首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Examination of the spectra of phagocytosing neutrophils and of myeloperoxidase present in the medium of neutrophils stimulated with phorbol myristate acetate has shown that superoxide generated by the cells converts both intravacuolar and exogenous myeloperoxidase into the superoxo-ferric or oxyferrous form (compound III or MPO2). A similar product was observed with myeloperoxidase in the presence of hypoxanthine, xanthine oxidase and Cl-. Both transformations were inhibited by superoxide dismutase. Thus it appears that myeloperoxidase in the neutrophil must function predominantly as this superoxide derivative. MPO2 autoxidized slowly (t 1/2 = 12 min at 25 degrees C) to the ferric enzyme. It did not react directly with H2O2 or Cl-, but did react with compound II (MP2+ X H2O2). MPO2 catalysed hypochlorite formation from H2O2 and Cl- at approximately the same rate as the ferric enzyme, and both reactions showed the same H2O2-dependence. This suggests that MPO2 can enter the main peroxidation pathway, possibly via its reaction with compound II. Both ferric myeloperoxidase and MPO2 showed catalase activity, in the presence or absence of Cl-, which predominated over chlorination at H2O2 concentrations above 200 microM. Thus, although the reaction of neutrophil myeloperoxidase with superoxide does not appear to impair its chlorinating ability, the H2O2 concentration in its environment will determine whether the enzyme acts primarily as a catalase or peroxidase.  相似文献   

2.
Chlorination of monochlorodimedon is routinely used to measure the production of hypochlorous acid catalysed by myeloperoxidase from H2O2 and Cl-. We have found that the myeloperoxidase/H2O2/Cl- system, at pH 7.8, catalysed the loss of monochlorodimedon with a rapid burst phase followed by a much slower steady-state phase. The loss of monochlorodimedon in the absence of Cl- was only 10% of the steady-state rate in the presence of Cl-, which indicates that the major reaction of monochlorodimedon was with hypochlorous acid. During the steady-state reaction, myeloperoxidase was present as 100% compound II, which cannot participate directly in hypochlorous acid formation. Monochlorodimedon was necessary for formation of compound II, since it was not formed in the presence of methionine. Both the amount of hypochlorous acid formed during the burst phase, and the steady-state rate of hypochlorous acid production, increased with increasing concentrations of myeloperoxidase and with decreasing concentrations of monochlorodimedon. Inhibition by monochlorodimedon was competitive with Cl-. From these results, and the ability of myeloperoxidase to slowly peroxidase monochlorodimedon in the absence of Cl-, we propose that the reaction of monochlorodimedon with the myeloperoxidase/H2O2/Cl- system involves a major pathway due to hypochlorous acid-dependent chlorination and a minor peroxidative pathway. Only a small fraction of compound I needs to react with monochlorodimedon instead of Cl- at each enzyme cycle, for compound II to rapidly accumulate. Monochlorodimedon, therefore, cannot be regarded as an inert detector of hypochlorous acid production by myeloperoxidase, but acts to limit the chlorinating activity of the enzyme. In the presence of reducing species that act like monochlorodimedon, the activity of myeloperoxidase would depend on the rate of turnover of compound II. Components of human serum promoted the conversion of ferric-myeloperoxidase to compound II in the presence of H2O2. We suggest, therefore, that in vivo the rate of turnover of compound II may determine the rate of myeloperoxidase-dependent production of hypochlorous acid by stimulated neutrophils.  相似文献   

3.
Myeloperoxidase catalyses the conversion of H2O2 and Cl- to hypochlorous acid (HOCl). It also reacts with O2- to form the oxy adduct (compound III). To determine how O2- affects the formation of HOCl, chlorination of monochlorodimedon by myeloperoxidase was investigated using xanthine oxidase and hypoxanthine as a source of O2- and H2O2. Myeloperoxidase was mostly converted to compound III, and H2O2 was essential for chlorination. At pH 5.4, superoxide dismutase (SOD) enhanced chlorination and prevented formation of compound III. However, at pH 7.8, SOD inhibited chlorination and promoted formation of the ferrous peroxide adduct (compound II) instead of compound III. We present spectral evidence for a direct reaction between compound III and H2O2 to form compound II, and for the reduction of compound II by O2- to regenerate native myeloperoxidase. These reactions enable compound III and compound II to participate in the chlorination reaction. Myeloperoxidase catalytically inhibited O2- -dependent reduction of Nitro Blue Tetrazolium. This inhibition is explained by myeloperoxidase undergoing a cycle of reactions with O2-, H2O2 and O2-, with compounds III and II as intermediates, i.e., by myeloperoxidase acting as a combined SOD/catalase enzyme. By preventing the accumulation of inactive compound II, O2- enhances the activity of myeloperoxidase. We propose that, under physiological conditions, this optimizes the production of HOCl and may potentiate oxidant damage by stimulated neutrophils.  相似文献   

4.
Stimulated neutrophils discharge large quantities of superoxide (O2.-), which dismutates to form H2O2. In combination with Cl-, H2O2 is converted into the potent oxidant hypochlorous acid (HOCl) by the haem enzyme myeloperoxidase. We have used an H2O2 electrode to monitor H2O2 uptake by myeloperoxidase, and have shown that in the presence of Cl- this accurately represents production of HOCl. Monochlorodimedon, which is routinely used to assay production of HOCl, inhibited H2O2 uptake by 95%. This result confirms that monochlorodimedon inhibits myeloperoxidase, and that the monochlorodimedon assay grossly underestimates the activity of myeloperoxidase. With 10 microM-H2O2 and 100 mM-Cl-, myeloperoxidase had a neutral pH optimum. Increasing the H2O2 concentration to 100 microM lowered the pH optimum to pH 6.5. Above the pH optimum there was a burst of H2O2 uptake that rapidly declined due to accumulation of Compound II. High concentrations of H2O2 inhibited myeloperoxidase and promoted the formation of Compound II. These effects of H2O2 were decreased at higher concentrations of Cl-. We propose that H2O2 competes with Cl- for Compound I and reduces it to Compound II, thereby inhibiting myeloperoxidase. Above pH 6.5, O2.- generated by xanthine oxidase and acetaldehyde prevented H2O2 from inhibiting myeloperoxidase, increasing the initial rate of H2O2 uptake. O2.- allowed myeloperoxidase to function optimally with 100 microM-H2O2 at pH 7.0. This occurred because, as previously demonstrated, O2.- prevents Compound II from accumulating by reducing it to ferric myeloperoxidase. In contrast, at pH 6.0, where Compound II did not accumulate, O2.- retarded the uptake of H2O2. We propose that by generating O2.- neutrophils prevent H2O2 and other one-electron donors from inhibiting myeloperoxidase, and ensure that this enzyme functions optimally at neutral pH.  相似文献   

5.
It has been demonstrated previously (P.C. Andrews and N.I. Krinsky (1981) J. Biol. Chem. 256, 4211-4218) that human leukocyte myeloperoxidase, an alpha 2 beta 2 enzyme, can be cleaved by mild reduction and alkylation to an alpha 1 beta 1 structure that we have termed hemi-myeloperoxidase. The native enzyme and hemi-myeloperoxidase have the same specific activity in a Cl--independent peroxidase assay and identical visible spectra under either oxidized or reduced conditions. This paper compares other properties of native and hemi-myeloperoxidase. Both enzymes are inhibited by high concentrations of H2O2 in an identical fashion. Both enzymes showed identical regulation by pH and Cl-. The utilization of Cl-, as assayed by chlorination of diethanolamine, was moderately decreased in hemi-myeloperoxidase. This reduction in chlorination was not reflected in a bactericidal assay, where again, hemi-myeloperoxidase was identical in activity to native myeloperoxidase.  相似文献   

6.
The chlorination activity of free myeloperoxidase and myeloperoxidase bound with ceruloplasmin or with both ceruloplasmin and lactoferrin has been studied by luminal-dependent chemiluminescence. It was shown that the addition of hydrogen peroxide to the "myeloperoxidase + Cl- + luminal" system is accompanied by a fast flash of light emission. In the absence of myeloperoxidase or Cl-, the flash intensity was considerably reduced. The inhibitor of myeloperoxidase NaN3, the HOCl scavengers taurine and methionine, and guaiacol, a substrate for peroxidation cycle of myeloperoxidase, prevented luminescence. These results suggest that the generation of luminescence was due to the halogenating activity of myeloperoxidase, and hence, the flash light sum may serve as a measure of chlorination activity of myeloperoxidase. The activity of myeloperoxidase was suppressed by ceruloplasmin. Lactoferrin exhibited no significant influence on the myeloperoxidase activity, nor did it prevent the inhibitory effect of ceruloplasmin when they both were combined with myeloperoxidase. These data were confirmed using alternative approaches for evaluating the myeloperoxidase activity, namely, the assessment of peroxidation activity and the taurine chlorination assay. It is noteworthy that the inhibitory effect of ceruloplasmin on chlorination and peroxidation activities of myeloperoxidase is seen with the latter, traditional approaches only if ceruloplasmin is present in a large excess relative to myeloperoxidase, whereas the chemiluminescence method allows the detection of the inhibitory effect of ceruloplasmin using lower proportions of the protein with respect to myeloperoxidase, which are close to the stoichiometry of the myeloperoxidase/ceruloplasmin and the myeloperoxidase'ceruloplasmin'lactoferrin complexes.  相似文献   

7.
The chloroperoxidase-catalyzed reactions of NAD(P)H with H2O2 in the presence of Cl- or Br- have been characterized. With 1 mol H2O2 per mol of NADH, one atom of 36Cl was incorporated into the 264-nm-absorbing intermediate product. This species was oxidized enzymatically by a second mole of H2O2 to a species distinct from NAD+, which retained one Cl atom. Spectroscopically identical species were also produced by reaction of NADH with one and two molar ratios of HOCl, respectively. These data indicate that, with respect to halogenation activities, chloroperoxidase functions similarly to myeloperoxidase, i.e., produces HOCl as the first product of Cl- oxidation by H2O2. Moreover, rapid chlorination of NAD(P)H followed by oxidation may be an important and highly lethal microbicidal effect of HOCl produced by myeloperoxidase in activated neutrophils.  相似文献   

8.
The inhibitory effect of the anti-arthritic drug D-penicillamine on the formation of hypochlorite (HOCl) by myeloperoxidase from H2O2 and Cl- was investigated. When D-penicillamine was added to myeloperoxidase under turnover conditions, Compound III was formed, the superoxide derivative of the enzyme. Compound III was not formed when D-penicillamine was added in the presence of EDTA or in the absence of oxygen. However, when H2O2 was added to myeloperoxidase, D-penicillamine and EDTA, Compound III was formed. Therefore it is concluded that formation of Compound III is initiated by metal-catalysed oxidation of the thiol group of this anti-arthritic drug, resulting in formation of superoxide anions. Once Compound III is formed, a chain reaction is started via which the thiol groups of other D-penicillamine molecules are oxidized to disulphides. Concomitantly, Compound I of myeloperoxidase would be reduced to Compound II and superoxide anions would be generated from oxygen. This conclusion is supported by experiments which showed that formation of Compound III of myeloperoxidase by D-penicillamine depended on the chloride concentration. Thus, an enzyme intermediate which is active in chlorination (i.e. Compound I) participated in the generation of superoxide anions from the anti-arthritic drug. From the results described in this paper it is proposed that D-penicillamine may exert its therapeutic effect in the treatment of rheumatoid arthritis by scavenging HOCl and by converting myeloperoxidase to Compound III, which is inactive in the formation of HOCl.  相似文献   

9.
The effect of H2O2, Cl-, and pH on human myeloperoxidase activity has been examined. The Km for H2O2 is shown to be affected by the combined presence of Cl- and acid pH conditions. The Km for H2O2 is independent of pH in the absence of Cl- and dependent on pH in the presence of Cl-. Conversely, the dependence of the Km for H2O2 on Cl- concentration increases as the pH decreases. A model is proposed in which Cl- has a dual role, acting both as a substrate and as an inhibitor. According to this model, the inhibitor Cl- binding site must be protonated prior to the binding of Cl- and is distinct from the substrate Cl- binding site which is unaffected by pH. The rate equation derived from this model is used to further analyze the data presented. The values of Km for H2O2 predicted by the rate equation are in good agreement with the experimentally determined values.  相似文献   

10.
The reaction of myeloperoxidase compound I (MPO-I) with chloride ion is widely assumed to produce the bacterial killing agent after phagocytosis. Two values of the rate constant for this important reaction have been published previously: 4.7 x 106 M-1.s-1 measured at 25 degrees C [Marquez, L.A. and Dunford, H.B. (1995) J. Biol. Chem. 270, 30434-30440], and 2.5 x 104 M-1.s-1 at 15 degrees C [Furtmüller, P.G., Burner, U. & Obinger, C. (1998) Biochemistry 37, 17923-17930]. The present paper is the result of a collaboration of the two groups to resolve the discrepancy in the rate constants. It was found that the rate constant for the reaction of compound I, generated from myeloperoxidase (MPO) and excess hydrogen peroxide with chloride, decreased with increasing chloride concentration. The rate constant published in 1995 was measured over a lower chloride concentration range; the 1998 rate constant at a higher range. Therefore the observed conversion of compound I to native enzyme in the presence of hydrogen peroxide and chloride ion cannot be attributed solely to the single elementary reaction MPO-I + Cl- --> MPO + HOCl. The simplest mechanism for the overall reaction which fit the experimental data is the following: MPO+H2O2 ⇄k-1k1 MPO-I+H2O MPO-I+Cl- ⇄k-2k2 MPO-I-Cl- MPO-I-Cl- -->k3 MPO+HOCl where MPO-I-Cl- is a chlorinating intermediate. We can now say that the 1995 rate constant is k2 and the corresponding reaction is rate-controlling at low [Cl-]. At high [Cl-], the reaction with rate constant k3 is rate controlling. The 1998 rate constant for high [Cl-] is a composite rate constant, approximated by k2k3/k-2. Values of k1 and k-1 are known from the literature. Results of this study yielded k2 = 2.2 x 106 M-1.s-1, k-2 = 1.9 x 105 s-1 and k3 = 5.2 x 104 s-1. Essentially identical results were obtained using human myeloperoxidase and beef spleen myeloperoxidase.  相似文献   

11.
Pneumolysin, a hemolytic toxin from Streptococcus pneumoniae, is a member of the group of thiol-activated, oxygen-labile cytolysins produced by various Gram-positive bacteria. The toxin activity of pneumolysin, as determined by lysis of 51Cr-labeled human erythrocytes, was destroyed on exposure to the neutrophil enzyme myeloperoxidase, hydrogen peroxide, and a halide (chloride or iodide). Detoxification required each component of the myeloperoxidase system and was prevented by the addition of agents that inhibit heme enzymes (azide, cyanide) or degrade H2O2 (catalase). Reagent H2O2 could be replaced by the peroxide-generating enzyme system glucose oxidase plus glucose. The entire myeloperoxidase system could be replaced by sodium hypochlorite at micromolar concentrations. Toxin inactivation was a function of time of exposure to the myeloperoxidase system (less than 1 min), the rate of formation of H2O2 (0.05 nmol/min), and the concentration of toxin employed. Toxin that had been inactivated by the myeloperoxidase system was reactivated on incubation with the reducing agent dithiothreitol. Pneumolysin was also inactivated when incubated with human neutrophils (10(5)) in the presence of a halide and phorbol myristate acetate, an activator of neutrophil secretion and oxygen metabolism. Toxin inactivation by stimulated neutrophils was blocked by azide, cyanide, or catalase, but not by superoxide dismutase. Neutrophils from patients with impaired oxygen metabolism (chronic granulomatous disease) or absent myeloperoxidase (hereditary deficiency) failed to inactivate the toxin unless they were supplied with an exogenous source of H2O2 or purified myeloperoxidase, respectively. Thus, inactivation of pneumolysin involved the secretion of myeloperoxidase and H2O2, which combined with extracellular halides to form agents (e.g., hypochlorite) capable of oxidizing the toxin. This example of oxidative inactivation of a cytolytic agent may serve as a model for phagocyte-mediated detoxification of microbial products.  相似文献   

12.
Chlorination of proteins by the myeloperoxidase-H2O2-Cl- system results in light emission. Out of all amino acids present in proteins only tryptophan delivers light during chlorination. Chlorination of tryptophan by the myeloperoxidase-H2O2-Cl- system, as well as by HOCl or taurine chloramine is associated with chemiluminescence. pH dependence and time pattern of light emission is similar for chlorination of tryptophan by the myeloperoxidase system and taurine, but appears to be different for chlorination by HOCl. Aerobic conditions are necessary for chemiluminescence of chlorinated tryptophan.  相似文献   

13.
We have examined the effect of the myeloperoxidase-hydrogen peroxide-halide system and of activated human neutrophils on the ability of serum alpha 1-protease inhibitor (alpha 1-PI) to bind and inhibit porcine pancreatic elastase. Exposure to the isolated myeloperoxidase system resulted in nearly complete inactivation of alpha 1-PI. Inactivation was rapid (10 to 20 s); required active myeloperoxidase, micromolar concentrations of H2O2 (or glucose oxidase as a peroxide generator), and a halide cofactor (Cl- or I-); and was blocked by azide, cyanide, and catalase. Intact neutrophils similarly inactivated alpha 1-PI over the course of 5 to 10 min. Inactivation required the neutrophils, a halide (Cl-), and a phorbol ester to activate secretory and metabolic activity. It was inhibited by azide, cyanide, and catalase, but not by superoxide dismutase. Neutrophils with absent myeloperoxidase or impaired oxidative metabolism (chronic granulomatous disease) failed to inactivate alpha 1-PI, and these defects were specifically corrected by the addition of myeloperoxidase or H2O2, respectively. Thus, stimulated neutrophils secrete myeloperoxidase and H2O2 which combine with a halide to inactivate alpha 1-PI. We suggest that leukocyte-derived oxidants, especially the myeloperoxidase system, may contribute to proteolytic tissue injury, for example in elastase-induced pulmonary emphysema, by oxidative inactivation of protective antiproteases.  相似文献   

14.
The aim of this investigation was to compare an improved fluorometric method with an UV absorbance assay for their ability to monitor low density lipoprotein (LDL) modification by myeloperoxidase (MPO) and to evaluate determining factors influencing the modification of LDL. Using absorbance at 234 nm to study the kinetics of LDL aggregation, and a native fluorescence assay for protein oxidation, we found that all components of the MPO/H2O2/Cl- system may have rate determining effects on LDL modification. While the lipoprotein modification rate correlated positively with enzyme concentration, variation of the concentration of H2O2 had a biphasic effect on the maximal rate of LDL modification with both methods. Furthermore, a positive association was found between the maximal rate of LDL modification and the acidity of the medium, with a pathophysiologically relevant optimal rate at a slightly acidic pH of 5-6, but hardly any modification above pH 6.8. In summary, both methods provide simple and useful tools for the continuous monitoring of LDL modification by the MPO/H2O2/Cl- system, but the more sensitive fluorometric method is preferable, since it allows the application of experimental conditions which are much closer to the situation in vivo.  相似文献   

15.
Inhibition of myeloperoxidase by salicylhydroxamic acid.   总被引:2,自引:0,他引:2       下载免费PDF全文
Salicylhydroxamic acid inhibited the luminol-dependent chemiluminescence of human neutrophils stimulated by phorbol 12-myristate 13-acetate or the chemotactic peptide N-formylmethionyl-leucyl-phenylalanine (fMet-Leu-Phe). This compound had no inhibitory effect on the kinetics of O2.- generation or O2 uptake during the respiratory burst, but inhibited both the peroxidative activity of purified myeloperoxidase and the chemiluminescence generated by a cell-free myeloperoxidase/H2O2 system. The concentration of salicylhydroxamic acid necessary for complete inhibition of myeloperoxidase activity was 30-50 microM (I50 values of 3-5 microM) compared with the non-specific inhibitor NaN3, which exhibited maximal inhibition at 100-200 microM (I50 values of 30-50 microM). Whereas taurine inhibited the luminol chemiluminescence of an H2O2/HOC1 system by HOC1 scavenging, this compound had little effect on myeloperoxidase/H2O2-dependent luminol chemiluminescence; in contrast, 10 microM-salicylhydroxamic acid did not quench HOC1 significantly but greatly diminished myeloperoxidase/H2O2-dependent luminol chemiluminescence, indicating that its effects on myeloperoxidase chemiluminescence were largely due to peroxidase inhibition rather than non-specific HOC1 scavenging. Salicylhydroxamic acid prevented the formation of myeloperoxidase Compound II, but only at low H2O2 concentrations, suggesting that it may compete for the H2O2-binding site on the enzyme. These data suggest that salicylhydroxamic acid may be used as a potent inhibitor to delineate the function of myeloperoxidase in neutrophil-mediated inflammatory events.  相似文献   

16.
N R Matheson  J Travis 《Biochemistry》1985,24(8):1941-1945
Human alpha 1-proteinase inhibitor is easily susceptible to inactivation because of the presence of a methionyl residue at its reactive site. Thus, oxidizing species derived from the myeloperoxidase system (enzyme, H2O2, and C1-), as well as hypochlorous acid, can inactivate this inhibitor, although H2O2 alone has no effect. Butylated hydroxytoluene, a radical scavenger, partially protects alpha 1-proteinase inhibitor from the myeloperoxidase system and completely protects it from hypochlorous acid. Each oxidant also reacts differently with the inhibitor, in that the myeloperoxidase system and hypochlorous acid can each oxidize as many as six methionyl residues, but hypochlorous acid can also oxidize a single tyrosine residue. Myeloperoxidase can be inactivated by hypochlorous acid, by autoxidation in the presence of H2O2 and C1-, as well as by H2O2 alone. Butylated hydroxytoluene completely protects this enzyme from hypochlorous acid inactivation, does not affect the action of H2O2, and enhances autoinactivation. As many as six methionyl residues and two tyrosine residues could be oxidized during autoxidation and six methionine residues by H2O2 alone. Eight methionine residues and one tyrosine residue could be oxidized by hypochlorous acid. The tyrosine residue in myeloperoxidase was oxidized only at a relatively high concentration (600 microM) of hypochlorous acid at which point the enzyme simultaneously and completely lost its enzymatic activity. Loss of activity of myeloperoxidase could also be correlated with the loss of the heme groups present in the enzyme when a relatively high concentration of hypochlorous acid (600 microM) was used and also during autoxidation. It appears that once there is sufficient oxidant to modify one of the tyrosine residues, the heme group itself becomes susceptible.  相似文献   

17.
Stimulation of the oxygen (O2) metabolism of isolated human neutrophilic leukocytes resulted in oxidation of hemoglobin of autologous erythrocytes without erythrocyte lysis. Hb oxidation could be accounted for by reduction of O2 to superoxide (O-2) by the neutrophils, dismutation of O-2 to yield hydrogen peroxide (H2O2), myeloperoxidase-catalyzed oxidation of chloride (Cl-) by H2O2 to yield hypochlorous acid (HOCl), the reaction of HOCl with endogenous ammonia (NH+4) to yield monochloramine ( NH2Cl ), and the oxidative attack of NH2Cl on erythrocytes. NH2Cl was detected when HOCl reacted with the NH+4 and other substances released into the medium by neutrophils. The amount of NH+4 released was sufficient to form the amount of NH2Cl required for the observed Hb oxidation. Oxidation was increased by adding myeloperoxidase or NH+4 to increase NH2Cl formation. Due to the volatility of NH2Cl , Hb was oxidized when neutrophils and erythrocytes were incubated separately in a closed container. Oxidation was decreased by adding catalase to eliminate H2O2, dithiothreitol to reduce HOCl and NH2Cl , or taurine to react with HOCl or NH2Cl to yield taurine monochloramine . NH2Cl was up to 50 times more effective than H2O2, HOCl, or taurine monochloramine as an oxidant for erythrocyte Hb, whereas HOCl was up to 10 times more effective than NH2Cl as a lytic agent. NH2Cl contributes to oxidation of erythrocyte components by stimulated neutrophils and may contribute to other forms of neutrophil oxidative cytotoxicity.  相似文献   

18.
It was shown with the spin trap alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone that myeloperoxidase (MPO) in the presence of its substrates H2O2 and Cl- as well as activated neutrophils destroy tert-butyl hydroperoxide producing two adducts of O-centered radicals which were identified as peroxyl and alcoxyl radicals. Inhibitory analysis performed with traps of hypochlorite (taurine and methionine), free radical scavengers (2,6-di-tret-butyl-4-methylphenol and mannitol), and MPO inhibitors (salicylhydroxamic acid and 4-aminobenzoic acid hydrazide) revealed that the destruction of the hydroperoxide group in the presence of isolated MPO or activated neutrophils was directly caused by the activity of MPO: some radical intermediates appeared as a result of the chlorination cycle of MPO at the stage of hypochlorite generation, whereas the other radicals were produced independently of hypochlorite, presumably with involvement of the peroxidase cycle of MPO. The data suggest that the activated neutrophils located in the inflammatory foci and secreting MPO into the extracellular space can convert hydroperoxides into free radicals initiating lipid peroxidation and other free radical reactions and, thus, promoting destruction of protein-lipid complexes (biological membranes, blood lipoproteins, etc.).  相似文献   

19.
The chlorination of glycine by the myeloperoxidase-H2O2-Cl- system at acidic pH values yielded N-monochloroglycine and a mixture of HCN and ClCN. HCN was formed as a product of N-dichloroglycine decomposition and cyanogen chloride formation resulted from simultaneous chlorination of HCN by N-chloroglycine or directly by the myeloperoxidase-H2O2-Cl- system. HCN was readily chlorinated by the myeloperoxidase-H2O2Cl- system yielding cyanogen chloride. This dissociation constants of the myeloperoxidase-CN- complex were estimated as 2.5.10(-6)--1.15.10(-5) M within the pH range of 6.2 to 3.4, respectively. Chloride competed with cyanide for binding at the active site of myeloperoxidase. The lower the pH the more pronounced was the competitive effect of chloride. This accounted for chlorination by myeloperoxidase in the presence of CN-.  相似文献   

20.
Oxidation of chloride and thiocyanate by isolated leukocytes   总被引:8,自引:0,他引:8  
Peroxidase-catalyzed oxidation of chloride (Cl-) and thiocyanate (SCN-) was studied using neutrophils from human blood and eosinophils and macrophages from rat peritoneal exudates. The aims were to determine whether Cl- or SCN- is preferentially oxidized and whether leukocytes oxidize SCN- to the antimicrobial oxidizing agent hypothiocyanite (OSCN-). Stimulated neutrophils produced H2O2 and secreted myeloperoxidase. Under conditions similar to those in plasma (0.14 M Cl-, 0.02-0.12 mM SCN-), myeloperoxidase catalyzed the oxidation of Cl- to hypochlorous acid (HOCl), which reacted with ammonia and amines to yield chloramines. HOCl and chloramines reacted with SCN- to yield products without oxidizing activity, so that high SCN- blocked accumulation of chloramines in the extracellular medium. Under conditions similar to those in saliva and the surface of the oral mucosa (20 mM Cl-, 0.1-3 mM SCN-), myeloperoxidase catalyzed the oxidation of SCN- to OSCN-, which accumulated in the medium to concentrations of up to 40-70 microM. Sulfonamide compounds increased the yield of stable oxidants to 0.2-0.3 mM by reacting with OSCN- to yield derivatives analogous to chloramines. Stimulated eosinophils produced H2O2 and secreted eosinophil peroxidase, which catalyzed the oxidation of SCN- to OSCN- regardless of Cl- concentration. Stimulated macrophages produced H2O2 but had low peroxidase activity. OSCN- was produced when SCN- was 0.1 mM or higher and myeloperoxidase, eosinophil peroxidase, or lactoperoxidase was added. The results indicate that SCN- rather than Cl- may be the physiologic substrate (electron donor) for eosinophil peroxidase and that OSCN- may contribute to leukocyte antimicrobial activity under conditions that favor oxidation of SCN- rather than Cl-.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号