首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This report describes the partial purification and the characteristics of (Na+ + K+)-ATPase (ATP phosphohydrolase, EC 3.6.1.3) from an amphibian source. Toad kidney microsomes were solubilized with sodium deoxycholate and further purified by sodium dodecyl sulphate treatment and sucrose gradient centrifugation, according to the methods described by Lane et al. [(1973) J. Biol. Chem. 248, 7197--7200], J?rgensen [(1974) Biochim. Biophys. Acta 356, 36--52] and Hayashi et al. [(1977) Biochim. Biophys. Acta 482, 185--196]. (Na+ + K+)-ATPase preparations with specific activities up to 1000 mumol Pi/mg protein per h were obtained. Mg2+-ATPase only accounted for about 2% of the total ATPase activity. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis revealed three major protein bands with molecular weights of 116 000, 62 000 and 26 000. The 116 000 dalton protein was phosphorylated by [gamma-32P]ATP in the presence of sodium but not in the presence of potassium. The 62 000 dalton component stained for glycoproteins. The Km for ATP was 0.40 mM, for Na+ 12.29 mM and for K+ 1.14 mM. The Ki for ouabain was 35 micron. Temperature activation curves showed two activity peaks at 37 degrees C and at 50 degrees C. The break in the Arrhenius plot of activity versus temperature appeared at 15 degrees C.  相似文献   

2.
Enzymes catalyze essential chemical reactions needed for living processes. (Na+ +K+)-ATPase (NKA) is one of the key enzymes that control intracellular ion homeostasis and regulate cardiac function. Little is known about activation of NKA and its biological impact. Here we show that native activity of NKA is markedly elevated when protein-protein interaction occurs at the extracellular DVEDSYGQQWTYEQR (D-R) region in the alpha-subunit of the enzyme. The apparent catalytic turnover of NKA is approximately twice as fast as the controls for both ouabain-resistant and ouabain-sensitive enzymes. Activation of NKA not only markedly protects enzyme function against denaturing, but also directly affects cellular activities by regulating intracellular Ca2+ transients and inducing a positive inotropic effect in isolated rat cardiac myocytes. Immunofluorescent labeling indicates that the D-R region of NKA is not a conventional digitalis-binding site. Our findings uncover a novel activation site of NKA that is capable of promoting the catalytic function of the enzyme and establish a new concept that activating of NKA mediates cardiac contraction.  相似文献   

3.
1. Incubation of purified (Na+ + K+)-ATPase (ATP phosphohydrolase EC 3.6.1.3) from rabbit kidney outer medulla with butanedione in borate buffer leads to reversible inactivation of the (Na+ + K+)-ATPase activity. 2. The reaction shows second-outer kinetics, suggesting that modification of a single amino acid residue is involved in the inactivation of the enzyme. 3. The pH dependence of the reaction and the effect of borate ions strongly suggest that modification of an arginine residue is involved. 4. Replacement of Na+ by K+ in the butanedione medium decreases inactivation. 5. ATP, ADP and adenylyl imido diphosphate, particularly in the presence of trans-1,2-diaminocyclohexane-N,N,N',N'-tetraacetic acid to complex Mg2+, protect the enzyme very efficiently against inactivation by butanedione. 6. The (Na+ + Mg2+)-dependent phosphorylation capacity of the enzyme is inhibited in the same degree as the (Na+ + K+)-ATPase activity by butanedione. 7. The K+-stimulated p-nitrophenylphosphatase activity is much less inhibited than the (Na+ + K+)ATPase activity. 8. The ATP stimulation of the K+-stimulated p-nitrophenylphosphatase activity is inhibited by butanedione to the same extent as the (Na+ + K+)-ATPase activity. 9. Modification of sulfhydryl groups with 5,5'-dithiobis(2-nitrobenzoic acid) protects partially against the inactivating effect of butanedione. 10. The results suggest that an arginine residue is present in the nucleotide binding centre of the enzyme.  相似文献   

4.
The temperature dependence of (Na+ + K+)-ATPase was measured, utilizing preparations of enzyme from heat and kidney of rats, hamsters, guinea pigs, ground squirrels, turtles, chickens, and ducks. The two hibernating species, hamsters and ground squirrels, were studied awake at normothermia and hibernating at 4 degrees C. The results for every species except the turtles showed the same temperature dependence established for (Na++K+)-ATPase from rabbit kidney with a quasi-linear dependence above 15 degrees C and little or no activity below 15 degrees C. Turtle enzymes showed a broad activity versus temperature curve with a fall-off at high and low temperatures. The data in all cases, including the turtle data, may be fitted by a previously described thermodynamic kinetic model. Further, the model will fith the turnover or decrease in enzyme activity at higher temperatures observed in a number of cases. These results do not support the widely imputed ion pumping role for (Na++K+)-ATPase.  相似文献   

5.
In this work, we present evidence in agreement with the hypothesis that there exist two Na+-stimulated ATPase activities in basolateral plasma membranes from rat kidney proximal tubular cells: (1) (Na+ + K+)-ATPase activity, which is inhibited by ouabain and by treating the membranes with trypsin, is insensitive to furosemide and reaches maximal activity upon treatment with SDS at an SDS/protein ratio of 1.6; (2) the Na+-ATPase activity, which is insensitive to ouabain and to trypsin treatment, is inhibited by furosemide and reaches maximal activity upon treatment with SDS at an SDS/protein ratio of 0.4.  相似文献   

6.
Lanthanides are useful probes in Ca2+ binding proteins, including sarcoplasmic reticulum (Ca2+,Mg2+)-ATPase. Here, we report that lanthanides compete with Rb+ and Na+ for occlusion in renal (Na+,K+)-ATPase. The lanthanides appear to bind at a single site and act as competitive antagonists, without themselves becoming occluded. All lanthanides tested are effective with the order of potencies Pr greater than Nd greater than La greater than Eu greater than Tb greater than Ho greater than Er, but differences are small. The presence of Mg2+ ions does not affect competition of La3+ with Na+ or K+ suggesting that the effects are not exerted via divalent metal sites. Lanthanides compete with Rb+ and Na+ in membranes digested with trypsin so as to produce 19-kDa and smaller fragments of the alpha-chain (Karlish, S.J.D., Goldshleger, R., and Stein, W. D. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 4566-4570), also suggestive of a direct interaction of lanthanides with Na+ and K+ sites. Effects of lanthanides on conformational changes of fluorescein-labeled (Na+,K+)-ATPase are Na(+)-like. They stabilize the E1 state and compete with K+ ions. The Ki for La3+ is 0.445 microM. The apparent affinity in fluorescence assays is proportional to enzyme concentration (Ki = 32.4*[protein] + 0.445 microM La3+), suggesting that lanthanides are also bound nonspecifically (possibly to phospholipids). Direct assays confirm that Tb3+ binding is nonspecific. Measurements of the rate of various conformational transitions show that the rate of E2(K+)----E1(X) (X = Na+ or La3+) is significantly inhibited by La3+ compared to Na+. La3+ ions also slightly accelerate the rate of the E1----E2(K+) conformational transition. The dissociation rate of La3+ has been measured by monitoring the rate of E1(La3+)----E2(K+). It is 1.741 s-1 at 25 degrees C. Based on this value, it is unlikely that La3+ ions are stably occluded, consistent with the conclusion from occlusion experiments. In the future, lanthanides bound to monovalent cation sites with high affinity may become useful probes for location and characterization of sites, although it will be necessary to take into account the large amount of nonspecific binding.  相似文献   

7.
Crystallization patterns of membrane-bound (Na+ +K+)-ATPase   总被引:6,自引:0,他引:6  
Extensive formation of two-dimensional crystals of the proteins of the pure membrane-bound (Na+ +K+)-ATPase is induced during prolonged incubation with vanadate and magnesium. Some membrane crystals are formed in medium containing magnesium and phosphate. Computer-averaged images of the two-dimensional crystals show that the unit cell in vanadate-induced crystals contains a protomeric alpha beta-unit of the enzyme protein. In phosphate-induced crystals an (alpha beta) 2-unit occupies one unit cell suggesting the interactions between alpha beta-units can be of importance in the function of the Na+, K+ pump.  相似文献   

8.
9.
10.
N-(1-Pyrene)maleimide is a hydrophobic, sulfhydryl-directed, chemical modification probe which, at a low concentration, inhibits the capacity of lamb kidney sodium- and potassium-activated adenosine triphosphatase [Na,K)-ATPase; EC 3.6.1.3) to bind ouabain. This inhibition is partially blocked by preincubation of the enzyme with ouabagenin, an aglycone derivative which can be used as a reversible protecting ligand for the ouabain binding site. The kinetics of inhibition are not first order, suggesting that there may be more than one site of labeling which is responsible for the inhibition of ouabain binding. Although earlier work (Kirley, T. L., Lane, L. K., and Wallick, E. T. (1986) J. Biol. Chem. 261, 4525-4528) indicates that the inhibition is accompanied by a loss in the number of binding sites rather than a decrease in affinity of the sites for the ligand, other data (Scheiner-Bobis, G., Zimmerman, M., Kirch, V., and Schoner, W. (1987) Eur. J. Biochem. 165, 653-656) indicates that there is no cysteine residue located extracellularly in the ouabain binding site. By sequence analysis of alpha subunit peptides labeled by N-(1-pyrene)maleimide in the absence but not in the presence of protecting ligand, it is demonstrated in this work that there are two major sites of labeling protected by the binding of ouabagenin, Cys-367 and Cys-656. Both of these sites are located in the large cytoplasmic domain of the alpha subunit, one close to the phosphorylation site (Asp-369), and the other implicated in the binding of ATP (Cys-656). Therefore, it appears from this data that the inhibition of ouabain binding by N-(1-pyrene)maleimide is not due to modification of a site in the binding pocket for cardiac glycosides, but rather to an allosteric effect, since cardiac glycoside binding is known to be dependent on the phosphorylation state of the enzyme. The dependence of inhibition on the presence of sodium, potassium, and ATP also is consistent with this interpretation. The work reported here thus explains the apparent paradox posed by the earlier data.  相似文献   

11.
Na+-ATPase activity is extremely sensitive to inhibition by vanadate at low Na+ concentrations where Na+ occupies only high-affinity activation sites. Na+ occupies low-affinity activation sites to reverse inhibition of Na+-ATPase and (Na+, K+)-ATPase activities by vanadate. This effect of Na+ is competitive with respect to both vanadate and Mg2+. The apparent affinity of the enzyme for vanadate is markedly increased by K+. The principal effect of K+ may be to displace Na+ from the low-affinity sites at which it activates Na+-ATPase activity.  相似文献   

12.
Goat antisera against (Na+ + K+)-ATPase and its isolated subunits and against (K+ + H+)-ATPase have been prepared in order to test for immune cross-reactivity between the two enzymes, whose catalytic subunits show great chemical similarity. None of the (Na+ + K+)-ATPase antisera cross-reacted with (K+ + H+)-ATPase or inhibited its enzyme activity. The same was true for the (K+ + H+)-ATPase antiserum with regard to (Na+ + K+)-ATPase and its subunits and its enzyme activity. So not withstanding the chemical similarity of their subunits, there is no immunological cross-reactivity between these two plasma membrane ATPases.Number LIII in the series Studies on (Na+ + K+)-Activated ATPase.  相似文献   

13.
Showdomycin inhibited pig brain (Na+ + K+)-ATPase with pseudo first-order kinetics. The rate of inhibition by showdomycin was examined in the presence of 16 combinations of four ligands, i.e., Na+, K+, Mg2+ and ATP, and was found to depend on the ligands added. Combinations of ligands were divided into five groups in terms of the magnitude of the rate constant; in the order of decreasing rate constants these were: (1) Na+ + Mg2+ + ATP, (2) Mg2+, Mg2+ + K+, K+ and none, (3) Na+ + Mg2+, Na+, K+ + Na+ and Na+ + K+ + Mg2+, (4) Mg2+ + K+ + ATP, K+ + ATP and Mg2+ + ATP, (5) K+ + Na + + ATP, Na+ + ATP, Na+ + K+ + Mg2+ + ATP and ATP. The highest rate was obtained in the presence of Na+, Mg2+ and ATP. The apparent concentrations of Na+, Mg2+ and ATP for half-maximum stimulation of inhibition (KS0.5) were 3 mM, 0.13 mM and 4 MicroM, respectively. The rate was unchanged upon further increase in Na+ concentration from 140 to 1000 mM. The rates of inhibition could be explained on the basis of the enzyme forms present, including E1, E2, ES, E1-P and E2-P, i. e., E2 has higher reactivity with showdomycin than E1, while E2-P has almost the same reactivity as E1-P. We conclude that the reaction of (Na+ + K+)- ATPase proceeds via at least four kinds of enzyme form (E1, E2, E1 . nucleotide and EP), which all have different conformations.  相似文献   

14.
Synaptosomal fractions and synaptosomal membranes from rat brain tissue were prepared and characterized enzymatically. Arecoline increased both the activity of K+-phosphatase in incubated synaptosomal fractions and the (Na+ + K+)-ATPase activity of synaptosomal membranes by 40% and 78%, respectively. This activation of ion transport processes is believed to be associated with increased ACh synthesis produced by arecoline.  相似文献   

15.
1. The requirement for specific polar head groups of phospholipids for activity of purified (Na+ + K+)ATPase from rabbit kidney outer medulla has been investigated. 2. Comparison of content and composition of phospholipids in microsomes and the purified enzyme indicates that purification leads to an increase in the phospholipid/protein ratio and in phosphatidylserine content. 3. The purified preparation contains 267 molecules phospholipid per molecule (Na+ + K+)-ATPase, viz. 95 phosphatidylcholine, 74 phosphatidylethanolamine, 48 spingomyelin, 35 phosphatidylserine and 15 phosphatidylinositol. 4. Complete conversion of phosphatidylserine into phosphatidylethanolamine by the enzyme phosphatidylserine decarboxylase has no effect on the (Na+ + K+)-ATPase activity of the purified preparation. 5. Complete hydrolysis of phosphatidylinositol by a phospholipase C from Staphylococcus aureus, which is specific for this phospholipid, has no effect on the (Na+ + K+)-ATPase activity. 6. Hydrolysis of 95% of the phosphatidylcholine and 60--70% of the spingomyelin and phosphatidylethanolamine by another phospholipase C (Clostridium welchii) lowers the (Na+ + K+)-ATPase activity by about 20%. 7. Combination of the phospholipid-converting enzymes has the same effect as can be calculated from the effects of the enzymes separately. Only complete conversion of both phosphatidylserine and phosphatidylinositol results in a loss of 44% of the (NA+ + K+)-ATPase activity and 36% of the potassium 4-nitrophenylphosphatase activity. 8. These experiments indicate that there is no absolute requirement for one of the polar head groups, although in the absence of negative charges the activity is lower than in their presence.  相似文献   

16.
Incubation of rabbit kidney microsomes with pig pancreatic phospholipase A2 produced residual membrane preparations with very low (Na+ + K+)-ATPase activity. The activity could be restored by recombination with lipid vesicles of negatively-charged glycerophospholipids. Vesicles of pure phosphatidylcholine and phosphatidylethanolamine were virtually inactive in this respect, but could reactivate in the presence of cholate. Incubation of the microsomes with a combination of phospholipase C (Bacillus cereus) and spingomyelinase C (Staphylococcus aureus) resulted in 90--95% release of the phospholipids. The residual membrane contained only phosphatidylinositol and still showed 50--100% of the (Na+ + K+)-ATPase activity.  相似文献   

17.
Structural organization of (Na+ + K+)-ATPase in purified membranes   总被引:2,自引:2,他引:2       下载免费PDF全文
The structural organization of crystalline, membrane-bound (Na+ + K+)-ATPase was studied by negative staining and thin sectioning. The enzyme molecules were induced to form crystalline arrays within fragments of membrane by incubation in defined ionic conditions. The enzyme remained fully active after crystallization. Negative staining and computer processing of images of the crystalline specimens identified two discrete crystalline arrays. The dimensions of the unit cell of one of the arrays were large enough to accommodate an alpha beta protomer; those of the other array, an (alpha beta)2 diprotomer . Thin sections of the crystalline fraction contained a unique membrane complex that was formed from two apposed plasma membranes. The paired membranes in this complex were separated by a center-to-center space of 15 nm containing evenly spaced septa that connected the membrane surfaces; the overall thickness of the entire structure was 22-25 nm. The agglutinin from Ricinus communis, a lectin that binds to the carbohydrate moiety of the beta-subunit of (Na+ + K+)-ATPase, decorated the free surfaces of the complex. Therefore, this complex of paired membranes is the result of interactions between the cytoplasmic domains of the enzyme. From measurements of the dimensions of these structures, we estimate the overall length of the enzyme to be approximately 11.5 nm along the axis perpendicular to the plane of the membrane, and the molecular protrudes more (approximately 5 nm) on the cytoplasmic surface than on the extracytoplasmic surface (approximately 2 nm).  相似文献   

18.
The effect of the protein structure of (Na+ + K+)-ATPase on its incorporation into liposome membranes was investigated as follows: the catalytic alpha-subunit of (Na+ + K+)-ATPase was split into low-molecular weight fragments by trypsin treatment and the digested enzyme was reconstituted at the same protein concentration as intact control enzyme. The reconstitution process was quantified by the average number of intramembrane particles appearing on concave and convex fracture faces after freeze-fracture of the (Na+ + K+)-ATPase liposomes. The number of intramembrane particles as well as their distribution on concave and convex fracture faces is not modified by the proteolysis. In contrast, the ATPase activity and the transport capacity of the (Na+ + K+)-ATPase decrease progressively with increasing incubation times in the presence of trypsin and are abolished when the original 100 000 molecular weight alpha-subunit is no longer visible by sodium dodecylsulfate gel electrophoresis. Apparently, functional (Na+ + K+)-ATPase with intact protein structure and digested, non functional enzyme consisting of fragments of the alpha-subunit reconstitute in the same manner and to the same extent as judged by freeze-fracture analysis. We conclude that, while trypsin treatment modifies the (Na+ + K+)-ATPase molecule in a functional sense, it appears not to modify its interaction with the bilayer in producing intramembrane particles. On the basis of our results, we propose a lipid-lipid interaction mechanism for reconstitution of (Na+ + K+)-ATPase.  相似文献   

19.
Structural changes in the purified (Na+ + K+)-ATPase accompanying detergent inactivation were investigated by monitoring changes in light scattering, intrinsic protein fluorescence, and tryptophan to beta-parinaric acid fluorescence resonance energy transfer. Two phases of inactivation were observed using the non-ionic detergents, digitonin, Lubrol WX and Triton X-100. The rapid phase involves detergent monomer insertion but little change in protein structure or little displacement of closely associated lipids as judged by intrinsic protein fluorescence and fluorescence resonance energy transfer. Lubrol WX and Triton X-100 also caused membrane fragmentation during the rapid phase. The slower phase of inactivation results in a completely inactive enzyme in a particle of 400 000 daltons with 20 mol/mol of associated phospholipid. Fluorescence changes during the course of the slow phase indicate some dissociation of protein-associated lipids and an accompanying protein conformational change. It is concluded that non-parallel inhibition of (Na+ + K+)-ATPase and p-nitrophenylphosphate activity by digitonin (which occurs during the rapid phase of inactivation) is unlikey to require a change in the oligomeric state of the enzyme. It is also concluded that at least 20 mol/mol of tightly associated lipid are necessary for either (Na+ + K+)-ATPase or p-nitrophenylphosphatase activity and that the rate-limiting step in the slow inactivation phase involves dissociation of an essential lipid.  相似文献   

20.
Bass gill microsomal preparations contain both a Na+, K+ and Mg2+-dependent ATPase, which is completely inhibited by 10(-3)M ouabain and 10(-2)M Ca2+, and also a ouabain insensitive ATP-ase activity in the presence of both Mg2+ and Na+. Under the optimal conditions of pH 6.5, 100 mM Na+, 20 mM K+, 5 mM ATP and 5 mM Mg2+, (Na+ + K+)-ATPase activity at 30 degrees C is 15.6 mumole Pi hr/mg protein. Bass gill (Na+ + K+)-ATPase is similar to other (Na+ + K+)-ATPases with respect to the sensitivity to ionic strength, Ca2+ and ouabain and to both Na+/K+ and Mg2+/ATP optimal ratios, while pH optimum is lower than poikilotherm data. The enzyme requires Na+, whereas K+ can be replaced efficiently by NH+4 and poorly by Li+. Both Km and Vm values decrease in the series NH+4 greater than K+ greater than Li+. The break of Arrhenius plot at 17.7 degrees C is close to the adaptation temperature. Activation energies are scarcely different from each other and both lower than those generally reported. The Km for Na+ poorly decreases as the assay temperature lowers. The comparison with literature data aims at distinguishing between distinctive and common features of bass gill (Na+ + K+)-ATPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号