic DNA synthesis under restrictive conditions. Both cdc8 and cdc21, which are defective in the propagation of vegetative DNA synthesis, also failed to undergo premeiotic DNA synthesis. The arrest of these mutants at the stage before meiosis I spindle formation could be attributed to the failure of DNA synthesis because inhibition of synthesis by hydroxyurea also caused arrest at this stage. — Premeiotic DNA synthesis occurred before the arrest of cdc7, which is defective in the initiation of vegetative DNA synthesis, and of cdc2, which synthesizes vegetative DNA but does so defectively. The meiotic arrest of cdc7 homozygotes was partially reversible. Even if further semiconservative DNA replication was inhibited by the addition of hydroxyurea, released cells rapidly underwent commitment to recombination and formation of synaptonemal complexes. The cdc7 homozygote is therefore reversibly arrested in meiosis after DNA replication, whereas vegetative cultures have previously been shown to be defective only in the initiation of DNA synthesis.  相似文献   

9.
Meiotic prophase in Schizosaccharomyces pombe is characterized by striking nuclear movements and the formation of linear elements along chromosomes instead of tripartite synaptonemal complexes. We analysed the organization of nuclei and microtubules in cells of fission yeasts undergoing sexual differentiation. S. japonicus var. versatilis and S. pombe cells were studied in parallel, taking advantage of the better cytology in S. versatilis. During conjugation, microtubules were directed towards the mating projection. These microtubules seem to lead the haploid nuclei together in the zygote by interaction with the spindle pole bodies at the nuclear periphery. After karyogamy, arrays of microtubules emanating from the spindle pole body of the diploid nucleus extended to both cell poles. The same differentiated microtubule configuration was elaborated upon induction of azygotic meiosis in S. pombe. The cyclic movements of the elongated nuclei between the cell poles is reflected by a dynamic and coordinated shortening and lengthening of the two microtubule arrays. When the nucleus was at a cell end, one array was short while the other bridged the whole cell length. Experiments with inhibitors showed that microtubules are required for karyogamy and for the elongated shape and movement of nuclei during meiotic prophase. In both fission yeasts the SPBs and nucleoli are at the leading ends of the moving nuclei. Astral and cytoplasmic microtubules were also prominent during meiotic divisions and sporulation. We further show that in S. versatilis the linear elements formed during meiotic prophase are similar to those in S. pombe. Tripartite synaptonemal complexes were never detected. Taken together, these findings suggest that S. pombe and S. versatilis share basic characteristics in the organization of microtubules and the structure and behaviour of nuclei during their meiotic cell cycle. The prominent differentiations of microtubules and nuclei may be involved in the pairing, recombination, and segregation of meiotic chromosomes.  相似文献   

10.
During meiosis, DNA replication is followed by two successive rounds of chromosome segregation (meiosis I and II), which give rise to genetically diverse haploid gametes. The prophase of the first meiotic division is highly regulated and alignment and synapsis of the homologous chromosomes during this stage are mediated by the synaptonemal complex. Incorrect assembly of the synaptonemal complex results in cell death, impaired meiotic recombination and aneuploidy. Oocytes with meiotic defects often survive the first meiotic prophase and give rise to aneuploid gametes. Similarly affected spermatocytes, on the other hand, almost always undergo apoptosis at a male-specific meiotic checkpoint, located specifically at epithelial stage IV during spermatogenesis. Many examples of this stage IV-specific arrest have been described for several genetic mouse models in which DNA repair or meiotic recombination are abrogated. Interestingly, in C. elegans, meiotic recombination and synapsis are monitored by two separate checkpoint pathways. Therefore we studied spermatogenesis in several knockout mice (Sycp1(-/-), Sycp3(-/-), Smc1beta(-/-) and Sycp3/Sycp1 and Sycp3/Smc1beta double-knockouts) that are specifically defective in meiotic pairing and synapsis. Like for recombination defects, we found that all these genotypes also specifically arrest at epithelial stage IV. It seems that the epithelial stage IV checkpoint eliminates spermatocytes that fail a certain quality check, being either synapsis or DNA damage related.  相似文献   

11.
Serial sectioning followed by three dimensional reconstruction of lateral components of the synaptonemal complex have been used to follow chromosome pairing during the prophase of the achiasmatic meiotic division in the silkworm, Bombyx mori. During leptotene and early zygotene, the lateral components become attached to the nuclear envelope at a specific region, thus forming a chromosome bouquet. The attachment of lateral components to the nuclear envelope precedes the completion of the components between their attachment points. Synapsis and synaptonemal complex formation start during the period of lateral component organization in the individual nucleus. Telomeric movements on the nuclear envelope occur at two stages of the prophase: the chromosome pairing appears to be initiated by an association of unpaired ends of homologous chromosomes, the nature of this primary attraction and recognition being unknown. Secondly, the paired chromosomes become dispersed in the nucleus by shifting of attachment sites of completed synaptonemal complexes at the end of zygotene. This movement is possibly related to a membrane flow occurring during this stage. Membrane material is synthesized at the region of synaptonemal complex attachment. Later, the excess membrane material is shifted to the opposite pole where it protrudes into the lumen of the nuclei thus forming vacuoles. — Two previously undescribed features of chromosome pairing were revealed. In late zygotene, chromosome pairing and synaptonemal complex formation were frequently observed to be delayed or even prevented over a short distance by interlocking of two bivalents, both being attached to the nuclear envelope. Such interlocking of bivalents was not found in pachytene. Secondly, one nucleus was found in which two homologous chromosomes were totally unpaired while the remaining 27 bivalents were completed or in a progressed state of pairing. The lateral components of the two unpaired chromosomes had the same length and were located several microns apart, thus eliminating the possibility of a permanent association of homologous chromosomes before the onset of meiosis in Bombyx mori females. — During pachytene, one of the 8 cells belonging to the syncytial cell cluster characteristic of oogenesis continues the meiotic prophase whereas the remaining 7 cells, the nurse cells, enter a different developmental sequence, finally resulting in their degeneration. The synaptonemal complex of the oocyte develops into a sausage-like structure after pachytene by a deposition of dense material onto the lateral components, thus filling out most of the central region. The diameter of this modified synaptonemal complex reaches at least 300 nm, as compaired to a pachytene width of approximately 130 nm. Also, the length of synaptonemal complexes increases from 212 at zygotene/pachytene to at least 300 at the modified pachytene stage. In nurse cells, synaptonemal complexes are shed from the bivalents shortly after pachytene simultaneously with a condensation of the chromatin. These free synaptonemal complex fragments associate and form various aggregates, either more or less normal looking polycomplexes or various complex figures formed by reorganized synaptonemal complex subunits. Later stages have not been included in the present investigation.  相似文献   

12.
Meiotic arrest is a common cause of human male infertility, but the causes of this arrest are poorly understood. Transactive response DNA-binding protein of 43 kDa (TDP-43) is highly expressed in spermatocytes in the preleptotene and pachytene stages of meiosis. TDP-43 is linked to several human neurodegenerative disorders wherein its nuclear clearance accompanied by cytoplasmic aggregates underlies neurodegeneration. Exploring the functional requirement for TDP-43 for spermatogenesis for the first time, we show here that conditional KO (cKO) of the Tardbp gene (encoding TDP-43) in male germ cells of mice leads to reduced testis size, depletion of germ cells, vacuole formation within the seminiferous epithelium, and reduced sperm production. Fertility trials also indicated severe subfertility. Spermatocytes of cKO mice showed failure to complete prophase I of meiosis with arrest at the midpachytene stage. Staining of synaptonemal complex protein 3 and γH2AX, markers of the meiotic synaptonemal complex and DNA damage, respectively, and super illumination microscopy revealed nonhomologous pairing and synapsis defects. Quantitative RT–PCR showed reduction in the expression of genes critical for prophase I of meiosis, including Spo11 (initiator of meiotic double-stranded breaks), Rec8 (meiotic recombination protein), and Rad21L (RAD21-like, cohesin complex component), as well as those involved in the retinoic acid pathway critical for entry into meiosis. RNA-Seq showed 1036 upregulated and 1638 downregulated genes (false discovery rate <0.05) in the Tardbp cKO testis, impacting meiosis pathways. Our work reveals a crucial role for TDP-43 in male meiosis and suggests that some forms of meiotic arrest seen in infertile men may result from the loss of function of TDP-43.  相似文献   

13.
14.
In meiosis I, homologous chromosomes become paired and then separate from one another to opposite poles of the spindle. In humans, errors in this process are a leading cause of birth defects, mental retardation, and infertility. In most organisms, crossing-over, or exchange, between the homologous partners provides a link that promotes their proper, bipolar, attachment to the spindle. Attachment of both partners to the same pole can sometimes be corrected during a delay that is triggered by the spindle checkpoint. Studies of non-exchange chromosomes have shown that centromere pairing serves as an alternative to exchange by orienting the centromeres for proper microtubule attachment. Here, we demonstrate a new role for the synaptonemal complex protein Zip1. Zip1 localizes to the centromeres of non-exchange chromosomes in pachytene and mediates centromere pairing and segregation of the partners at meiosis I. Exchange chromosomes were also found to experience Zip1-dependent pairing at their centromeres. Zip1 was found to persist at centromeres, after synaptonemal complex disassembly, remaining there until microtubule attachment. Disruption of this centromere pairing, in spindle checkpoint mutants, randomized the segregation of exchange chromosomes. These results demonstrate that Zip1-mediated pairing of exchange chromosome centromeres promotes an initial, bipolar attachment of microtubules. This activity of Zip1 lessens the load on the spindle checkpoint, greatly reducing the chance that the cell will exit the checkpoint delay with an improperly oriented chromosome pair. Thus exchange, the spindle checkpoint, and centromere pairing are complementary mechanisms that ensure the proper segregation of homologous partners at meiosis I.  相似文献   

15.
Interactions between homologous chromosomes (pairing, recombination) are of central importance for meiosis. We studied entire chromosomes and defined chromosomal subregions in synchronous meiotic cultures of Schizosaccharomyces pombe by fluorescence in situ hybridization. Probes of different complexity were applied to spread nuclei, to delineate whole chromosomes, to visualize repeated sequences of centromeres, telomeres, and ribosomal DNA, and to study unique sequences of different chromosomal regions. In diploid nuclei, homologous chromosomes share a joint territory even before entry into meiosis. The centromeres of all chromosomes are clustered in vegetative and meiotic prophase cells, whereas the telomeres cluster near the nucleolus early in meiosis and maintain this configuration throughout meiotic prophase. Telomeres and centromeres appear to play crucial roles for chromosome organization and pairing, both in vegetative cells and during meiosis. Homologous pairing of unique sequences shows regional differences and is most frequent near centromeres and telomeres. Multiple homologous interactions are formed independently of each other. Pairing increases during meiosis, but not all chromosomal regions become closely paired in every meiosis. There is no detectable axial compaction of chromosomes in meiotic prophase. S. pombe does not form mature synaptonemal complexes, but axial element-like structures (linear elements), which were analyzed in parallel. Their appearance coincides with pairing of interstitial chromosomal regions. Axial elements may define minimal structures required for efficient pairing and recombination of meiotic chromosomes.  相似文献   

16.
Joyce EF  McKim KS 《Genetics》2009,181(1):39-51
During meiosis, programmed DNA double-strand breaks (DSBs) are repaired to create at least one crossover per chromosome arm. Crossovers mature into chiasmata, which hold and orient the homologous chromosomes on the meiotic spindle to ensure proper segregation at meiosis I. This process is usually monitored by one or more checkpoints that ensure that DSBs are repaired prior to the meiotic divisions. We show here that mutations in Drosophila genes required to process DSBs into crossovers delay two important steps in meiotic progression: a chromatin-remodeling process associated with DSB formation and the final steps of oocyte selection. Consistent with the hypothesis that a checkpoint has been activated, the delays in meiotic progression are suppressed by a mutation in the Drosophila homolog of pch2. The PCH2-dependent delays also require proteins thought to regulate the number and distribution of crossovers, suggesting that this checkpoint monitors events leading to crossover formation. Surprisingly, two lines of evidence suggest that the PCH2-dependent checkpoint does not reflect the accumulation of unprocessed recombination intermediates: the delays in meiotic progression do not depend on DSB formation or on mei-41, the Drosophila ATR homolog, which is required for the checkpoint response to unrepaired DSBs. We propose that the sites and/or conditions required to promote crossovers are established independently of DSB formation early in meiotic prophase. Furthermore, the PCH2-dependent checkpoint is activated by these events and pachytene progression is delayed until the DSB repair complexes required to generate crossovers are assembled. Interestingly, PCH2-dependent delays in prophase may allow additional crossovers to form.  相似文献   

17.
Meiotic recombination requires pairing of homologous chromosomes, the mechanisms of which remain largely unknown. When pairing occurs during meiotic prophase in fission yeast, the nucleus oscillates between the cell poles driven by astral microtubules. During these oscillations, the telomeres are clustered at the spindle pole body (SPB), located at the leading edge of the moving nucleus and the rest of each chromosome dangles behind. Here, we show that the oscillatory nuclear movement of meiotic prophase is dependent on cytoplasmic dynein. We have cloned the gene encoding a cytoplasmic dynein heavy chain of fission yeast. Most of the cells disrupted for the gene show no gross defect during mitosis and complete meiosis to form four viable spores, but they lack the nuclear movements of meiotic prophase. Thus, the dynein heavy chain is required for these oscillatory movements. Consistent with its essential role in such nuclear movement, dynein heavy chain tagged with green fluorescent protein (GFP) is localized at astral microtubules and the SPB during the movements. In dynein-disrupted cells, meiotic recombination is significantly reduced, indicating that the dynein function is also required for efficient meiotic recombination. In accordance with the reduced recombination, which leads to reduced crossing over, chromosome missegregation is increased in the mutant. Moreover, both the formation of a single cluster of centromeres and the colocalization of homologous regions on a pair of homologous chromosomes are significantly inhibited in the mutant. These results strongly suggest that the dynein-driven nuclear movements of meiotic prophase are necessary for efficient pairing of homologous chromosomes in fission yeast, which in turn promotes efficient meiotic recombination.  相似文献   

18.
The pairing of homologous chromosomes and the intimate synapsis of the paired homologs by the synaptonemal complex (SC) are essential for subsequent meiotic processes including recombination and chromosome segregation. Here we show that the centromere clustering plays an important role in initiating homolog synapsis during meiosis in Drosophila females. Although centromeres are not clustered prior to the onset of meiosis, all four pairs of centromeres are actively clustered into one or two masses during early meiotic prophase. Within the 16-cell cyst, centromeric clustering appears to define the first step in the initiation of synapsis. Clustering is restricted to the nuclei that form the SC and is dependent on all known SC proteins. Surprisingly, both centromeric clusters and the SC components associated with them persist long after the disassembly of the euchromatic SC at the end of pachytene. The initiation of homologous recombination through the formation of programmed double-strand breaks (DSBs) is not required for either the formation or the maintenance of the centromeric clusters. Our data support a view in which the SC-mediated clustering at the centromeres is the initiating event for meiotic synapsis.  相似文献   

19.
Protein phosphatase 2A (PP2A) is a heterotrimer consisting of A and B regulatory subunits and a C catalytic subunit. PP2A regulates mitotic cell events that include the cell cycle, nutrient sensing, p53 stability and various mitogenic signals. The role of PP2A during meiosis is less understood. We explored the role of Saccharomyces cerevisiae PP2A during meiosis. We show a PP2ACdc55 containing the human B/55 family B subunit ortholog, Cdc55, is required for progression through meiosis I. Mutant cells lacking Cdc55 remain mononucleated. They harbor meiotic gene expression, premeiotic DNA replication, homologous recombination and spindle pole body (SPB) defects. They initiate but do not complete replication and are defective in performing intergenic homologous recombination. Bypass alleles, which allow cells defective in recombination to finish meiosis, do not suppress the meiosis I defect. cdc55 cells arrest with a single SPB lacking microtubules, or duplicated but not separated SBPs containing microtubules. Finally, the premeiotic replication defect is suppressed by loss of Rad9 checkpoint function. We conclude PP2ACdc55 is required for the proper temporal initiation of multiple meiotic events and/or monitors these events to ensure their fidelity.  相似文献   

20.
A. Davies  G. Jenkins  H. Rees 《Chromosoma》1990,99(4):289-295
Lotus corniculatus L. (Fabaceae) is a natural tetraploid of probably hybrid origin, which regularly forms bivalents at metaphase I of meiosis. Whole-mount surface-spreading of synaptonemal complexes (SCs) under the electron microscope reveals that diploidisation of this spccies is achieved not by exclusive pairing of homologues during meiotic prophase, but by the elimination of multivalents in favour of bivalents before metaphase I. Observations show that 43% of multivalents are eliminated between zygotene and pachytene, presumably by dissolution and reassembly of SCs between homologous chromosomes. A further 63% are eliminated between pachytene and diakinesis, with a commensurate increase in the number of univalents. Elimination ensures few multivalents reach first metaphase and effectively diploidises this tetraploid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号