首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
2.
3.
4.
Bile salt export pump (BSEP) is a major bile acid transporter in the liver. Mutations in BSEP result in progressive intrahepatic cholestasis, a severe liver disease that impairs bile flow and causes irreversible liver damage. BSEP is a target for inhibition and down-regulation by drugs and abnormal bile salt metabolites, and such inhibition and down-regulation may result in bile acid retention and intrahepatic cholestasis. In this study, we quantitatively analyzed the regulation of BSEP expression by FXR ligands in primary human hepatocytes and HepG2 cells. We demonstrate that BSEP expression is dramatically regulated by ligands of the nuclear receptor farnesoid X receptor (FXR). Both the endogenous FXR agonist chenodeoxycholate (CDCA) and synthetic FXR ligand GW4064 effectively increased BSEP mRNA in both cell types. This up-regulation was readily detectable at as early as 3 h, and the ligand potency for BSEP regulation correlates with the intrinsic activity on FXR. These results suggest BSEP as a direct target of FXR and support the recent report that the BSEP promoter is transactivated by FXR. In contrast to CDCA and GW4064, lithocholate (LCA), a hydrophobic bile acid and a potent inducer of cholestasis, strongly decreased BSEP expression. Previous studies did not identify LCA as an FXR antagonist ligand in cells, but we show here that LCA is an FXR antagonist with partial agonist activity in cells. In an in vitro co-activator association assay, LCA decreased CDCA- and GW4064-induced FXR activation with an IC(50) of 1 microm. In HepG2 cells, LCA also effectively antagonized GW4064-enhanced FXR transactivation. These data suggest that the toxic and cholestatic effect of LCA in animals may result from its down-regulation of BSEP through FXR. Taken together, these observations indicate that FXR plays an important role in BSEP gene expression and that FXR ligands may be potential therapeutic drugs for intrahepatic cholestasis.  相似文献   

5.
6.
7.
8.
9.
Polyunsaturated fatty acids (PUFAs) have been previously reported as agonists of peroxisome proliferatoractivated receptor and antagonists of the liver X receptor. The activities on these two nuclear receptors have been attributed to their beneficial effects such as improvement of dyslipidemia and insulin sensitivity and decrease of hepatic lipogenesis. Here we report that PUFAs are ligands of farnesoid X receptor (FXR), a nuclear receptor for bile acids. In a conventional FXR binding assay, arachidonic acid (AA, 20:4), docosahexaenoic acid (DA, 22:6), and linolenic acid (LA, 18:3) had an affinity of 2.6, 1.5, and 3.5 microM, respectively. In a cell-free coactivator association assay, AA, DA, and LA decreased FXR agonist-induced FXR activation with IC(50)s ranging from 0.9 to 4.7 microM. In HepG2 cells, PUFAs regulated the expression of two FXR targets, BSEP and kininogen, in an opposite fashion, although both genes were transactivated by FXR. All three PUFAs dose-dependently enhanced FXR agonist-induced BSEP expression but decreased FXR agonist-induced human kininogen mRNA. Saturated fatty acids such as stearic acid (SA, 18:0) and palmitic acid (PA, 16:0) did not bind to FXR and did not change BSEP or kininogen expression. The pattern of BSEP and kininogen regulation by PUFAs is closely similar to that of the guggulsterone, previously reported as a selective bile acid receptor modulator. Our results suggest that PUFAs may belong to the same class of FXR ligands as guggulsterone, and that the selective regulation of FXR targets may contribute to the beneficial effects of PUFAs in lipid metabolism.  相似文献   

10.
Dehydroepiandrosterone sulfotransferase (STD) is a hydroxysteroid sulfo-conjugating enzyme with preferential substrate specificity for C-19 androgenic steroids and C-24 bile acids. STD is primarily expressed in the liver, intestine and adrenal cortex. Earlier studies have shown that androgens inhibit the rat Std promoter function through a negative androgen response region located between -235 and -310 base pair positions (Song, C. S., Jung, M. H., Kim, S. C., Hassan, T., Roy, A. K., and Chatterjee, B. (1998) J. Biol. Chem. 273, 21856-21866). Here we report that the primary bile acid chenodeoxycholic acid (CDCA) also acts as an important regulator of the Std gene promoter. CDCA is a potent inducer of the Std gene, and its inducing effect is mediated through the bile acid-activated farnesoid X receptor (FXR), a recently characterized member of the nuclear receptor superfamily. The ligand-activated FXR acts as a heterodimer with the 9-cis-retinoic acid receptor (RXR) and regulates the Std gene by binding to an upstream region at base pair positions -169 to -193. This specific binding region was initially identified by bile acid responsiveness of the progressively deleted forms of the Std promoter in transfected HepG2 hepatoma and enterocyte-like Caco-2 cells. Subsequently, the precise RXR/FXR binding position was established by protein-DNA interaction using in vitro footprinting and electrophoretic mobility shift analyses. Unlike all other previously characterized FXR target genes, which contain an inverted repeat (IR) of the consensus hexanucleotide half-site (A/G)G(G/T)TCA with a single nucleotide spacer (IR-1), the bile acid response element of the Std promoter does not contain any spacer between the two hexanucleotide repeats (IR-0). A promoter-reporter construct carrying three tandem copies of the IR-0 containing -169/-193 element, linked to a minimal thymidine kinase promoter, can be stimulated more than 70-fold in transfected Caco-2 cells upon CDCA treatment. Autoregulation of the STD gene by its bile acid substrate may provide an important contributing role in the enterohepatic bile acid metabolism and cholesterol homeostasis.  相似文献   

11.
12.
The farnesoid X receptor (FXR) is a bile acid/alcohol-activated nuclear receptor that regulates lipid homeostasis. Unlike other steroid receptors, FXR binds bile acids in an orientation that allows the steroid nucleus A ring to face helix 12 in the receptor, a crucial domain for coactivator-recruitment. Because most naturally occurring bile acids and alcohols contain a cis-oriented A ring, which is distinct from that of other steroids and cholesterol metabolites, we investigated the role of this 5beta-configuration in FXR activation. The results showed that the 5beta-(A/B cis) bile alcohols 5beta-cyprinol and bufol are potent FXR agonists, whereas their 5alpha-(A/B trans) counterparts antagonize FXR transactivation and target gene expression. Both isomers bound to FXR, but their ability to induce coactivator-recruitment and thereby induce transactivation differed. These findings suggest a critical role for the A-ring orientation of bile salts in agonist/antagonist function.  相似文献   

13.
The primary bile acid receptor farnesoid X receptor (FXR) maintains lipid and glucose homeostasis by regulating expression of numerous bile acid-responsive genes, including an orphan nuclear receptor and metabolic regulator SHP. Using SHP as a model gene, we studied how FXR activity is regulated by p300 acetylase. FXR interaction with p300 and their recruitment to the SHP promoter and acetylated histone levels at the promoter were increased by FXR agonists in mouse liver and HepG2 cells. In contrast, p300 recruitment and acetylated histones at the promoter were not detected in FXR-null mice. p300 directly interacted with and acetylated FXR in vitro. Overexpression of p300 wild type increased, whereas a catalytically inactive p300 mutant decreased, acetylated FXR levels and FXR transactivation in cells. While similar results were observed with a related acetylase, CBP, GCN5 did not enhance FXR transactivation, and its recruitment to the promoter was not increased by FXR agonists, suggesting functional specificity of acetylases in FXR signaling. Down-regulation of p300 by siRNA decreased acetylated FXR and acetylated histone levels, and occupancy of FXR at the promoter, resulting in substantial inhibition of SHP expression. These results indicate that p300 acts as a critical coactivator of FXR induction of SHP by acetylating histones at the promoter and FXR itself. Surprisingly, p300 down-regulation altered expression of other metabolic FXR target genes involved in lipoprotein and glucose metabolism, such that beneficial lipid and glucose profiles would be expected. These unexpected findings suggest that inhibition of hepatic p300 activity may be beneficial for treating metabolic diseases.  相似文献   

14.
15.
16.
17.
Cholesterol feeding upregulates CYP7A1 in rats but downregulates CYP7A1 in rabbits. To clarify the mechanism responsible for the upregulation of CYP7A1 in cholesterol-fed rats, the effects of dietary cholesterol (Ch) and cholic acid (CA) on the activation of the nuclear receptors, liver X-receptor (LXR-alpha) and farsenoid X-receptor (FXR), which positively and negatively regulate CYP7A1, were investigated in rats. Studies were carried out in four groups (n = 12/group) of male Sprague-Dawley rats fed regular chow (control), 2% Ch, 2% Ch + 1% CA, and 1% CA alone for 1 wk. Changes in mRNA expression of short heterodimer partner (SHP) and bile salt export pump (BSEP), target genes for FXR, were determined to indicate FXR activation, whereas the expression of ABCA1 and lipoprotein lipase (LPL), target genes for LXR-alpha, reflected activation. CYP7A1 mRNA and activity increased twofold and 70%, respectively, in rats fed Ch alone when the bile acid pool size was stable but decreased 43 and 49%, respectively, after CA was added to the Ch diet, which expanded the bile acid pool 3.4-fold. SHP and BSEP mRNA levels did not change after feeding Ch but increased 88 and 37% in rats fed Ch + CA. This indicated that FXR was activated by the expanded bile acid pool. When Ch or Ch + CA were fed, hepatic concentrations of oxysterols, ligands for LXR-alpha increased to activate LXR-alpha, as evidenced by increased mRNA levels of ABCA1 and LPL. Feeding CA alone enlarged the bile acid pool threefold and increased the expression of both SHP and BSEP. These results suggest that LXR-alpha was activated in rats fed both Ch or Ch + CA, whereas CYP7A1 mRNA and activity were induced only in Ch-fed rats where the bile acid pool was not enlarged such that FXR was not activated. In rats fed Ch + CA, the bile acid pool expanded, which activated FXR to offset the stimulatory effects of LXR-alpha on CYP7A1.  相似文献   

18.
The farnesoid X receptor (FXR) is activated by bile acids, natural agonists for this nuclear receptor. FXR-target genes play important roles in cholesterol and lipid metabolism. We have found that a series of 5beta-cholanic acid derivatives, even though without a hydroxyl group or any other substituent on the steroidal rings, can activate FXR more potently than hydroxylated bile acids in a reporter gene assay. The most potent compound among these derivatives, N-methyl-5beta-glycocholanic acid (NMGCA), induces the formation of receptor/coactivator complex in a gel-shift assay and also increases the expression of FXR target genes in human hepatoma HepG2 cells. Furthermore, in rats, NMGCA causes hypolipidemic effects as well as induction of the FXR target genes in liver. Our results suggest that NMGCA and its derivatives are important FXR activators in the study of the physiological functions of FXR and are potentially useful as pharmaceutical agents for treatment of cholesterol and lipid-related diseases.  相似文献   

19.
Peroxisome proliferator-activated receptor alpha (PPARalpha) is a nuclear receptor that controls lipid and glucose metabolism and exerts antiinflammatory activities. PPARalpha is also reported to influence bile acid formation and bile composition. Farnesoid X receptor (FXR) is a bile acid-activated nuclear receptor that mediates the effects of bile acids on gene expression and plays a major role in bile acid and possibly also in lipid metabolism. Thus, both PPARalpha and FXR appear to act on common metabolic pathways. To determine the existence of a molecular cross-talk between these two nuclear receptors, the regulation of PPARalpha expression by bile acids was investigated. Incubation of human hepatoma HepG2 cells with the natural FXR ligand chenodeoxycholic acid (CDCA) as well as with the nonsteroidal FXR agonist GW4064 resulted in a significant induction of PPARalpha mRNA levels. In addition, hPPARalpha gene expression was up-regulated by taurocholic acid in human primary hepatocytes. Cotransfection of FXR/retinoid X receptor in the presence of CDCA led to up to a 3-fold induction of human PPARalpha promoter activity in HepG2 cells. Mutation analysis identified a FXR response element in the human PPARalpha promoter (alpha-FXR response element (alphaFXRE)] that mediates bile acid regulation of this promoter. FXR bound the alphaFXRE site as demonstrated by gel shift analysis, and CDCA specifically increased the activity of a heterologous promoter driven by four copies of the alphaFXRE. In contrast, neither the murine PPARalpha promoter, in which the alphaFXRE is not conserved, nor a mouse alphaFXRE-driven heterologous reporter, were responsive to CDCA treatment. Moreover, PPARalpha expression was not regulated in taurocholic acid-fed mice. Finally, induction of hPPARalpha mRNA levels by CDCA resulted in an enhanced induction of the expression of the PPARalpha target gene carnitine palmitoyltransferase I by PPARalpha ligands. In concert, these results demonstrate that bile acids stimulate PPARalpha expression in a species-specific manner via a FXRE located within the human PPARalpha promoter. These results provide molecular evidence for a cross-talk between the FXR and PPARalpha pathways in humans.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号