首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gangliosides have been described as modulators of growth factor receptors. For example, GM3 addition in cell culture medium inhibits epidermal growth factor (EGF)-stimulated receptor autophosphorylation. Furthermore, depletion of ganglioside by sialidase gene transfection appeared to increase EGF receptor (EGFR) autophosphorylation. These data suggested that changes in GM3 content may result in different responses to EGF. In this study, the ceramide analog d-threo-1-phenyl-2-decannoylamino-3-morpholino-1-propanol ([D]-PDMP), which inhibits UDP-glucose-ceramide glucosyltransferase, and addition of GM3 to the culture medium were used to study the effects of GM3 on the EGFR. Addition of 10 microM [D]-PDMP to A431 cells resulted in significant GM3 depletion. Additionally, EGFR autophosphorylation was increased after EGF stimulation. When exogenous GM3 was added in combination with [D]-PDMP, the enhanced EGFR autophosphorylation was returned to control levels. [D]-PDMP also increased EGF-induced cell proliferation, consistent with its effect on autophosphorylation. Once again, the addition of GM3 in combination with [D]-PDMP reversed these effects. These results indicate that growth factor receptor functions can be modulated by the level of ganglioside expression in cell lines. Addition of GM3 inhibits EGFR activity and decrease of GM3 levels using [D]-PDMP treatment enhances EGFR activity. Modulation of growth factor receptor function may provide an explanation for how transformation-dependent ganglioside changes contribute to the transformed phenotype.  相似文献   

2.
The protein product of the rodent neu oncogene, p185neu, is a tyrosine kinase with structural similarity to the epidermal growth factor receptor (EGFR). Transfection and subsequent overexpression of the human p185c-erbB-2 protein transforms NIH 3T3 cells in vitro. However, NIH 3T3 cells are not transformed by overexpressed rodent p185c-neu. NIH 3T3 transfectants overexpressing EGF receptors are not transformed unless incompletely transformed. Several groups have recently demonstrated EGF-induced, EGFR-mediated phosphorylation of p185c-neu. During efforts to characterize the interaction of p185c-neu with EGFR further, we created cell lines that simultaneously overexpress both p185c-neu and EGFR and observed that these cells become transformed. These observations demonstrate that two distinct, overexpressed tyrosine kinases can act synergistically to transform NIH 3T3 cells, thus identifying a novel mechanism that can lead to transformation.  相似文献   

3.
Gangliosides are well-known regulators of cell differentiation through specific interactions with growth factor receptors. Previously, our group provided the first evidence about stable association of ganglioside GM3 to EGFR/ErbB2 heterodimers in mammary epithelial cells. Goals of the present study were to better define the role of gangliosides in EGFR/ErbB2 heterodimerization and receptor phosphorylation events and to analyze their involvement in mammary cell differentiation. Experiments have been conducted using the ceramide analogue (+/−)-treo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol hydrochloride ([D]-PDMP), which inhibits ceramide glucosyltransferase resulting in the endogenous ganglioside depletion, and the lactogenic hormone mix DIP (dexamethasone, insulin, prolactin), which induces cell differentiation and β-casein mRNA synthesis. In addition, treatments of ganglioside-depleted cells with exogenous GM3 have been carried out to ascertain the specific involvement of this ganglioside. Results from co-immunoprecipitation and Western blot experiments have shown that the endogenous ganglioside depletion resulted in the disappearance of SDS-stable EGFR/ErbB2 heterodimers and in the appearance of tyrosine-phosphorylated EGFR also in the absence of EGF stimulation; exogenous GM3 added in combination with [D]-PDMP reversed both these effects. In contrast, the tyrosine phosphorylation of ErbB2 in ganglioside-depleted cells occurred only after EGF stimulation. Moreover, when ganglioside-depleted cells were treated with DIP in absence of EGF, β-casein gene expression appeared strongly down-regulated, and β-casein mRNA levels were partially restored by exogenous GM3 treatment. Altogether, although the involvement of other ganglioside species cannot be excluded, these findings sustain the ganglioside GM3 as an essential molecule for EGFR/ErbB2 heterodimer stability and important regulator of EGFR tyrosine phosphorylation, but it is not crucial for tyrosine phosphorylation of the heterodimerization partner ErbB2. Moreover, modulation of EGFR phosphorylation may explain how gangliosides contribute to regulate the lactogenic hormone-induced mammary cell differentiation.  相似文献   

4.
T Wada  X L Qian  M I Greene 《Cell》1990,61(7):1339-1347
We have used cross-linking reagents on cell lines expressing both p185neu and EGFR. The lysates of the cells were precipitated with anti-p185neu or anti-EGFR antibodies. These precipitates included a high molecular weight complex that was identified as an EGFR-p185neu heterodimer. Heterodimerization was found to be induced by exposure to EGR. The EGFR of these cells displayed three affinity states for EGF: low (Kd, approximately 10(-9) M), high (Kd, 10(-9) to 10(-10) M), and very high (Kd, 10(-11) M), as determined by Scatchard analyses. Relatively small levels of EGF had a dramatic biological effect on cells expressing very high affinity EGFR. The very high affinity EGFR disappeared after the cells were treated with anti-p185neu monoclonal antibodies that selectively down-regulated p185neu. EGF and TPA had differential effects on down-modulation of the EGFR in cells that express either one or both species of receptor proteins.  相似文献   

5.
Gangliosides are known to modulate the activation of receptor tyrosine-kinases (RTKs). Recently, we demonstrated the functional relationship between ErbB2 and ganglioside GM(3) in HC11 epithelial cell line. In the present study we investigated, in the same cells, the ErbB2 activation state and its tendency to form stable molecular complexes with the epidermal growth factor receptor (EGFR) and with ganglioside GM(3) upon EGF stimulation. Results from co-immunoprecipitation experiments and western blot analyses indicate that tyrosine-phosphorylated ErbB2 and EGFR monomers and stable ErbB2/EGFR high molecular complexes (heterodimers) are formed following EGF stimulation, even if the receptors co-immunoprecipitates also in the absence of the ligand; these data suggest the existence of pre-dimerization inactive receptor clusters on the cell surface. High performance-thin layer chromatography (HP-TLC) and TLC-immunostaining analyses of the ganglioside fractions extracted from the immunoprecipitates demonstrate that GM(3), but not other gangliosides, is tightly associated to the tyrosine-phosphorylated receptors. Furthermore, we show that GM(3) is preferentially and in a SDS-resistant manner associated to the activated ErbB2/EGFR complexes and EGFR monomer, but not to ErbB2. Altogether our data support the hypothesis that the modulating effects produced by GM(3) on ErbB2 activation are mediated by EGFR.  相似文献   

6.
We analyzed the role of gangliosides in the association of the ErbB2 receptor tyrosine-kinase (RTK) with lipid rafts in mammary epithelial HC11 cells. Scanning confocal microscopy experiments revealed a strict ErbB2-GM3 colocalization in wild-type cells. In addition, analysis of membrane fractions obtained using a linear sucrose gradient showed that ErbB2, epidermal growth factor receptor (EGFR) and Shc-p66 (proteins correlated with the ErbB2 signal transduction pathway) were preferentially enriched in lipid rafts together with gangliosides. Blocking of endogenous ganglioside synthesis by (+/-)-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol hydrochloride ([D]-PDMP) induced a drastic cell-surface redistribution of ErbB2, EGFR and Shc-p66, within the Triton-soluble fractions, as revealed by linear sucrose-gradient analysis. This redistribution was partially reverted when exogenous GM3 was added to ganglioside-depleted HC11 cells. The results point out the key role of ganglioside GM3 in retaining ErbB2 and signal-transduction-correlated proteins in lipid rafts.  相似文献   

7.
EGFR is involved in the density-dependent inhibition of cell growth, while coexpression of EGFR with erbB2 can render normal cells transformed. In this study, we have examined the effect of a species of p185 that contains the transmembrane domain and the extracellular domain of p185(c-neu), on growth properties of a human malignant mesothelioma cell line that coexpresses EGFR and erbB2. The ectodomain form of p185(c-neu) enhanced density-dependent inhibition of cell growth and we found that p21 induction appeared to be responsible for this inhibitory effect. Previously, the extracellular domain species was shown to suppress the transforming abilities of EGFR and p185(c-neu/erbB2) in a dominant-negative manner. The ability of this subdomain to affect tumor growth is significant, as it reduced in vivo tumor growth. Unexpectedly, we found that the domain did not abrogate all of EGFR functions. We noted that EGFR-induced density-dependent inhibition of cell growth was retained. Tyrosine kinase inhibitors of EGFR did not cause density-dependent inhibition of cell growth of malignant mesothelioma cells. Therefore, simultaneously inhibiting the malignant phenotype and inducing density-dependent inhibition of cell growth in malignant mesothelioma cells by the extracellular domain of p185(c-neu) may represent an important therapeutic advance.  相似文献   

8.
The neu differentiation factors/heregulins (HRGs) comprise a family of polypeptide growth factors that activate p185(erbB-2) through direct binding to either erbB-3 or erbB-4 receptor tyrosine kinases. We have previously shown that HRG-beta is mitogenic for various human mammary epithelial cell lines that coexpress c-erbB-2 and c-erbB-3. Phosphatidylinositol 3-kinase (PI3K) is activated by p185(erbB-2) /erbB-3 heterodimers in cells stimulated by HRG, and PI3K is constitutively activated by p185(erbB-2) /erbB-3 in breast carcinoma cells that overexpress c-erbB-2. To better understand the relative abilities of HRGs, epidermal growth factor (EGF), or insulin to activate PI3K under normal physiological conditions, we compared the levels of recruitment of the 85-kDa regulatory subunit of PI3K when activated by the type I (erbB) or type II [insulin-like growth factor (IGF)] receptor tyrosine kinases in two different nontransformed human mammary epithelial cell lines. The nontransformed H16N-2 cells isolated from normal tissue express EGFR, p185(erbB-2), and erbB-3, and are highly responsive to the mitogenic effects of HRG-beta as well as to the combination of EGF and insulin in serum-free culture. We measured the stoichiometry of p85 recruited by tyrosine-phosphorylated proteins induced in H16N-2 cells by either the alpha or the beta isoform of HRG. HRG-beta was greater than 10-fold more potent in inducing p85 recruitment than was the less biologically active HRG-alpha isoform. HRG-beta was also a more potent inducer of p85 recruited by tyrosine-phosphorylated proteins than was either EGF, insulin, or EGF and insulin combined. Furthermore, erbB-3 principally mediated the direct recruitment of p85 in cells stimulated by HRG or EGF, indicating that, in addition to the high-level activation of PI3K by p185(erbB-2) / erbB-3, EGFR/erbB-3 heterodimer interaction is essential for the weak but significant level of PI3K activated by EGF in cells that express normal EGFR levels. Studies using the PI3K inhibitor wortmannin also indicated that PI3K activation was required for the proliferation of H16N-2 cells induced by either HRG-beta or EGF and insulin in serum-free culture. Finally, HRG-beta was also an especially potent inducer of PI3K in the nontransformed MCF-10A cells, which were derived spontaneously from normal reduction mammoplasty tissue. These data show, for the first time, a side-by-side quantitative comparison of the relative degree of PI3K activated by different growth factors in nontransformed growth factor-dependent cells under precisely defined conditions in culture.  相似文献   

9.
p185neu is a receptor-like protein encoded by the neu/erbB-2 proto-oncogene. This protein is closely related to the epidermal growth factor (EGF) receptor, but does not bind EGF. We report here that incubation of Rat-1 cells with EGF stimulates tyrosine phosphorylation of p185. This effect is specific to EGF since neither platelet derived growth factor (PDGF) nor insulin, which also bind to receptors with ligand-stimulated tyrosine kinase activity, induced tyrosine phosphorylation of p185. The EGF-stimulated tyrosine phosphorylation of p185 and of the EGF receptor occurred with similar kinetics and EGF dose-responses, and both phosphorylations were prevented by down-regulation of the EGF receptor with EGF. Since p185 does not bind EGF, these results suggested that p185 is a substrate for the EGF receptor kinase. Incubation of cells with EGF before lysis stimulated the tyrosine phosphorylation of p185 in immune complexes. This suggested that EGF, acting through the EGF receptor, can regulate the intrinsic kinase activity of p185.  相似文献   

10.
The HER2/neu gene encodes a receptor tyrosine kinase that is highly homologous to the epidermal growth factor receptor. Overexpression of the receptor in mammary and ovarian carcinoma correlates with poor patient prognosis. To determine how the overexpression of a normal receptor leads to the generation of an oncogenic signal, we compared the patterns of tyrosine phosphorylation in tumor-derived human cell lines expressing high levels of p185HER2/neu. In intact SKBR3 cells, basal phosphorylation of p185HER2/neu was not detected. However, pretreatment of cells with the tyrosine phosphatase inhibitor, sodium orthovanadate, led to the detection of phosphotyrosine on phospholipase C-gamma (PLC-gamma), GTPase-activating protein but not on the RAF-1 kinase. Strikingly, PLC-gamma was detected in a complex which contained multiple tyrosine-phosphorylated polypeptides. This complex was detected only in cytoplasmic fractions and had a distinct composition in different p185HER2/neu-overexpressing cell lines. Although GTPase-activating protein has been found previously in association with proteins of 190 and 62 kDa in fibroblasts, in SKBR3 cells it was found associated with multiple additional tyrosine-phosphorylated polypeptides. These experiments show that SKBR3 cells possess high levels of protein tyrosine phosphatase that can act upon p185HER2/neu. Moreover, they reveal, for the first time, the presence of PLC-gamma and GTPase-activating protein in cytosolic complexes containing a variety of other tyrosine-phosphorylated polypeptides. These observations suggest novel possibilities for the specific definition of receptor-generated signals in tumor cells.  相似文献   

11.
The neu oncogene was originally identified in cell lines derived from rat neuroectodermal tumors. neu is related to but distinct from the c-erbB gene, which encodes the epidermal growth factor (EGF) receptor. neu encodes a protein, designated p185, that is serologically related to the EGF receptor. Identification of the normal homolog of p185 encoded by the neu proto-oncogene enabled us to compare the product of the neu proto-oncogene with the mutated version specified by the neu oncogene and with the EGF receptor. The normal form of p185 was structurally similar to its transforming counterpart, indicating that activation of the neu oncogene did not cause major structural alterations in the gene product. Both normal and transforming forms of p185 were associated with tyrosine kinase activity, supporting the idea that normal p185 functions as a growth factor receptor. p185 differed both structurally and functionally from the EGF receptor. p185 and the EGF receptor had distinct electrophoretic mobilities when synthesized under normal culture conditions or in the presence of tunicamycin. EGF did not stimulate increased turnover of p185 and did not bind quantitatively to p185. A number of other growth factors failed to stimulate degradation of p185 or tyrosine phosphorylation of p185 and are therefore unlikely to be ligands for p185.  相似文献   

12.
Previously it was reported (Bremer, E.G., Schlessinger, J., and Hakomori, S.-I. (1986) J. Biol. Chem. 261, 2434-2440) that ganglioside GM3 inhibited epidermal growth factor (EGF)-stimulated phosphorylation of the EGF receptor in Triton X-100-treated preparations of human epidermoid carcinoma (A431) cell membranes. In addition, these authors reported that GM3 inhibited the growth of A431 cells. In contrast, a modified ganglioside, de-N-acetyl GM3, enhanced the EGF-dependent tyrosine kinase activity of the EGF receptor. In this work and in subsequent studies (Hanai, N., Dohi, T., Nores, G. A., and Hakomori, S.-I. (1988) J. Biol. Chem. 263, 6296-6301), the tyrosine kinase activity of the receptor from A431 cell membranes was assayed in the presence of Triton X-100. In this report, we confirm that GM3 inhibited and de-N-acetyl GM3 stimulated EGF receptor autophosphorylation in the presence of Triton X-100. However, in the absence of detergents, ganglioside GM3 inhibited EGF-stimulated receptor autophosphorylation, whereas de-N-acetyl GM3 had no effect on EGF-stimulated receptor autophosphorylation. The effects of these gangliosides on receptor autophosphorylation were measured in both A431 cell plasma membranes and in 3T3 cell membranes permeabilized to [32P]ATP by a freeze-thaw procedure, in intact A431 cells permeabilized with alamethicin, and in intact A431 cells grown in the presence of [32P]orthophosphate. Thus, the inhibitory effect of GM3 on receptor autophosphorylation was demonstrated in the presence and in the absence of detergent; the stimulatory effect of de-N-acetyl GM3 was observed only in the presence of detergent. We also demonstrate that ganglioside GM3 inhibited EGF-stimulated growth of transfected murine fibroblasts (3T3) that express the gene for human EGF receptor (Velu, T. J., Beguinot, L., Vass, W. C., Zhang, K., Pastan, I., and Lowy, D. R. (1989) J. Cell. Biochem. 39, 153-166). De-N-acetyl ganglioside GM3 had no effect on the growth of these cells. Growth of control fibroblasts, which lack endogenous EGF receptors (Pruss, R. M., and Herschman, H. R. (1977) Proc. Natl. Acad. Sci. U.S.A. 74, 3918-3921), was not affected by the presence of either ganglioside. Similarly, ganglioside GM3, but not de-N-acetyl ganglioside GM3, inhibited the EGF-dependent incorporation of [3H]thymidine into DNA by transfected fibroblasts. Incorporation of labeled thymidine into DNA of control fibroblasts was not affected by the presence of either ganglioside. These studies indicate that ganglioside GM3, but not its deacetylated analogue, can affect EGF receptor kinase activity in intact membranes.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Ganglioside GM3 inhibits epidermal growth factor (EGF)-dependent cell proliferation in a variety of cell lines. Both in vitro and in vivo, this glycosphingolipid inhibits the kinase activity of the EGF receptor (EGFR). Furthermore, membrane preparations containing EGFR can bind to GM3-coated surfaces. These data suggest that GM3 may interact directly with the EGFR. In this study, the interaction of gangliosides with the extracellular domain (ECD) of the EGFR was investigated. The purified human recombinant ECD from insect cells bound directly to ganglioside GM3. The ganglioside interaction site appears to be distinct from the EGF-binding site. In agreement with previous reports on the effects of specific gangliosides on EGFR kinase activity, the ECD preferentially interacted with GM3. The order of relative binding of other gangliosides investigated was as follows: GM3 GM2, GD3, GM4 > GM1, GD1a, GD1b, GT1b, GD2, GQ1b > lactosylceramide. These data suggest that NeuAc-lactose is essential for binding and that any sugar substitution reduces binding. In agreement with the specificity of soluble ECD binding to gangliosides, GM3 specifically inhibited EGFR autophosphorylation. Identification of a ganglioside interaction site on the ECD of the EGFR is consistent with the hypothesis that endogenous GM3 may function as a direct modulator of EGFR activity.  相似文献   

14.
The inhibitory action of gangliosides GT1B, GD1A, GM3 and GM1 on cell proliferation and epidermal growth factor receptor (EGFR) phosphorylation was determined in the N-myc amplified human neuroblastoma cell line NBL-W. The IC50 of each ganglioside was estimated from concentration-response regressions generated by incubating NBL-W cells with incremental concentrations (5-1000 microm) of GT1B, GD1A, GM3 or GM1 for 4 days. Cell proliferation was quantitatively determined by a colourimetric assay using tetrazolium dye and spectrophotometric analysis, and EGFR phosphorylation by densitometry of Western blots. All gangliosides assayed, with the exception of GM1, inhibited NBL-W cell proliferation in a concentration-dependent manner. The IC50s for gangliosides GT1B [molecular weight (MW) 2129], GM3 (MW 1236), and GD1A (MW 1838) were (mean +/- SEM) 117 +/- 26, 255 +/- 29, and 425 +/- 44 m, respectively. In contrast, the IC50 for GM1 (MW 1547) could not be determined. Incubation of NBL-W cells with epidermal growth factor (EGF) concentrations ranging from 0.1 to 1000 ng/ml progressively increased cell proliferation rate, but it plateaued at concentrations above 10 ng/ml. EGFR tyrosine phosphorylation, however, was incrementally stimulated by EGF concentrations from 1 to 100 ng/ml. The suppression of EGF-induced EGFR phosphorylation differed for each ganglioside, and their respective inhibitory potencies were as follows: EGFR phosphorylation [area under curve (+ EGF)/area under curve (- EGF)]: control (no ganglioside added) = 8.2; GM1 = 8.3; GD1A = 6.7; GM3 = 4.87, and GT1B = 4.09. The lower the ratio, the greater the inhibitory activity of the ganglioside. Gangliosides GD1A and GT1B, which have terminal N-acetyl neuraminic acid moieties, as well as one and two N-acetyl neuraminic acid residues linked to the internal galactose, respectively, both inhibited cell proliferation and EGFR phosphorylation. However, GD1A was a more potent suppressor of cell proliferation and GT1B most effective against EGFR phosphorylation. GM3, which only has a terminal N-acetyl neuraminic acid, inhibited cell proliferation and EGFR phosphorylation almost equivalently. These data suggest that gangliosides differ in their potency as inhibitors of NBL-W neuroblastoma cell proliferation and EGFR tyrosine phosphorylation, and that perturbations in the differential expression of membrane glycosphingolipids may play a role in modulating neuroblastoma growth.  相似文献   

15.
16.
Two related sublines derived from murine ascites hepatoma cell lines Hca‐F25, which were selected for their markedly different metastatic potential to lymph nodes, were found to be distinct in their ganglioside patterns. The low metastatic cell line (HcaP) contained a major ganglioside GM3, whereas the high metastatic cell line (HcaF) contained a major ganglioside GM2. Suppression of GM3 by P4 enhanced the mobility and migration of the low metastatic HcaP cells in vitro. Increase in GM3 content in high metastatic HcaF cells by addition of exogenous GM3 inhibited the mobility and migration. These results suggested that the differences in lymphatic metastasis potential between these two cell lines could be attributed to the differences in their ganglioside compositions, and GM3 could suppress the motility and migration of these cells. Further, we investigated the mechanism by which GM3 suppressed the cell mobility and migration. The results showed that suppression of GM3 synthesis by P4 in low metastatic HcaP cells promoted PKB/Akt phosphorylation at Ser473 and Thr308, and phosphorylation of EGFR at the Tyr1173. In contrast, increase in GM3 content in high metastatic HcaF cells by addition of exogenous GM3 into the culture medium suppressed phosphorylation of PKB/Akt and EGFR at the same residues. Taken together, these results suggested that the mechanism of GM3‐suppressed cell motility and migration may involve the inhibition of phosphorylation of EGFR and the activity of PI3K/AKT signaling pathway. J. Cell. Biochem. 114: 1616–1624, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

17.
The neu proto-oncogene encodes a protein highly homologous to the epidermal growth factor receptor. The neu protein (p185) has a molecular weight of 185,000 Daltons and, like the EGF receptor, possesses tyrosine kinase activity. neu is activated in chemically induced rat neuro/glioblastomas by substitution of valine 664 with glutamic acid within the transmembrane domain. The activated neu* protein (p185*) has an elevated tyrosine kinase activity and a higher propensity to dimerize, but the mechanism of this activation is still unknown. We have used site-directed mutagenesis to explore the role of specific amino acids within the transmembrane domain in this activation. We found that the lateral position and rotational orientation of the glutamic acid in the transmembrane domain does not correlate with transformation. However, the primary structure in the vicinity of Glu664 plays a significant role in this activation. Our results suggest that the Glu664 activation involves highly specific interactions in the transmembrane domain of p185.  相似文献   

18.
In our previous study, bradykinin (BK) exerts its mitogenic effect through Ras/Raf/MEK/MAPK pathway in vascular smooth muscle cells (VSMCs). In addition to this pathway, the non-receptor tyrosine kinases (Src), EGF receptor (EGFR), and phosphatidylinositol 3-kinase (PI3-K) have been implicated in linking a variety of G-protein coupled receptors to MAPK cascades. Here, we investigated whether these different mechanisms participating in BK-induced activation of p42/p44 MAPK and cell proliferation in VSMCs. We initially observed that BK- and EGF-dependent activation of Src, EGFR, Akt, and p42/p44 MAPK and [3H]thymidine incorporation were mediated by Src and EGFR, because the Src inhibitor PP1 and EGFR kinase inhibitor AG1478 abrogated BK- and EGF-dependent effects. Inhibition of PI3-K by LY294002 attenuated BK-induced Akt and p42/p44 MAPK phosphorylation and [3H]thymidine incorporation, but had no effect on EGFR phosphorylation, suggesting that EGFR may be an upstream component of PI3-K/Akt and MAPK in these responses. This hypothesis was supported by the tranfection with dominant negative plasmids of p85 and Akt which significantly attenuated BK-induced Akt and p42/p44 MAPK phosphorylation. Pretreatment with U0126 (a MEK1/2 inhibitor) attenuated the p42/p44 MAPK phosphorylation and [3H]thymidine incorporation stimulated by BK, but had no effect on Akt activation. Moreover, BK-induced transactivation of EGFR and cell proliferation was blocked by matrix metalloproteinase inhibitor GM6001. These results suggest that, in VSMCs, the mechanism of BK-stimulated activation of p42/p44 MAPK and cell proliferation was mediated, at least in part, through activation of Src family kinases, EGFR transactivation, and PI3-K/Akt.  相似文献   

19.
20.
Abstract: We reported previously that stereoisomers of 1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP), the d - threo and l - threo forms, exerted inhibitory and stimulatory effects on glycosphingolipid (GSL) biosynthesis in B16 melanoma cells, respectively. In the present study, the primary cultured rat neocortical explants were treated with l - or d - threo -PDMP. These isomers exhibited opposite effects on neurite outgrowth: d -PDMP was inhibitory at concentrations ranging from 5 to 20 µ M , whereas l -PDMP was stimulatory over the same concentration range, and the maximal effect was observed at 10–15 µ M . Rat neocortical explants were doubly labeled with [14C]serine and [3H]galactose at 15 µ M l - or d -PDMP. l -PDMP increased the incorporations of both labels into sphinganine, sphingosine, ceramide, sphingomyelin, neutral GSLs, and gangliosides, whereas d -PDMP inhibited the glucosylation of ceramide resulting in a reduction of ganglioside biosynthesis and accumulation of precursors of glucosylceramide, ceramide, and sphingomyelin. To clarify the stimulatory effect of l -PDMP on GSL biosynthesis, serine palmitoyltransferase, sphingosine N -acyltransferase, glucosylceramide synthase, lactosylceramide synthase, GM3 synthase, and GD3 synthase were quantified in cell lysates of explants pretreated with this agent. Serine palmitoyltransferase was fully activated up to 150% of the control. Furthermore, marked increases in the activities of lactosylceramide synthase (200%), GM3 synthase (240%), and GD3 synthase (300%) were observed. These results suggest that the neurotrophic action of l -PDMP may be ascribable to its stimulatory effect on the biosynthesis of GSLs, especially that of gangliosides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号