首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The effects of vacuum-drying and freeze- drying on the cell viability of a commercial baker's yeast, Saccharomyces cerevisiae, strain with different endogenous contents of trehalose were analyzed. An osmotolerant Zygosaccharomyces rouxii strain was used for comparative purposes. Higher viability values were observed in cells after vacuum-drying than after freeze-drying. Internal concentrations of trehalose in the range 10–20% protected cells in both dehydration processes. Endogenous trehalose concentrations did not affect the water sorption isotherm nor the T g values. The effect of external matrices of trehalose and maltodextrin was also studied. The addition of external trehalose improved the survival of S. cerevisiae cells containing 5% internal trehalose during dehydration. Maltodextrin (1.8 kDa) failed to protect vacuum-dried samples at 40 °C. The major reduction in the viability during the freeze-drying process of the sensitive yeast cells studied was attributed to the freezing step. The suggested protective mechanisms for each particular system are vitrification and the specific interactions of trehalose with membranes and/or proteins. The failure of maltodextrins to protect cells was attributed to the fact that none of the suggested mechanisms of protection could operate in these systems. Received: 6 December 1999 / Received revision: 8 May 2000 / Accepted: 19 May 2000  相似文献   

2.
Seven strains of Pichia guilliermondii (Candida guilliermondii, asexual state) from diverse isolation sources were examined for the production of xylitol and riboflavin in xylose-grown cultures. Under the conditions tested, all strains produced xylitol from xylose; conversion efficiencies varied, on a strain-specific basis, from 7% to 36% of the initial substrate. Four of seven strains metabolized xylitol immediately as xylose levels became depleted. The remaining three strains metabolized xylitol slowly and incompletely. Surprisingly, utilization of xylitol showed an apparent relationship with riboflavin production. Strains that readily metabolized xylitol produced at least threefold greater levels of riboflavin than did strains that used xylitol slowly. Moreover, riboflavin accumulation took place during xylitol consumption. P. guilliermondii strains that produced the highest levels of riboflavin on xylose produced significantly less riboflavin when grown on glucose or directly on xylitol. Received: 24 April 1996 / Received revision: 29 July 1996 / Accepted: 24 August 1996  相似文献   

3.
Saccharomyces cerevisiae was transformed with the Pichia stipitis CBS 6054 XYL1 and XYL2 genes encoding xylose reductase (XR) and xylitol dehydrogenase (XDH) respectively. The XYL1 and XYL2 genes were placed under the control of the alcohol dehydrogenase 1 (ADH1) and phosphoglycerate kinase (PGK1) promoters in the yeast vector YEp24. Different vector constructions were made resulting in different specific activities of XR and XDH. The XR:XDH ratio (ratio of specific enzyme activities) of the transformed S. cerevisiae strains varied from 17.5 to 0.06. In order to enhance xylose utilisation in the XYL1-, XYL2-containing S. cerevisiae strains, the native genes encoding transketolase and transaldolase were also overexpressed. A strain with an XR:XDH ratio of 17.5 formed 0.82 g xylitol/g consumed xylose, whereas a strain with an XR:XDH ratio of 5.0 formed 0.58 g xylitol/g xylose. The strain with an XR:XDH ratio of 0.06, on the other hand, formed no xylitol and less glycerol and acetic acid compared with strains with the higher XR:XDH ratios. In addition, the strain with an XR:XDH ratio of 0.06 produced more ethanol than the other strains. Received: 12 March 1997 / Received revision: 17 April 1997 / Accepted: 27 April 1997  相似文献   

4.
The viability and thermal stability of a freeze-dried yeast strain were studied in relation to some physical properties of the matrices in which the cells were freeze-dried. Samples of inoculum with solutions of the matrix components [polyvinylpyrrolidone (PVP), maltose, trehalose, maltodextrins, or mixtures of maltodextrin and trehalose] and controls without matrices were freeze-dried and then equilibrated at several relative humidities. Viability was determined before and after freeze-drying and after heat treatment (100 min at 70 °C). Freeze-drying with trehalose, PVP, maltose or 1.8-kDa maltodextrin, and mixtures of maltodextrin/trehalose increased viability in comparison with controls. The 3.6-kDa maltodextrin was ineffective at protecting the cells during freeze-drying. The glass transition temperature (T g), which depends on moisture content, was indicated as a possible factor to determine the stability of labile materials. Protective effects of the excipients during thermal treatment were analysed in relation to the physical changes (collapse or structural shrinkage) which were dependent on the T g of the systems. The presence of a certain amount of amorphous disaccharides during freeze-drying and heating was found to be a critical factor for ensuring cell viability, which was protected even in rubbery (above T g) matrices. Received: 4 December 1998 / Received last revision: 2 March 1999 / Accepted: 14 March 1999  相似文献   

5.
Since some amino acids, polyols and sugars in cells are thought to be osmoprotectants, we expected that several amino acids might also contribute to enhancing freeze tolerance in yeast cells. In fact, proline and charged amino acids such as glutamate, arginine and lysine showed a marked cryoprotective activity nearly equivalent to that of glycerol or trehalose, both known as major cryoprotectants for Saccharomyces cerevisiae. To investigate the cryoprotective effect of proline on the freezing stress of yeast, we isolated proline-analogue-resistant mutants derived from a proline-non-utilizing strain of S. cerevisiae. When cultured in liquid minimal medium, many mutants showed a prominent increase, two- to approximately tenfold, in cell viability compared to the parent after freezing in the medium at −20 °C for 1 week. Some of the freeze-tolerant mutants were found to accumulate a higher amount of proline, as well as of glutamate and arginine which are involved in proline metabolism. It was also observed that proline-non-utilizer and the freeze-tolerant mutants were able to grow against osmotic stress. These results suggest that the increased flux in the meta-bolic pathway of specific amino acids such as proline is effective for breeding novel freeze-tolerant yeasts. Received: 6 November 1996 / Accepted: 7 December 1996  相似文献   

6.
An improved strain of Pseudomonas sp. ATCC 31461 (Pseudomonas elodea), capable of producing broth viscosities of 11 000 and 4700 mPa s (cP) when grown in enriched whey permeate and enriched sweet whey broths respectively, was isolated. The isolation was by serial transfers of the parent on lactose-rich and sweet whey broths. Maximum viscosities and biopolymer production were observed in 25% (v/v) whey concentration. In whey concentrations of 50% (v/v) or greater, residual glucose was detected in the broth and biopolymer production was low. This strain is capable of totally utilising the lactose in up to 50% (v/v) whey in 64 h. Enzyme activities suggest that the transport of lactose in P. elodea is by the permease system as opposed to the phosphotransferase system. The location of β-galactosidase is mainly intracellular. The improved strain is able to utilise lactose better than the parent and produce 1.6 times more intracellular β-galactosidase activity compared to the parent. Received: 3 May 1996 / Received revision: 8 August 1996 / Accepted: 10 August 1996  相似文献   

7.
The yeast Saccharomyces cerevisiae was shown to be extremely sensitive to dehydration–rehydration treatments when stationary phase cells were subjected to conditions of severe oxygen limitation, unlike the same cells grown in aerobic conditions. The viability of dehydrated anaerobically grown yeast cells never exceeded 2 %. It was not possible to increase this viability using gradual rehydration of dry cells in water vapour, which usually strongly reduces damage to intracellular membranes. Specific pre-dehydration treatments significantly increased the resistance of anaerobic yeast to drying. Thus, incubation of cells with trehalose (100 mM), increased the viability of dehydrated cells after slow rehydration in water vapour to 30 %. Similarly, pre-incubation of cells in 1 M xylitol or glycerol enabled up to 50–60 % of cells to successfully enter a viable state of anhydrobiosis after subsequent rehydration. We presume that trehalose and sugar alcohols function mainly according to a water replacement hypothesis, as well as initiating various protective intracellular reactions.  相似文献   

8.
A variant of Saccharomyces cerevisiae pep4 strain 20B12, with improved oligotrophic proliferation, cell survival and secretion of heterologous mouse α-amylase, is described. Previously we reported a procedure to enrich NI transformants that are not inhibited by cytotoxic expression of hepatitis B virus surface antigen in the secretion pathway of the protease-A-deficient (pep4) strain. To use the NI cells as a host for heterologous expression, we tried to amend the introduced pYAS/12S vector and obtain a host strain, NI-C, with stable NI phenotype and trp1 marker restored. Southern analysis of genomic DNA of NI-C suggested that the original pYAS/12S was abnormally rearranged and not completely corrected. Further assay showed that the viability and mitotic ability of the NI-C strain were increased. While using the NI-C strain as host for plasmid transformation and heterologous expression of mouse α-amylase, we observed that transformed colonies grew more quickly and secreted more α-amylase than general yeast strains. A further test showed that the NI-C strain was able to use mouse α-amylase as a positive selection marker to form transformed colonies on nitrogen-starved plates that contain starch as the sole carbon source. The results imply that the NI-C variant is an improved pep4 strain that can be used for heterologous expression and for the development of new selective markers in the yeast transformation system. Received: 7 January 1998 / Received last revision: 7 September 1998 / Accepted: 11 October 1998  相似文献   

9.
Escherichia coli K-12 transformed with pACYC184 plasmid DNA was exposed to ozone (O3) in aqueous solution. The damage to the membrane, protein, plasmid DNA, and cell survival were investigated. Cell viability was unaffected by short-term O3 exposure (1–5 min) but membrane permeability was compromised as indicated by protein and nucleic acid leakage and lipid oxidation. The intracellular components, protein and DNA, remained intact. With longer durations of O3 exposure (up to 30 min) cell viability decreased with a more significant increase in lipid oxidation and protein and nucleic acid leakage. The proteins leaking out were further oxidized by O3. The total intracellular proteins run on sodium dodecyl sulfate/polyacrylamide gel electrophoresis, and plasmid DNA run on agarose gel, showed progressive degradation corresponding to the decrease in cell viability. The data indicate that membrane components are the primary targets of O3 damage with subsequent reactions involving the intracellular components, protein and DNA. Received: 18 Apirl 1996 / Received revision: 26 July 1996 / Accepted: 5 August 1996  相似文献   

10.
Screening for fungi intensively mineralizing 2,4,6-trinitrotoluene   总被引:6,自引:0,他引:6  
Within a screening program, 91 fungal strains belonging to 32 genera of different ecological and taxonomic groups (wood- and litter-decaying basidiomycetes, saprophytic micromycetes) were tested for their ability to metabolize and mineralize 2,4,6-trinitrotoluene (TNT). All these strains metabolized TNT rapidly by forming monoaminodinitrotoluenes (AmDNT). Micromycetes produced higher amounts of AmDNT than did wood- and litter-decaying basidiomycetes. A significant mineralization of [14C]TNT was only observed for certain wood- and litter-decaying basidiomycetes. The most active strains, Clitocybula dusenii TMb12 and Stropharia rugosa-annulata DSM11372 mineralized 42 % and 36 % respectively of the initial added [14C]TNT (100 μM corresponding to 4.75 μCi/l) to 14CO2 within 64 days. Micromycetes (deuteromycetes, ascomycetes, zygomycetes) proved to be unable to mineralize [14C]TNT significantly. Received: 8 August 1996 / Received revision: 16 December 1996 / Accepted: 20 December 1996  相似文献   

11.
Heterologous production of bovine plasmin was studied in the industrially relevant bacterium Lactococcus lactis. Two sets of lactococcal gene expression signals were coupled to the region of the plasmin gene coding for the serine protease domain. When the promoter region of the prtP gene was used, plasmin was detected mainly intracellularly in strain BPL25 by Western blot hybridization. The intracellular presence of plasmin led to physiological stress. Expression of the plasmin gene driven by the promoter and complete signal sequence of the lactococcal usp45 gene resulted in efficient plasmin secretion in strain BPL420. Cell lysis was observed in strains producing plasmin fragments including the catalytic domain, but not in control strains, which only produced a non-catalytic region of plasmin. The plasmin produced was shown to be biologically active. Received: 2 December 1996 / Received revision: 17 March 1997 / Accepted: 27 April 1997  相似文献   

12.
We selected three yeast strains that efficiently remove heavy metal ions from aqueous solution. We first screened yeasts that grew in the presence of 2 mM NiCl2 among our stock of wild yeasts, and then selected those that removed Ni most efficiently from aqueous solution. These strains also removed Cu and Zn from aqueous solution and were identified as Candida species. Ni uptake was efficient at pH between 4.0 and 7.0, but less efficient at pH below 3.0. The amount of Ni taken up by the yeast cells was proportional to the initial concentration of NiCl2 below about 4 mM Ni. The cells retained the abilities to remove Ni after treatment with 10 mM EDTA or 1 M HCl for repeated usage, or after heat treatment. Received: 16 December 1996 / Received last revision: 15 April 1997 / Accepted: 20 May 1997  相似文献   

13.
Pseudomonas sp. strain M285 immobilized on diatomaceous earth beads was used to remove 3,5,6-trichloro-2-pyridinol (TCP) from industrial wastewater. Batch studies showed that immobilized Pseudomonas sp. strain M285 mineralized [2,6-14C]TCP rapidly; about 75% of the initial radioactivity was recovered as 14CO2. Transformation of TCP was inhibited by high concentrations of salt, and addition of osmoprotectants (proline and betaine at 1 mM) did not reduce the adverse effect of salt. TCP-containing wastewater (60–140 mg/l) was passed through columns containing immobilized Pseudomonas sp. strain M285 at increasing flow rates and increasing TCP concentrations; TCP removal of 80%–100% was achieved. Addition of nutrients, such as glucose and yeast extract, retarded TCP degradation. Growing cell cultures were found to be better inocula for immobilization than resting cells. Received: 5 February 1996 / Received last revision: 12 August 1996 / Accepted: 24 August 1996  相似文献   

14.
 A total of 400 yeast strains were examined for the ability to reduce ethyl 4-chloroacetoacetate (COBE) to ethyl 4-chloro-3-hydroxybutyrate (CHBE) by using acetone-dried cells in the presence of a coenzyme-recycling system in water/n-butyl acetate. We discovered some yeast strains that reduced COBE to (S)-CHBE. Heating of acetone-dried cells of the selected yeast strains increased the optical purity of the product. There may be several enzymes that can reduce COBE stereoselectively in the same yeast cells. The cultured broth of Candida magnoliae accumulated 90 g/l (S)-CHBE (96.6% enantiomeric excess, e.e.) in the presence of glucose, NADP and glucose dehydrogenase in n-butyl acetate. When these cells were heated, the stereoselectivity of the reduction increased to 99% e.e. (S)-CHBE is one of the useful chiral building blocks applicable to the synthesis of some pharmaceuticals. We expect that the cheap and industrial production of this important chiral compound will follow the discovery of this yeast strain. Received: 9 September 1998 / Received last revision: 17 February 1999 / Accepted: 5 March 1999  相似文献   

15.
Production of synthetic spider dragline silk protein in Pichia pastoris   总被引:1,自引:0,他引:1  
The methylotrophic yeast Pichia pastoris was tested as a host for the production of long, repetitive protein polymers. Synthetic genes for a designed analog of a spider dragline silk protein were readily expressed at high levels under control of the methanol-inducible AOX1 promoter. Transformants containing multiple gene copies produced elevated levels of silk protein, but of a variety of altered sizes as a result of gene rearrangements at the time of transformation. Genes up to 3000 codons in length or longer could be expressed with no evidence of the prevalent truncated synthesis observed for similar genes in Escherichia coli, though genes longer than 1600 codons were expressed less efficiently than shorter genes. Silk-producing P. pastoris strains were stable without selection for at least 100 doublings. Received: 4 March 1996 / Received revision: 26 June 1996 / Accepted: 12 August 1996  相似文献   

16.
Autoselective xylose-utilising strains of Saccharomyces cerevisiae expressing the xylose reductase (XYL1) and xylitol dehydrogenase (XYL2) genes of Pichia stipitis were constructed by replacing the chromosomal FUR1 gene with a disrupted fur1::LEU2 allele. Anaerobic fermentations with 80 g l−1 d-xylose as substrate showed a twofold higher consumption of xylose in complex medium compared to defined medium. The xylose consumption rate increased a further threefold when 20 g l−1 d-glucose or raffinose was used as co-substrate together with 50 g l−1 d-xylose. Xylose consumption was higher with raffinose as co-substrate than with glucose (85% versus 71%, respectively) after 82 h fermentations. A high initial ethanol concentration and moderate levels of glycerol and acetic acid accompanied glucose as co-substrate, whereas the ethanol concentration gradually increased with raffinose as co-substrate with no glycerol and much less acetic acid formation. Received: 12 March 1999 / Received revision: 31 June 1999 / Accepted: 5 July 1999  相似文献   

17.
A pentachlorophenol(PCP)-degrading Pseudomonas sp. strain UG30 was encapsulated in κ-carrageenan for use in PCP degradation. Free and encapsulated cells were compared for their ability to dechlorinate and mineralize 100–800 μg/ml sodium pentachlorophenate in broth. Dechlorination was measured with a chloride ion electrode, and mineralization was measured by 14CO2 evolution from radiolabelled [U-14C]PCP. Free and encapsulated Pseudomonas sp. UG30 cells mineralized up to 200 μg/ml and 600 μg/ml PCP, respectively, after 21 days. Encapsulation of UG30 cells provided a protective effect, allowing dechlorination and mineralization of high levels of PCP to occur. Received: 3 May 1996 / Received revision: 4 September 1996 / Accepted: 13 September 1996  相似文献   

18.
A flocculent Saccharomyces cerevisiae strain with the ability to express both the LAC4 (coding for β-galactosidase) and LAC12 (coding for lactose permease) genes of Kluyveromyces marxianus was constructed. This recombinant strain is not only able to grow on lactose, but it can also ferment this substrate. To our knowledge this is the first time that a recombinant S. cervisiae has been found to ferment lactose in a way comparable to that of the existing lactose-fermenting yeast strains. Moreover, the flocculating capacity of the strain used in this work gives the process several advantages. On the one hand, it allows for operation in a continuous mode at high cell concentration, thus increasing the system's overall productivity; on the other hand, the biomass concentration in the effluent is reduced, thus decreasing product separation/purification costs. Received: 2 October 1998 / Received revision: 15 January 1999 / Accepted: 17 January 1999  相似文献   

19.
Production of indole-3-acetic acid (IAA) by four strains of the maize pathogen Ustilago maydis was analyzed. The fungus induces gall formation on its host plant and IAA production by  U. maydis may be required as a pathogenicity or virulence factor. The study included the FB2 wild-type strain and the 103, 130FZ and 130FT mutants. Results show that treatment with clofibric acid, alone or in combination with UV light, can be used to obtain  U. maydis strains with defective IAA production in vitro, as quantified with the Salkowski reagent and by HPLC. The strain with the lowest production was 130FT, and its peak IAA level represented only 16% of the highest value obtained for the FB2 wild-type strain (124 μg/ml). Received: 11 April 1996 / Received last revision: 5 September 1997 / Accepted: 11 September 1997  相似文献   

20.
Two Streptomyces strains, UAH 30 and UAH 51, have been shown to decolourise a paper-mill effluent obtained after semichemical alkaline pulping of wheat straw. Fractionation of the effluent decolourised by strains UAH 30 and UAH 51 showed that 60% and 80% respectively of the alkali-lignin fraction have been removed from the effluent after 7 days of growth. 13C NMR cross polarization and magic angle spinning (CPMAS) spectra of the alkali-lignin remaining in the effluent after decolourisation revealed a decrease in the relative amount of aromatic lignin units compared to that obtained from the untreated effluent along with a reduction in the ratio of syringyl:guaiacyl units. Gas chromatography/mass spectrometry analysis of the low-molecular-mass compounds extracted from the decolourised effluent revealed the presence of new aromatic lignin-related compounds that were not present in the untreated control effluent. This was linked to a general depolymerization of larger lignin molecules occurring during decolourisation by the two Streptomyces strains. Identification of low-molecular-mass aromatic compounds extracted from the decolourised effluent revealed only the presence of p-hydroxyphenyl units in effluents decolourised by the strain UAH 30 while p-hydroxyphenyl, guaiacyl and syringyl units were detected in effluents decolourised by Streptomyces strain UAH 51. The study indicates that, while decolourisation is a common feature of the two Streptomyces strains, the mechanisms involved in the degradation of the lignin fractions may be different and strain-specific. Received: 8 July 1996 / Received revision: 9 October 1996 / Accepted: 14 October 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号