首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes in myosin isozymes during development of chicken breast muscle   总被引:1,自引:0,他引:1  
The patterns of myosin isozymes in embryonic and adult chicken pectoralis muscle were examined by electrophoresis in a non-denaturing gel system (pyrophosphate acrylamide gel electrophoresis), and both light chains and heavy chains of embryonic and adult myosin isozymes were compared. In pyrophosphate acrylamide gel electrophoresis, the predominant isozyme component in embryonic pectoralis myosin could be clearly distinguished from adult myosin isozymes. SDS-polyacrylamide gel electrophoresis indicated that the light chain composition of embryonic myosin was also different from that of adult myosin. The pattern of peptide fragments produced by myosin digestion with a-chymotrypsin differed significantly between embryonic and adult skeletal myosin. These results suggest that myosin in the embryonic pectoralis muscle is different in both light and heavy chain composition from myosin in the same adult tissue.  相似文献   

2.
Three skeletal muscles viz., gastrocnemius, pectoralis and diaphragm from rats acclimated to a low temperature (4 +/- 1 degrees C; 16 hr daily; maximum for 8 weeks) exhibit an increased myosin ATPase activity. An analysis of native myosin from these muscles under non-dissociating conditions reveals two myosin isozymes instead of a single isozyme expressed in control muscles. Isoelectric focusing (IEF) coupled with two dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis (2-D SDS-PAGE) confirms an increased phosphorylation of myosin light chain 2 (MLC2) in muscles from cold acclimated rats.  相似文献   

3.
The CNBr peptides of [14C]carboxymethylated cardiac myosin heavy chains from euthyroid and thyrotoxic rabbits have been compared using a two-dimensional electrophoretic system. The results indicated that there were extensive differences in the peptide "maps" of these heavy chains, which included differences in the distribution of radiolabeled thiol peptides. Also, the patterns of heavy chain peptides from the cardiac myosins have been compared with those produced by the heavy chain myosin isozymes from skeletal muscles. Peptide maps of heavy chains from red skeletal muscle myosin closely resembled the pattern of peptides found with cardiac myosin heavy chains from euthyroid rabbits. However, peptide maps of heavy chains from white skeletal muscle myosin were dissimilar to those of the cardiac myosin isozymes. We conclude that thyroxine administration stimulates the synthesis of a cardiac myosin isozyme with a heavy chain primary structure which is different from either of the skeletal muscle myosin isozymes.  相似文献   

4.
Changes in myosin isozymes during development of chicken gizzard muscle   总被引:3,自引:0,他引:3  
The distribution of myosin isozymes in embryonic and adult chicken gizzard muscle were examined by electrophoresis in a non-denaturing gel system (pyrophosphate acrylamide gel electrophoresis), and both light and heavy chains of embryonic and adult myosin isozymes were compared. In pyrophosphate acrylamide gel electrophoresis, there were three isozyme components in embryonic gizzard myosin, but only one isozyme in adult gizzard myosin. The mobility of the fastest migrating embryonic isozyme was similar to that of the adult isozyme. The three embryonic isozymes differ from each other in the light chain distribution. Two of them contain an embryo-specific myosin light chain, which is characterized by its molecular weight and isoelectric point, whereas the other embryonic myosin isozyme contained the same light chains as the adult myosin. The pattern of peptide fragments of embryonic heavy chain produced by digestion with alpha-chymotrypsin in the presence of SDS was not distinguishable from that of adult myosin heavy chain. Thus there are myosin isozymes specific to embryonic gizzard muscle which exhibit embryo-specific light chain compositions, but are similar to adult gizzard myosin in their heavy chain structure.  相似文献   

5.
Human cardiac ventricular myosin subfragment-1 (S-1) was prepared by chymotryptic digestion of myosin purified from adult and fetal hearts. The enzymatic properties of adult S-1 were compared to those of two light chain isozymes of fetal S-1 which were separated by ion-exchange chromatography. One fetal isozyme contained a light chain (LC) indistinguishable from the adult ventricular LC1 and the other fetal isozyme contained the LC1 variant that is a component of intact fetal myosin. The fetal isozymes had identical actin-activated Mg2+ ATPase rates at all actin concentrations, as well as the same K+EDTA, Ca2+, and Mg2+ATPase rates. Furthermore, both fetal isozymes had the same actin-activated Mg2+ATPase rates as S-1 purified from adult hearts. The K+EDTA and Ca2+ATPase rates of adult S-1 were only slightly different from those of fetal S-1. These observations are consistent with other available data suggesting that human fetal and adult ventricular myosin differ only in light chain content, not in heavy chain composition, and indicate that isozymic LC1 variation does not alter the steady-state ATPase rate of human cardiac S-1.  相似文献   

6.
The expression of fast myosin heavy chain (MHC) isoforms was examined in developing bicep brachii, lateral gastrocnemius, and posterior latissimus dorsi (PLD) muscles of inbred normal White Leghorn chickens (Line 03) and genetically related inbred dystrophic White Leghorn chickens (Line 433). Utilizing a highly characterized monoclonal antibody library we employed ELISA, Western blot, immunocytochemical, and MHC epitope mapping techniques to determine which MHCs were present in the fibers of these muscles at different stages of development. The developmental pattern of MHC expression in the normal bicep brachii was uniform with all fibers initially accumulating embryonic MHC similar to that of the pectoralis muscle. At hatching the neonatal isoform was expressed in all fibers; however, unlike in the pectoralis muscle the embryonic MHC isoform did not disappear. With increasing age the neonatal MHC was repressed leaving the embryonic MHC as the only detectable isoform present in the adult bicep brachii muscle. While initially expressing embryonic MHC in ovo, the post-hatch normal gastrocnemius expressed both embryonic and neonatal MHCs. However, unlike the bicep brachii muscle, this pattern of expression continued in the adult muscle. The adult normal gastrocnemius stained heterogeneously with anti-embryonic and anti-neonatal antibodies indicating that mature fibers could contain either isoform or both. Neither the bicep brachii muscle nor the lateral gastrocnemius muscle reacted with the adult specific antibody at any stage of development. In the developing posterior latissimus dorsi muscle (PLD), embryonic, neonatal, and adult isoforms sequentially appeared; however, expression of the embryonic isoform continued throughout development. In the adult PLD, both embryonic and adult MHCs were expressed, with most fibers expressing both isoforms. In dystrophic neonates and adults virtually all fibers of the bicep brachii, gastrocnemius, and PLD muscles were identical and contained embryonic and neonatal MHCs. These results corroborate previous observations that there are alternative programs of fast MHC expression to that found in the pectoralis muscle of the chicken (M.T. Crow and F.E. Stockdale, 1986, Dev. Biol. 118, 333-342), and that diversification into fibers containing specific MHCs fails to occur in the fast muscle fibers of the dystrophic chicken. These results are consistent with the hypothesis that avian muscular dystrophy is a developmental disorder that is associated with alterations in isoform switching during muscle maturation.  相似文献   

7.
Abstract. Myosin isozymes from the slow soleus and fast EDL muscles of the rat hindlimb were analyzed by pyrophosphate gel electrophoresis, by peptide mapping of heavy chains, and by antibody staining. At the earliest stage examined, 20 days gestation, distinctions between the developing fast and slow muscles were seen by all these criteria; all fibers in the distal hindlimb reacted strongly with antibody to adult fast myosin. Some fibers also reacted with antibody to adult slow myosin; these fibers had a precise, axial distribution in the hindlimb. This pattern of staining which includes the entire soleus, foreshadows the adult distribution of slow fibers and may indicate that the specific pattern of innervation of the limb is already determined. In the early developing soleus there are four fetal and neonatal isozymes plus two isozymes present in equal proportions in the 'slow' area of the pyrophosphate gel. The mobility of these two slow isozymes decreases with maturity and the slowest moving isozyme gradually becomes the dominant species. Thus early diversity between the soleus and EDL is expressed by myosins which are distinct from the mature isozymes. The relative proportion of slow isozymes significantly increases with development and as this occurs the fetal and neonatal isozymes are progressively eliminated. Transiently at least one mature fast isozyme appears in the soleus. This is present at 15 days postpartum and probably correlates with the population of fast, type II fibers, which comprise 50% of this muscle cell population at 15 days. The EDL contained three fetal and neonatal isozymes and only one slow isozyme which does not change in mobility with age. Slow isozymes in the soleus and EDL are thus not identical. Each muscle underwent a unique series of changes until the adult pattern of isozymes and heavy chains was reached about one month postpartum.  相似文献   

8.
A monoclonal antibody, 2B6, has been prepared against the embryonic myosin heavy chain of rat skeletal muscle. On solid phase radioimmunoassay, 2B6 shows specificity to myosin isozymes known to contain the embryonic myosin heavy chain and on immunoblots of denatured contractile proteins and on competitive radioimmunoassay, it reacts only with the myosin heavy chain of embryonic myosin and not with the myosin heavy chain of neonatal or adult fast and slow myosin isozymes or with other contractile or noncontractile proteins. This specificity is maintained with cat, dog, guinea pig, and human myosins, but not with chicken myosins. 2B6 was used to define which isozymes in the developing animal contained the embryonic myosin heavy chain and to characterize the changes in embryonic myosin heavy chain in fast versus slow muscles during development. Finally, 2B6 was used to demonstrate that thyroid hormone hastens the disappearance of embryonic myosin heavy chain during development, while hypothyroidism retards its decrease. This confirmed our previous conclusion that thyroid hormones orchestrate changes in isozymes during development.  相似文献   

9.
Myosin heavy chains prepared from the pectoralis major and from the posterior latissimus dorsi of the same adult chicken exhibit different peptide maps when cleaved with Staphylococcus aureus V8 protease. These differences were observed at five different enzyme concentrations and in chickens of various strains. The cleavage pattern of pectoralis major myosin heavy chain from different adult chickens was always identical, as was that of posterior latissimus dorsi myosin heavy chain, demonstrating the reproducibility of the technique. However, when RNAs extracted from the pectoralis major and from the posterior latissimus dorsi were translated in a cell-free reticulocyte lysate, the myosin heavy chain encoded by pectoralis major RNA and the myosin heavy chain encoded by posterior latissimus dorsi RNA exhibited identical peptide maps. These results suggest that the different peptide maps of myosin heavy chains from the pectoralis major and posterior latissimus dorsi may arise from posttranslational modifications.  相似文献   

10.
The dwarf mutation in mice interferes with the development of those anterior pituitary cells responsible for production of thyroid stimulating hormone, growth hormone, and prolactin. Myosin isozyme transitions in both cardiac and skeletal muscle were also found to be affected in this mutant. Electrophoresis of native myosins demonstrated that the fetal (V3) to adult (V1) ventricular cardiac isozyme transition was completely blocked in dwarf mice; in contrast, the neonatal to adult fast myosin transition in hind limb skeletal muscle was slowed but not totally inhibited. The persistence of neonatal myosin heavy chain for up to 55-75 d after birth in dwarf mice, as compared with 16 d in normal mice, was directly demonstrated by polypeptide and immunopolypeptide mapping. Morphological examination of 18-36-d-old dwarf skeletal muscles by optical and electron microscopy revealed a relative immaturity, but no signs of gross pathology were evident. Immunocytochemical analysis showed that the abnormal persistence of neonatal myosin occurs in most of the fibers. Multiple injections of thyroxine restored a normal isozyme complement to both cardiac and skeletal muscles within 11-15 d. Therefore, the effects of the dwarf mutation on myosin isozymes can be explained by the lack of thyroid hormone in these animals. Because the synthesis of growth hormone is not stimulated by thyroid hormone in dwarf mice as it would be in normal animals, these results demonstrate that thyroid hormone promotes myosin isozyme transitions independent of growth hormone production.  相似文献   

11.
The myosin heavy chain composition of muscle fibers that comprise the red strip of the pectoralis major was determined at different stages of development and following adult denervation. Using a library of characterized monoclonal antibodies we found that slow fibers of the red strip do not react with antibodies to any of the fast myosin heavy chains of the superficial pectoralis. Immunocytochemical analysis of the fast fibers of the adult red strip revealed that they contain the embryonic fast myosin heavy chain rather than the adult pectoral isoform found throughout the adult white pectoralis. This was confirmed using immunoblot analysis of myosin heavy chain peptide maps. We show that during development of the red strip both neonatal and adult myosin heavy chains appear transiently, but then disappear during maturation. Furthermore, while the fibers of the superficial pectoralis reexpress the neonatal isoform as a result of denervation, the fibers of the red strip reexpress the adult isoform. Our data demonstrate a new developmental program of fast myosin heavy chain expression in the chicken and suggest that the heterogeneity of myosin heavy chain expression in adult fast fibers results from repression of specific isoforms by innervation.  相似文献   

12.
The myosin isozymes present in the developing rat soleus muscle from 1 week to 6 weeks after birth were investigated using biochemical and immunological methods. Electrophoresis of native myosin reveals that adult slow myosin is present in the soleus as early as 1 week after birth. At this time, embryonic and neonatal myosin can also be demonstrated. Using an immunotransfer technique, the presence of slow myosin heavy chain can be demonstrated at all time points examined whereas neonatal myosin heavy chain diminishes in quantity between 2 and 3 weeks, and is undetectable in the adult soleus. Specific polyclonal antibodies were prepared to embryonic, neonatal, and adult fast and slow myosins. Immunocytochemistry reveals a cellular heterogeneity at all stages examined. Different combinations of myosin isozymes can be found in the soleus fibers depending on the stage of development; these results suggest therefore that myosin isozyme transitions are occurring. Approximately half the fibers contain embryonic and slow myosin at 1 week after birth; these fibers subsequently contain only slow myosin. A second group of fibers contains embryonic and neonatal myosin at 1 week and most of them subsequently accumulate adult fast myosin. A portion of this latter group begins to acquire slow myosin from 4 weeks of age. These data are interpreted to suggest that a preprogrammed sequence of myosin isozymes is embryonic----neonatal----adult fast. At any time during development of an individual fiber, induction of slow myosin accumulation and repression of other types can occur.  相似文献   

13.
D A Winkelmann  S Lowey  J L Press 《Cell》1983,34(1):295-306
Monoclonal antibodies were used to identify and localize by immunoelectron microscopy epitopes on myosin isozymes. An antibody that reacts with an amino-terminal fragment of the myosin heavy chain maps on the myosin head 140 A distal to the head-rod junction. It identifies an epitope that is shared on adult and embryonic myosin, and detects two transitions in myosin expression during avian pectoralis myogenesis. Another antibody maps to the carboxyl terminus of the myosin rod. It is specific for an adult fast myosin epitope that is not detected in early developing pectoralis muscle. In contrast, an epitope that is present throughout development is identified by an antibody that reacts with a myosin light chain. This light chain epitope is localized at the head-rod junction. These results demonstrate structural changes in widely separated regions of the myosin molecule accompanying the sequential expression of developmental myosin isozymes.  相似文献   

14.
We have studied the structure of myosin heavy chain (MHC) in the pectoralis muscle of genetically dystrophic (Connecticut Strain) and White Leghorn chicks. MHC was alkylated with N-ethylmaleimide, purified by Sepharose-4B chromatography, and cleaved with cyanogen bromide. The MHC CNBr peptides were analyzed by one-dimensional and two-dimensional isoelectric focusing/sodium dodecyl sulfate gradient gels and by amino acid sequencing. Specific changes were detected in the gel patterns which could be correlated with the loss of muscle function as measured by the exhaustion score (the ability of chicks to rise from a reclining position) in three experimental groups (exhaustion scores: less than 3, 10-20, greater than 30). We have also examined the amino acid sequence of a 3-methyl-histidine-containing peptide which originates from the 20-kDa fragment of pectoralis muscle MHC in dystrophic chicks: Val-Leu-Asn-Ala-Ser-Ala-Ile-Pro-Glu-Gly-*Gln-Phe-*Ile-Asp-Ser-Lys-Lys- Ala-Ser-Leu-Gln-Lys-Leu-Gly-Ser-Ile-Asp-Val-(Asp, 3-methylhistidine, Gln). Comparison of the homologous MHC sequences shows two positions at which MHC from dystrophic chicks differs from that of the White Leghorn chicks *(Glu----Gln and Met----Ile). Thus, both the peptide map and sequence analyses demonstrate that in avian muscular dystrophy an abnormal pectoralis MHC is synthesized. It is not yet clear whether the "dystrophic" MHC is a variant MHC or if it arises from the abnormal expression of an earlier developmental form (embryonic or neonatal) of pectoralis muscle MHC.  相似文献   

15.
Isozymes of myosin have been localized with respect to individual fibers in differentiating skeletal muscles of the rat and chicken using immunocytochemistry. The myosin light chain pattern has been analyzed in the same muscles by two-dimensional PAGE. In the muscles of both species, the response to antibodies against fast and slow adult myosin is consistent with the speed of contraction of the muscle. During early development, when speed of contraction is slow in future fast and slow muscles, all the fibers react strongly with anti-slow as well as with anti-fast myosin. As adult contractile properties are acquired, the fibers react with antibodies specific for either fast or slow myosin, but few fibers react with both antibodies. The myosin light chain pattern slow shows a change with development: the initial light chains (LC) are principally of the fast type, LC1(f), and LC2(f), independent of whether the embryonic muscle is destined to become a fast or a slow muscle in the adult. The LC3(f), light chain does not appear in significant amounts until after birth, in agreement with earlier reports. The predominance of fast light chains during early stages of development is especially evident in the rat soleus and chicken ALD, both slow muscles, in which LC1(f), is gradually replaced by the slow light chain, LC1(s), as development proceeds. Other features of the light chain pattern include an "embryonic" light chain in fetal and neonatal muscles of the rat, as originally demonstrated by R.G. Whalen, G.S. Butler- Browne, and F. Gros. (1978. J. Mol. Biol. 126:415-431.); and the presence of approximately 10 percent slow light chains in embryonic pectoralis, a fast white muscle in the adult chicken. The response of differentiating muscle fibers to anti-slow myosin antibody cannot, however, be ascribed solely to the presence of slow light chains, since antibody specific for the slow heavy chain continues to react with all the fibers. We conclude that during early development, the myosin consists of a population of molecules in which the heavy chain can be associated with a fast, slow, or embryonic light chain. Biochemical analysis has shown that this embryonic heavy chain (or chains) is distinct from adult fast or slow myosin (R.G. Whalen, K. Schwartz, P. Bouveret, S.M. Sell, and F. Gros. 1979. Proc. Natl. Acad. Sci. U.S.A. 76:5197-5201. J.I. Rushbrook, and A. Stracher. 1979. Proc Natl. Acad. Sci. U.S.A. 76:4331-4334. P.A. Benfield, S. Lowey, and D.D. LeBlanc. 1981. Biophys. J. 33(2, Pt. 2):243a[Abstr.]). Embryonic myosin, therefore, constitutes a unique class of molecules, whose synthesis ceases before the muscle differentiates into an adult pattern of fiber types.  相似文献   

16.
An antibody to chicken ventricular myosin was found to cross-react by enzyme immunoassay with myosin heavy chains from embryonic chicken pectorials, but not with adult skeletal myosins. This antibody, which was previously shown to label cultured muscle cells from embryonic pectoralis (Cantini et al., J cell biol 85 (1981) 903), was used to investigate by indirect immunofluorescence the reactivity of chicken skeletal muscle cells differentiating in vivo during embryonic development and muscle regeneration. Muscle fibers in 11-day old chick embryonic pectoralis and anterior latissimus dorsi muscles showed a differential reactivity with this antibody. Labelled fibers progressively decreasgd in number during subsequent stages and disappeared completely around hatching. Only rare small muscle fibers, some of which had the shape and location typical of satellite elements, were labelled in adult chicken muscle. A cold injury was produced with dry ice in the fast pectoralis and the slow anterior latissimys dorsi muscles of young chickens. Two days after injury a number of labelled cells was first seen in the intermediate region between the outer necrotic area and the underlying uninjured muscle. These muscle cells rapidly increased in number and size, thin myotubes were seen after 3 days and by 4–5 days a superficial layer of brightly stained newly formed muscle fibers was observed at the site of the injury. Between one and two weeks after the lesion the intensity of staining of regenerated fibers progressively decreased as their size further increased. These findings indicate that an embryonic type of myosin heavy chain is transitorily expressed during muscle regeneration.  相似文献   

17.
Regenerating areas of adult chicken fast muscle (pectoralis major) and slow muscle (anterior latissimus dorsi) were examined in order to determine synthesis patterns of myosin light chains, heavy chains and tropomyosin. In addition, these patterns were also examined in muscle cultures derived from satellite cells of adult fast and slow muscle. One week after cold-injury the regenerating fast muscle showed a pattern of synthesis that was predominately embryonic. These muscles synthesized the embryonic myosin heavy chain, beta-tropomyosin and reduced amounts of myosin fast light chain-3 which are characteristic of embryonic fast muscle but synthesized very little myosin slow light chains. The regenerating slow muscle, however, showed a nearly complete array of embryonic peptides including embryonic myosin heavy chain, fast and slow myosin light chains and both alpha-fast and slow tropomyosins. Peptide map analysis of the embryonic myosin heavy chains synthesized by regenerating fast and slow muscles showed them to be identical. Thus, in both muscles there is a return to embryonic patterns during regeneration but this return appears to be incomplete in the pectoralis major. By 4 weeks postinjury both regenerating fast and slow muscles had stopped synthesizing embryonic isoforms of myosin and tropomyosin and had returned to a normal adult pattern of synthesis. Adult fast and slow muscles yielded a satellite cell population that formed muscle fibers in culture. Fibers derived from either population synthesized the embryonic myosin heavy chain in addition to alpha-fast and beta-tropomyosin. Thus, muscle fibers derived in culture from satellite cells of fast and slow muscles synthesized a predominately embryonic pattern of myosin heavy chains and tropomyosin. In addition, however, the satellite cell-derived myotubes from fast muscle synthesized only fast myosin light chains while the myotubes derived from slow muscle satellite cells synthesized both fast and slow myosin light chains. Thus, while both kinds of satellite cells produced embryonic type myotubes in culture the overall patterns were not identical. Satellite cells of fast and slow muscle appear therefore to have diverged from each other in their commitment during maturation in vivo.  相似文献   

18.
Using a double antibody sandwich ELISA we examined the heavy chain isoform composition of myosin molecules isolated from chicken pectoralis major muscle during different stages of development. At 2- and 40-d posthatch, when multiple myosin heavy chain isoforms are being synthesized, we detected no heterodimeric myosins, suggesting that myosins are homodimers of the heavy chain subunit. Chymotryptic rod fragments of embryonic, neonatal, and adult myosins were prepared and equimolar mixtures of embryonic and neonatal rods and neonatal and adult rods were denatured in 8 M guanidine. The guanidine denatured myosin heavy chain fragments were either dialyzed or diluted into renaturation buffer and reformed dimers which were electrophoretically indistinguishable from native rods. Analysis of these renatured rods using double antibody sandwich ELISA showed them to be predominantly homodimers of each of the isoforms. Although hybrids between the different heavy chain fragments were not detected, exchange was possible under these conditions since mixture of biotinylated neonatal rods and fluoresceinated neonatal rods formed a heterodimeric biotinylated-fluoresceinated species upon renaturation. Therefore, we propose that homodimers are the thermodynamically stable form of skeletal muscle myosin isoforms and that there is no need to invoke compartmentalization or other cellular regulatory processes to explain the lack of heavy chain heterodimers in vivo.  相似文献   

19.
The effects of prolonged hypokinesia on the contractile properties and myosin isozymes of single fibers from the synergistic fast-twitch plantaris (PL) and slow-twitch soleus (SOL) skeletal muscles of adult rats were studied after 28 days of hindlimb suspension. There was a 31% increase in the mean maximal velocity of unloaded shortening (Vmax) among fibers from SOL with no change in the mean Vmax of fibers from PL after suspension. The myosin heavy and light chain (MHC and MLC) composition of bundles and the MHC composition of single fibers from control and suspended muscles were examined using sodium dodecyl sulfate-polyacrylamide gel electrophoresis. There was a marked increase in the relative amount of fast-type MHC's in hypokinetic SOL and a smaller increase in the amount of fast-type MHC's in the PL. Relatively minor changes occurred in the MLC's during hypokinesia. As Vmax increased among individual fibers from control and suspended muscles, the relative amount of fast-type MHC's increased. The results demonstrate that the myosin isozyme composition of skeletal muscle, especially the heavy chains, is altered during hypokinesia, and this finding provides an explanation for changes in Vmax of rat single muscle fibers under the same conditions.  相似文献   

20.
During development of fast contracting skeletal muscle in the rat hindleg, embryonic and neonatal forms of the myosin heavy chain are present prior to the accumulation of the adult fast type ( Whalen , R. G., Sell, S. M., Butler-Browne, G.S., Schwartz, K., Bouveret, P., and Pinset -H arstr ?m, I. (1981) Nature (Lond.) 292, 805-809). Polypeptide mapping of the heavy chain subunit using partial proteolysis in the presence of sodium dodecyl sulfate has shown differences in the cleavage patterns for these various heavy chains. Using this technique, we have now examined subfragments, which represent functional domains, from several different myosin isozymes. The heavy chains of the S-1 subfragments containing either light chain 1 or light chain 3 are indistinguishable for the neonatal or fast myosin isozymes. We also isolated the S-1 fragments and the alpha-helical COOH-terminal half of the molecule (rod) from rat embryonic, neonatal, and adult fast and slow myosin, as well as myosin from cardiac ventricles. All of these S-1 and rod fragments were different, indicating that the previously reported differences among these different myosin heavy chain isozymes are located in both the S-1 and rod subfragments for all myosins examined. However, the polypeptide maps of neonatal and adult fast S-1 show clear similarities, as do the maps of slow and cardiac S-1. These similarities in the two pairs of polypeptide maps were confirmed by the results of immunoblotting experiments using antibodies to adult fast and to slow myosin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号