首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
Most wrasse species swim during the day and bury themselves in the sandy bottoms of shallow reefs at night. This study aimed to evaluate the importance of sandy bottoms to the day-active/night-inactive rhythmicity of the tropical wrasse Halichoeres trimaculatus. Actogram analysis revealed that fish were active during the photophase and inactive during the scotophase in aquariums with both sandy and bare bottoms. When fish were kept in aquariums with bare bottoms, rhythmicity was maintained under constant dark conditions (DD) but became obscured under constant light conditions (LL), suggesting that a day-active/night-inactive rhythmicity is regulated by the circadian system. Robust fluctuations in Period1 (wPer1) and Period2 (wPer2) expression were observed in the pectoral fin tissue under light–dark conditions (LD). Similar fluctuations in wPer1 expression persisted under DD. When fish were kept under LD conditions for 7 days and then DD for 20 days, the emergence of fish from the sandy bottom was delayed gradually. At the same time, the peak time of wPer1 expression under DD was retarded from 06:00 to 10:00. Although wPer2 expression was dampened under DD, it increased after exposing fish to light. These results suggest that wPer1 and wPer2 are differentially involved in the day-active/night-inactive rhythmicity, and that blocking light with a sandy bed at night and exposing fish to light during emergence in the morning play important roles in maintaining consistent activities in wrasse species.  相似文献   

2.
3.
Lophelia pertusa is the world's most common and widespread framework-forming cold-water coral. It forms deep-water coral reefs and carbonate mounds supporting diverse animal communities on the continental shelf and on seamounts. These recently discovered ecosystems have been damaged by deep-sea fishing and are threatened by predicted shallowing of the aragonite saturation horizon. Despite this, very little is known about the ecophysiology of L. pertusa and its likely response to environmental changes. Here we describe the first study of the respiratory physiology of L. pertusa and the effects of altered temperature and oxygen level. This study shows that L. pertusa can maintain respiratory independence over a range of PO2 illustrated by a high regulation value (R = 78%). The critical PO2 value of 9-10 kPa is very similar to the lower values of oxygen concentration recorded in the field. This suggests that oxygen level may be a limiting factor in the distribution of this cold-water coral. L. pertusa survived periods of anoxia (1 h), hypoxia (up to 96 h), but high Q10 values revealed sensitivity to short-term temperature changes (6.5-11 °C). For the first time vital data have been gathered on the physiology of this species that is essential to understand distribution and underpin future climate change studies.  相似文献   

4.
Summary Depth-dependent photoadaptational responses of the Red Sea zooxanthellate coral (Leptoseris fragilis) were studied down to 160 m from the research submersible GEO. Light saturation curves for photosynthesis revealed, with I C=1-2, I K=10.9 and I sat=20 E·cm–2·sec–1, the lowest values of photokinetic parameters ever reported for a symbiotic coral. In summer, positive net production occurs only around noon at approx. 100m depth. Biomass parameters of corals at 100–135 m are negatively correlated with depth in algal cell density, protein, chlorophyll and carotenoid but not in pigment ratios or cell based pigment content. Coral size decreased with depth. Corals transplanted from 110–120 m original depth to 40, 70, 90 and 160 m showed high survival after one year. O2-production and dark O2-uptake increased with decreasing transplantation depth. After one year, transplants at 70 and 90 m but not at 40 m had higher algae density and pigment concentrations. The host light-harvesting systems described by Schlichter, Fricke and Weber (1986) are partially destroyed in 40 m but not in 70 and 90 m transplants. Different light exposures alter P-I-responses (P max, I C, I K, I sat) but not biomass parameters, indicating molecular or biochemical adaptation. The coraal's optimal light fields lie between 70 to 90 m. Its exceptional bathymetric distribution is linked with the newly discovered host light-harvesting systems which probably enhance photosynthetic performance in a dim environment.  相似文献   

5.
The size-advantage model predicts the evolution of sex changeif the relative reproductive success of the sexes changes withsize or age. In the goby (Paragobiodon echinocephalus) the largesttwo fish, a male and a female matched by size, breed monogamouslyin each host coral. Because the female fecundity and male abilityof egg care increase with body size in a similar way, no size-fecundityadvantage exists. However, we found both protogyny and infrequentprotandry in a natural population of this species in Okinawa.New pairs were often formed after movement between host coralsand also sex change or sex differentiation of one or both members.In most new pairs males were larger than females, and femalesgrew much faster than their mates until breeding (growth-rateadvantage). The smaller member of a new pair should be the femalethat grows faster, because the smaller limits the reproductivesuccess of the pair. To form such a pair, the goby changed sexaccording to the sex and relative size of a new mate, as a status-dependentconditional strategy. The growth-rate advantage predicts predominanceof protogyny, but movement between host corals provides opportunitiesalso for protandry.  相似文献   

6.
毛细管电泳已DNA片段分离分析的重要手段。本简述了毛细管电泳中采用无胶筛分介质分离DNA片段的机理研究,介绍了筛分介质近年的研究发展状况,依据分离介质的化学组成,分单聚物、共聚物和混聚物等3个部分进行了评述,并对其发展前景进行了展望。  相似文献   

7.
The stereoselectivity of the reversible binding interactions between the D- and L-tryptophan enantiomers and serum albumins of different animal species and fragments of human serum albumin (HSA) was investigated by applying three novel high performance liquid chromatographic (HPLC) arrangements. The separations were performed by means of (1) an achiral (diol-bond), (2) a chiral (bovine serum albumin-bond) silica gel sorbent, and (3) a column switching technique which uses both the diol- and HSA-bond HPLC stationary phases. A polarimetric detector and/or an ultraviolet (UV) spectrophotometer were used to monitor the separation process. HPLC arrangement 3 allowed the evaluation of enantioselective binding for D- and L-tryptophan to different albumins and albumin fragments. At present, column switching can be considered the technique of the broadest applicability for investigating the reversible binding interactions between a protein and drug enantiomers. Chirality 9:373–379, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号