首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The response of the serotonergic system following injury to the basal forebrain cholinergic system was investigated in rats. The density of 5-hydroxytryptamine (serotonin) type 2 (S2) receptor sites in the frontal cortex and hippocampus was determined 1 week and 4 months after production of lesions by injections of ibotenic acid into the medial septum and nucleus basalis magnocellularis. One week later, the number of S2 receptor sites in the frontal neocortex, as defined by [3H]ketanserin binding, was unchanged. Four months later, the number of [3H]ketanserin binding sites (and Bmax) was increased and high-affinity [3H]serotonin uptake was decreased in the frontal neocortex, but not in the hippocampus, relative to unlesioned controls. Choline acetyltransferase (acetyl-CoA:choline O-acetyltransferase; EC 2.3.1.6) activity was decreased significantly in the frontal neocortex and hippocampus 1 week and 4 months after surgery. The change in frontal neocortical S2 receptor site density was inversely related to the level of choline acetyltransferase activity, was specific for cholinergic denervation associated with the cortex but not the hippocampus, and may represent a localized denervation supersensitivity due to degeneration of median raphe cortical afferents.  相似文献   

2.
A human cDNA clone containing the 5' coding region of the GABAA/benzodiazepine receptor alpha subunit was used to quantify and visualize receptor mRNA in various regions of the rat brain. Using a [32P]CTP-labelled antisense RNA probe (860 bases) prepared from the alpha subunit cDNA, multiple mRNA species were detected in Northern blots using total and poly A rat brain RNA. In all brain regions, mRNAs of 4.4 and 4.8 kb were observed, and an additional mRNA of 3.0 kb was detected in the cerebellum and hippocampus. The level of GABAA/benzodiazepine receptor mRNA was highest in the cerebellum followed by the thalamus = frontal cortex = hippocampus = parietal cortex = hypothalamus much greater than pons = striatum = medulla. In situ hybridization revealed high levels of alpha subunit mRNA in cerebellar gray matter, olfactory bulb, thalamus, hippocampus/dentate gyrus, and the arcuate nucleus of the hypothalamus. These data suggest the presence of multiple GABAA/benzodiazepine receptor alpha subunit mRNAs in rat brain and demonstrate the feasibility of studying the expression of genes encoding the GABAA/benzodiazepine receptor after pharmacological and/or environmental manipulation.  相似文献   

3.
A single intraventricular injection of tetanus toxin produced a time-dependent elevation of serotonin levels in brain and spinal cord of adult rats. This tetanus toxin-induced increase was produced in areas of high density of serotonergic innervation, such as the hypothalamus, hippocampus, and spinal cord. Little or no effect was found in the thalamus, cerebellum, and frontal cortex, areas that are poorly innervated by serotonergic terminals. The responses of catecholamines (no change in dopamine level and generalized decrease in norepinephrine) pointed to a specific action of tetanus toxin on the serotonergic system. Stereotaxic injections of tetanus toxin in dorsal or magnus raphe nuclei did not have an evident effect on biogenic amine levels in the brain and spinal cord, respectively. Because direct stereotaxic injections of the toxin in the hypothalamus or hippocampus produced significant serotonin increases in both areas, it is proposed that tetanus toxin interacts with presynaptic targets to produce serotonin accumulation; this is probably due in part to an activation of tryptophan 5-hydroxylase.  相似文献   

4.
Effect of Age on Human Brain Serotonin (S-1) Binding Sites   总被引:2,自引:1,他引:1  
The effect of age on the binding of [3H]5-hydroxytryptamine [( 3H]5-HT, serotonin) to postmortem human frontal cortex, hippocampus, and putamen from individuals between the ages of 19 and 100 years was studied. One high-affinity binding site was observed in adult brains, with a mean KD of 3.7 nM and 3.2 nM for frontal cortex and hippocampus, respectively, and 9.2 nM for putamen. Decreased binding capacities (Bmax) with age were detected in frontal cortex and hippocampus. In putamen a decrease in affinity was noted. Postmortem storage did not significantly contribute to the age-related changes. No significant sex differences were detected. [3H]5-HT binding was also studied in brains from human neonates. The specific binding was 1.5-3 times lower than in adult frontal cortex and putamen, and Scatchard analysis suggested more than one binding site. In infant hippocampus a single binding site was observed and except for a premature individual, the binding capacity approximated adult values.  相似文献   

5.
It has been hypothesized that the dysfunction of the serotonergic and catecholaminergic neurotransmission is involved in the pathogenesis of depression. These hypotheses are being tested in a novel rat model of depression developed by the treatment of antidepressant-clomipramine neonataly from postnatal day 8 to 21. After the attainment of adulthood, these rats mimicked the features of the human endogenous depression showing significant decrease in the aggressive behavior and food intake. Biogenic amine estimations in these rats revealed that the levels of serotonin and noradrenaline were decreased significantly (P < 0.001) in frontal cortex, hippocampus, brain stem, septum and hypothalamus, while the levels of dopamine were decreased significantly (P < 0.001) only in the hippocampus compared to normal control and vehicle treated groups of rats. Our results demonstrate the dysfunction of serotonergic and noradrenergic neurotransmission, with lesser involvement of dopaminergic neurotransmission in the clomipramine induced experimental model of depression.  相似文献   

6.
1. Meptazinol is an interesting opioid-producing naloxone-reversible analgesia with few cardiovascular and respiratory effects. Recent studies indicate that mu 1 opioid receptors mediate meptazinol analgesia. Using a computerized autoradiographic subtraction technique, we have examined the regional distribution of meptazinol-sensitive [3H][D-Ala2,MePhe4,Gly(ol)5]enkephalin (DAGO) binding and compared this with the distribution of mu 1 binding determined by competition with low [D-Ala2,D-Leu5]enkephalin (DADL) concentrations. 2. Meptazinol and DADL lowered [3H]DAGO to similar extents in most brain regions studied. The greatest levels of inhibition were observed in the periaqueductal gray, interpeduncular nucleus, thalamus, hypothalamus, and hippocampus. Low levels of inhibition were found in the temporal and frontal cortex. The correlation between the inhibition of [3H]DAGO binding by meptazinol and that by DADL was high (r = 0.83), consistent with the binding of meptazinol to mu 1 sites.  相似文献   

7.
Normal rats rotate (turn in circles) at night and in response to drugs (e.g. d-amphetamine) during the day. Rats with known circling biases were injected with [1,2-3H]-deoxy-d-glucose, decapitated and glucose utilization was assessed in several brain structures. Most structures showed evidence of functional brain asymmetry. Asymmetries were of three different kinds: (1) a difference in activity between sides of the brain contralateral and ipsilateral to the direction of rotation (midbrain, striatum); (2) a difference in activity between left and right sides (frontal cortex, hippocampus); and (3) an absolute difference in activity between sides that was correlated to the rate of either rotation (thalamus, hypothalamus) or random movement (cerebellum). Amphetamine, administered 15 minutes before a deoxyglucose injection in other rats, altered some asymmetries (striatum, frontal cortex, hippocampus) but not others (midbrain, thalamus, hypothalamus, cerebellum). Different asymmetries appear to be organized along different dimensions in both the rat and human brains.  相似文献   

8.
Aging was associated with an increase in the density of specific binding sites for [3H]imipramine in postmortem specimens of human hypothalamus, frontal cortex, and parietal cortex. In general, [3H]imipramine binding was not affected by factors considered difficult to control in postmortem studies, i.e., time from death to autopsy and cause of death. The in vitro regulation of [3H]imipramine binding by sodium was impaired with age in hypothalamic homogenates. In vitro regulation of [3H]imipramine binding by chloride was intact. Determination of the concentrations of 5-hydroxytryptamine (serotonin) and 5-hydroxyindoleacetic acid in hypothalamus and frontal cortex indicated no apparent age-related changes in indole metabolism. The age-related increase in brain [3H]imipramine binding and impairment in the in vitro regulation of binding by ions are similar to changes observed previously in aged mouse brain. The increase in brain antidepressant binding sites is discussed in relationship to other indices of brain serotonergic function in aging and to the relationship of [3H]imipramine binding and depression.  相似文献   

9.
[3H] 1-Nicotine was used as a receptor ligand in the intact mouse. It was injected i.v., and radioactivity in brain regions was assayed. Nonspecific binding was estimated by pretreatment with unlabelled 1-nicotine. Radioactivity entered the brain rapidly, was heterogeneously distributed, and declined after 5 min. Estimated specific binding was highest in the medial and posterior cortex, midbrain, thalamus/hypothalamus and medulla/pons; intermediate in the cerebellum, caudate/putamen, frontal and frontoparietal cortex; and lowest in the hippocampus and olfactory bulb. Autoradiography showed similar patterns. Coinjection of unlabelled 1-nicotine reduced specific binding so that it approached estimated nonspecific binding. Nicotinic agonists reduced radioactivity in the thalamus/hypothalamus, but nicotinic antagonists were less active. Non-nicotinic drugs did not reduce brain radioactivity. The results suggest that radiolabelled nicotine may be used for in vivo receptor studies despite problems in estimating nonspecific binding.  相似文献   

10.
We used knockout mice and receptor antagonist strategies to investigate the contribution of the serotonin (5-hydroxytryptamine, 5-HT) 1B receptor subtype in mediating the effects of selective serotonin re-uptake inhibitors (SSRIs). Using in vivo intracerebral microdialysis in awake mice, we show that a single systemic administration of paroxetine (1 or 5 mg/kg, i.p.) increased extracellular serotonin levels [5-HT]ext in the ventral hippocampus and frontal cortex of wild-type and mutant mice. However, in the ventral hippocampus, paroxetine at the two doses studied induced a larger increase in [5-HT]ext in knockout than in wild-type mice. In the frontal cortex, the effect of paroxetine was larger in mutants than in wild-type mice at the 1 mg/kg, but not at 5 mg/kg. In addition, either the absence of the 5-HT1B receptor or its blockade with the mixed 5-HT1B/1D receptor antagonist, GR 127935, potentiated the effect of a single administration of paroxetine on extracellular 5-HT levels more in the ventral hippocampus than in the frontal cortex. These data suggest that 5-HT1B autoreceptors limit the effects of SSRIs on dialysate 5-HT levels at serotonergic nerve terminals.  相似文献   

11.
In 3 dogs with implanted electrodes, in conditioned experiments correlation of the bioelectrical processes was studied by coherence function calculation of the hippocampus, hypothalamus, amygdala and frontal cortex biopotentials. It was shown, that the level of maximum values of coherence function of bioelectrical oscillations, led from various pairs of the studied brain structures significantly differed both in magnitude and frequency at which the greatest synchronization of biopotentials was noticed. In one dog with a high degree of connection between the hippocampus and hypothalamus biopotentials oscillations, a low synchronization of the frontal cortex and amygdala oscillations was found; in two other animals with a higher level of coherence between the oscillations of the frontal cortex and amygdala biopotentials, a lower degree of connection between the oscillations led from the hippocampus and hypothalamus was revealed. Synchronization of the biopotentials of the hippocampus and frontal cortex and also of the hippocampus and amygdala biopotentials proved to be low in all experimental dogs, what additionally testifies to different role of these structures in organization of the behaviour.  相似文献   

12.
R Haring  Y Kloog  A Kalir  M Sokolovsky 《Biochemistry》1987,26(18):5854-5861
Binding and photoaffinity labeling experiments were employed in order to differentiate 1-(1-phenylcyclohexyl)piperidine (PCP) receptor sites in rat brain. Two classes of PCP receptors were characterized and localized: one class binds [3H]-N-[1-(2-thienyl)cyclohexyl]piperidine [( 3H]TCP) with high affinity (Kd = 10-15 nM) and the other binds the ligand with a relatively low affinity (Kd = 80-100 nM). The two classes of sites have different patterns of distribution. Forebrain regions are characterized by high-affinity sites (hippocampus greater than frontal cortex greater than thalamus greater than olfactory bulb greater than hypothalamus), but some parts (e.g., hippocampus, hypothalamus) contain low-affinity sites as well. In the cerebellum only low-affinity sites were detected. Binding sites for [3H]PCP and for its photolabile analogue [3H]azido-PCP showed a regional distribution similar to that of the [3H]TCP sites. The neuroleptic drug haloperidol did not block binding to either the high- or the low-affinity [3H]TCP sites, whereas Ca2+ inhibited binding to both. Photoaffinity labeling of the PCP receptors with [3H]AZ-PCP indicated that five specifically labeled polypeptides of these receptors (Mr 90,000, 62,000, 49,000, 40,000, and 33,000) are unevenly distributed in the rat brain. Two of the stereoselectively labeled polypeptides (Mr 90,000 and 33,000) appear to be associated with the high- and low-affinity [3H]TCP-binding sites; the density of the Mr 90,000 polypeptide in various brain regions correlates well with the localization of the high-affinity sites, whereas the density of the Mr 33,000 polypeptide correlates best with the distribution of the low-affinity sites.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Previous work has shown that [3H]paroxetine is a potent and selective in vitro label for serotonin uptake sites in the mammalian brain. In the present study, [3H]paroxetine was tested in mice as an in vivo label for serotonin uptake sites. Maximum tritium concentration in the whole brain (1.4% of the intravenous dose) was reached 1 h after injection into a tail vein. Distribution of the tracer at 3 h after injection followed the distribution of serotonin uptake sites known from previous in vitro binding studies (r = 0.85). The areas of highest [3H]paroxetine concentration, in decreasing order, were: hypothalamus greater than frontal cortex greater than olfactory tubercles greater than thalamus greater than upper colliculi greater than brainstem greater than hippocampus greater than striatum greater than cerebellum. Preinjection of carrier paroxetine (1 mg/kg) significantly decreased [3H]paroxetine concentration in all areas except in the cerebellum, which is known to contain a relatively low number of specific binding sites. Kinetic studies showed highest specific [3H]paroxetine binding (tissue minus cerebellum) at 2 h after injection and slow clearance of activity thereafter (half-time of dissociation from the hypothalamus, 215 min). The specificity of in vivo [3H]paroxetine binding was studied by preinjecting monoamine uptake blockers or receptor antagonists 5 min before administration of [3H]paroxetine. Serotonergic or muscarinic cholinergic receptor antagonists and dopamine or norepinephrine uptake blockers did not reduce the in vivo binding of [3H]paroxetine. In contrast, there was an excellent correlation (r = 0.99) between the in vivo inhibitory potencies of serotonin uptake blockers in this study and previously published in vitro data on inhibition of [3H] serotonin uptake in brain synaptosomes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Abstract— Pentobarbitone sodium anaesthesia was found to produce an increase in protein content in some regions of the rat brain, i.e. posterior cortex, caudate nucleus, and a decrease in protein content in the ventral cortex.
Acetylcholinesterase expressed in terms of wet weight was found to increase in the cerebellum, medulla, and to decrease in the medial cortex, hippocampus, thalamus and caudate nucleus. The changes in activity were not explicable in terms of a direct effect of the anaesthetic on the enzyme. A decrease in protein content of rat brain was observed in the frontal cortex, ventral cortex, hippocampus and caudate nucleus after electrical shocks. Following shock avoidance conditioning procedure (shuttle-box), decreases in protein content were observed in the medial cortex, posterior cortex, cerebellum and ventral cortex; in the thalamus an increase in protein content was observed.
Changes in AChE activity were observed following footshock in the frontal cortex and medulla where there was an increase in activity and in the caudate nucleus, hypothalamus, thalamus, and olfactory tubercle where there was a decrease in activity.
Following shock avoidance conditioning the activity of the AChE increased in posterior cortex, hippocampus, thalamus and hypothalamus and the activity of the enzyme decreased in the ventral cortex.  相似文献   

15.
Influence of Fluoxetine on Regional Serotonin Synthesis in the Rat Brain   总被引:4,自引:2,他引:2  
Abstract: The aim of the present study was to test the hypothesis that there should be a difference between the effects of an acute and an 8-day (chronic) administration of fluoxetine (10 mg/kg) on the rate of serotonin [5-hydroxytryptamine (5-HT)] synthesis. The 5-HT synthesis rate was measured in discrete regions of the rat brain using the α-[14C]methyl- l -tryptophan autoradiographic method. The results show that the acute and chronic fluoxetine treatments influence the 5-HT synthesis rate in different ways. A single dose of fluoxetine induced a significant increase in 5-HT synthesis in the visual, auditory, and parietal cortices, substantia nigra, hypothalamus, ventral thalamus, and dorsal hippocampus. In contrast, after a chronic treatment a decrease was observed in the substantia nigra, caudate, and nucleus accumbens, the auditory, parietal, sensorimotor, and frontal cortices, and ventral tegmental area. A significant decrease in the rate of 5-HT synthesis was observed in the dorsal raphe after both the single and chronic treatments. The results suggest that extracellular 5-HT has a delayed influence on the brain 5-HT synthesis rate in structures with serotonergic terminals. The findings from the acute study could be important for patients who have just started receiving fluoxetine treatment, as an increase in the 5-HT synthesis rate might occur in the acute phase of their treatment. In addition, the findings from the chronic treatment study might give us a better understanding of how the brain serotonergic system adapts during a prolonged exposure to extracellular 5-HT.  相似文献   

16.
The ability of neurotoxic substances to induce selective lesions of the descending monoaminergic pathways in rats was investigated. Saline, 6-hydroxydopamine, 5,6-dihydroxytryptamine, or 5,7-dihydroxytryptamine were administered into the lumbar subarachnoid space through a chronically indwelling catheter. The lesions were evaluated 2-3 weeks later by in vitro uptake of [3H]noradrenaline and [14C]5-hydroxytryptamine into synaptosomal preparations from the frontal cortex, brainstem, cervical spinal cord, and lumbar spinal cord of each animal. There was no difference in uptake between saline-injected and noncatheterized controls and no significant changes in cortical uptake after any of the treatments (dose range of neurotoxins: 0.6-80 micrograms). In the lumbar spinal cord, 6-hydroxydopamine (5-80 micrograms) reduced the [3H]noradrenaline uptake by approximately 90% with no effects on [14C]5-hydroxytryptamine uptake, whereas 5,6-dihydroxytryptamine reduced the uptake of [14C]5-hydroxytryptamine by 90% (20-80 micrograms). [3H]Noradrenaline uptake was unaffected by lower doses of 5,6-dihydroxytryptamine but fell by 45-55% after 40-80 micrograms. 5,7-Dihydroxytryptamine (10-80 micrograms) reduced [3H]noradrenaline uptake by 90-95% and [14C]5-hydroxytryptamine uptake by approximately 80% (5-80 micrograms) in the lumbar cord. It is concluded that intrathecal administration of suitable doses of neurotoxins may produce extensive selective lesions of descending noradrenergic and serotonergic pathways.  相似文献   

17.
Mutant mice that lack serotonin(1A) receptors exhibit enhanced anxiety-related behaviors, a phenotype that is hypothesized to result from impaired autoinhibitory control of midbrain serotonergic neuronal firing. Here we examined the impact of serotonin(1A) receptor deletion on forebrain serotonin neurotransmission using in vivo microdialysis in the frontal cortex and ventral hippocampus of serotonin(1A) receptor mutant and wild-type mice. Baseline dialysate serotonin levels were significantly elevated in mutant animals as compared with wild-types both in frontal cortex (mutant = 0.44 +/- 0.05 n M; wild-type = 0.28 +/- 0.03 n M) and hippocampus (mutant = 0.46 +/- 0.07 n M; wild-type = 0.27 +/- 0.04 n M). A stressor known to elicit enhanced anxiety-like behaviors in serotonin(1A) receptor mutants increased dialysate 5-HT levels in the frontal cortex of mutant mice by 144% while producing no alteration in cortical 5-HT in wild-type mice. There was no phenotypic difference in the effect of this stressor on serotonin levels in the hippocampus. Fluoxetine produced significantly greater increases in dialysate 5-HT content in serotonin(1A) receptor mutants as compared with wild-types, with two- and three-fold greater responses being observed in the hippocampus and frontal cortex, respectively. This phenotypic effect was mimicked in wild-types by pretreatment with the serotonin(1A) antagonist 4-iodo-N-[2-[4-(methoxyphenyl)-1-piperazinyl]ethyl]-N-2-pyridinyl-benzamide (p-MPPI). These results indicate that deletion of central serotonin(1A) receptors results in a tonic disinhibition of central serotonin neurotransmission, with a greater dysregulation of serotonin release in the frontal cortex than ventral hippocampus under conditions of stress or increased interstitial serotonin levels.  相似文献   

18.
The human platelet contains a functional 5-hydroxytryptamine (5-HT) receptor that appears to resemble the 5-HT2 subtype. In this study, we have used the iodinated derivative [125I]iodolysergic acid diethylamide ([125I]iodoLSD) in an attempt to label 5-HT receptors in human platelet and frontal cortex membranes under identical assay conditions to compare the sites labelled in these two tissues. In human frontal cortex, [125I]iodoLSD labelled a single high-affinity site (KD = 0.35 +/- 0.02 nM). Displacement of specific [125I]iodoLSD binding indicated a typical 5-HT2 receptor inhibition profile, which demonstrated a significant linear correlation (r = 0.97, p less than 0.001, n = 17) with that observed using [3H]ketanserin. However, [125I]iodoLSD (Bmax = 136 +/- 7 fmol/mg of protein) labelled significantly fewer sites than [3H]ketanserin (Bmax = 258 +/- 19 fmol/mg of protein) (p less than 0.001, n = 6). In human platelet membranes, [125I]iodoLSD labelled a single site with affinity (KD = 0.37 +/- 0.03 nM) similar to that in frontal cortex. The inhibition profile in the platelet showed significant correlation with that in frontal cortex (r = 0.96, p less than 0.001, n = 16). We conclude that the site labelled by [125I]iodoLSD in human platelet membranes is biochemically similar to that in frontal cortex and most closely resembles the 5-HT2 receptor subtype, although the discrepancy in binding capacities of [125I]iodoLSD and [3H]ketanserin raises a question about the absolute nature of this receptor.  相似文献   

19.
Injection of folic acid (FA) into the nucleus substantia innominata (NSI) was found to decrease [3H]quinuclidinyl benzilate ([3H]QNB) binding in the frontal cortex, pyriform cortex, amygdala, and the NSI itself without changing the KD. Binding in the thalamus, caudate nucleus, hippocampus, and substantia nigra was not affected. [3H]Flunitrazepam binding was unchanged in all eight regions studied. Previous work indicates FA injections into the NSI produce epileptiform activity and cause loss of GABAergic and possibly other neurons in the frontal and pyriform cortices, the amygdala, and thalamus. The reductions of [3H]QNB binding in the first three of these regions are interpreted as indicating that many of the neurons lost are cholinoceptive, a finding that supports the previous hypothesis that activation of cholinergic projections from the NSI is an important part of the mechanism of cell loss in these regions.  相似文献   

20.
Antibodies raised against synaptosomal plasma membranes of rat hippocampus (anti-HPC IgG) caused inhibition of [3H]noradrenaline, [3H]5-hydroxytryptamine, [3H]GABA and [3H]aspartate uptake into S1 fractions and slices of hippocampus and cerebral cortex, but not those of caudate nucleus and hypothalamus. Similar inhibition was not observed on using antibodies against synaptosomal membranes of rat caudate nucleus. Anti-HPC IgG raised against synaptosomal membranes of hippocampus failed to alter both spontaneous and K+-evoked release of [3H]noradrenaline. They did not interfere with the binding of [3H]desipramine (the potent noradrenaline-uptake inhibitor) and with the binding of [3H]dihydroalprenolol, thus excluding any interaction of the antibodies with drug receptors which are located on either the pre- or postsynaptic membrane. The anti-HPC IgG inhibit the enzymatic activity of [Na+-K+-]ATPase by 30% upon incubation of the antibodies with crude membrane preparations. A comparison of their inhibitory effects with those of the neurotoxin 6-hydroxydopamine suggests that the corresponding hippocampal specific antigens are located at a presynaptic site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号