首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
First generation (G1) hairs in mice homozygous for the wellhaarig (we) gene are wavy and shorter than in normal mice; basal regions of the hairs are deformed. Follicles of G1 hairs in mid-dorsal region of 8-, 12- and 16-days old we/we mice were examined. Huxley cells of the inner root sheath (IRS) in apical region of hair follicles appeared to be hypertrophied. Cytoplasm of these cells was not stained by basic dyes and showed no birefringence. Cytoplasm of the IRS Henle cells was not stained by basic dyes either. These data indicate that keratinization of the IRS cells is disturbed in mutant homozygotes. The layer of outer root sheath in the we/we mice was thinner than in normal mice; this is probably due to hypertrophy of the IRS cells. The structure of differentiating cells of the hair shaft in normal and mutant mice was similar. The data obtained suggest that abnormal G1 hairs in we/we mice result from disturbance in IRS cells differentiation.  相似文献   

3.
Interaction of gene wellhaarig (we) with genes waved alopecia (wal) and hairless (hr) was studied in mice. The mutant gene we is responsible for the development of a specific waved coat in homozygotes. Homozygous mice carrying mutant gene wal also have a wavy coat, though a partial alopecia develops with time in these animals. In homozygotes for the hr gene, hair loss is observed beginning from the age of ten days. A series of crosses we/we and wal/wal yielded animals with we/+wal/wal and we/we wal/wal genotypes. In mice we/+wal/wal carrying gene we at a single dose, alopecia is accelerated significantly as compared to the single-dose homozygotes +/+wal/wal. In we/we wal/wal mice, alopecia starts earlier than in we/+wal/wal mice; by the age of one month, the double homozygotes are almost hairless except for small body areas covered with a sparse coat. In addition, curliness of the first-generation hair in mice we/we wal/wal is much more expressed than in +/+wal/wal and we/we+/+ mice. The obtained evidence suggests that the we gene is a modifier of the wal gene because the former enhances the effects of the wal gene, which is confirmed by the earlier onset of alopecia and progression of the latter in mice having the we/+wal/wal genotype and especially in we/we wal/wal animals. The we/we hr/+ mice do not differ in coat from we/we+/+ mice; in both cases, the coat is wavy. The coat of double homozygotes we/we hr/hr, is similar to that of we/we+/+ mice until ten days of age, when the signs of alopecia appear. By the age of 21 days, mice we/we hr/hr have lost their coat completely like mice +/+ hr/hr. Hence, the we gene is a modifier of the wal gene though it does not interact with hr gene during the coat formation.  相似文献   

4.
Neonatal mouse skin is useful for studying changes in gene expression during development of hair follicles, as the mitotic activity of skin cells changes shortly after birth. Using ribonucleic acid (RNA) differential display, a 261-nt message has been identified in the skin, specifically on d 3–5 but not on d 2 after birth. Confirmation of its expression by ribonuclease protection assay showed that stronger expression is seen on d 3–5 compared with d 1–2. Using RNA ligase-mediated rapid amplification of 5′ complementary deoxyribonucleic acid ends, we have successfully isolated a 3046-bp gene, which has 93% sequence homology to a mouse teashirt1 gene. Amino acid analysis showed that it has 74% identity to the mouse teashirt1 protein and possesses zinc-finger motifs 1, 2, and 3. In situ hybridization data revealed that it is mainly expressed in the follicle bulb, including dermal papilla and matrix cells. As the proliferation of bulb cells is important to follicle development during this period, the finding of its strong expression on d 3–5 suggests that the identified gene is a potential candidate for follicle growth.  相似文献   

5.
6.
7.
A recessively inherited, spontaneous mutation named Spinner-IBMM (SI) was identified in a transgenic mouse colony in our institute. SI mutant mice displayed hyperactivity, including a severe circling behavior, ataxia and inability to swim. Gene mapping revealed that the causative gene was located on a 35 Mb DNA fragment on chromosome 9. Candidate genes sequencing in this DNA fragment identified a new mutant allele in the Tmie gene. The identified mutant is characterized by a nucleotide deletion in exon 5, leading to a frameshift and a premature STOP codon. It has been reported that inactivating mutations in the mouse Tmie gene result in an identical phenotype, probably resulting from defects in the inner ear. However, the exact function of the Tmie protein in the ear and other organs is still unknown. The analysis of this new mouse mutant could contribute to a better understanding of Tmie functions in vivo in the ear and other organs.  相似文献   

8.
The function of melanocytes, i.e., pigmentation, was studied after doses of radiation given in one to eight fractions ranging from 0.9 to 4.0 Gy by quantifying depigmentation of particular (zig-zag) hairs in resting phase in the mouse. Considerable variability in response was noted, perhaps related to variations in growth status of the hair follicle. The slope of the single-dose survival curve is described by a D0 value of 1.47 Gy over a dose range 5 to 10 Gy. A weighted, nonlinear regression analysis of the multifraction data gave estimates of alpha/beta of 6.5 Gy for the linear quadratic model. The same analysis suggests that there are about four clonogenic melanocytes per hair follicle. There was a fluctuating pattern of recovery in the early hours after exposure to a dose of 4.0 Gy but no evidence of melanocyte regeneration up to 4 days. However, a characteristic of the data was its variability, suggesting that the radiation response of melanocytes over the dose range 0.9 to 10 Gy may be very variable, reflecting, perhaps, variability in the kinetic status of the melanocyte.  相似文献   

9.
Hoxa4 expression in developing mouse hair follicles and skin   总被引:1,自引:0,他引:1  
We have examined the expression of the Hoxa4 gene in embryonic vibrissae and developing and cycling postnatal pelage hair follicles by digoxigenin-based in situ hybridization. Hoxa4 expression is first seen in E13.5 vibrissae throughout the follicle placode. From E15.5 to E18.5 its expression is restricted to Henle's layer of the inner root sheath. Postnatally, Hoxa4 expression is observed at all stages of developing pelage follicles, from P0 to P4. Sites of expression include both inner and outer root sheaths, matrix cells, and the interfollicular epidermis. Hoxa4 is not expressed in hair follicles after P4. Hoxb4, however, is expressed both in developing follicles at P2 and in catagen at P19, suggesting differential expression of these two paralogous genes in the hair follicle cycle.  相似文献   

10.
When beta-catenin signalling is disturbed from mid-gestation onwards lineage commitment is profoundly altered in postnatal mouse epidermis. We have investigated whether adult epidermis has the capacity for beta-catenin-induced lineage conversion without prior embryonic priming. We fused N-terminally truncated, stabilised beta-catenin to the ligand-binding domain of a mutant oestrogen receptor (DeltaNbeta-cateninER). DeltaNbeta-cateninER was expressed in the epidermis of transgenic mice under the control of the keratin 14 promoter and beta-catenin activity was induced in adult epidermis by topical application of 4-hydroxytamoxifen (4OHT). Within 7 days of daily 4OHT treatment resting hair follicles were recruited into the hair growth cycle and epithelial outgrowths formed from existing hair follicles and from interfollicular epidermis. The outgrowths expressed Sonic hedgehog, Patched and markers of hair follicle differentiation, indicative of de novo follicle formation. The interfollicular epidermal differentiation program was largely unaffected but after an initial wave of sebaceous gland duplication sebocyte differentiation was inhibited. A single application of 4OHT was as effective as repeated doses in inducing new follicles and growth of existing follicles. Treatment of epidermis with 4OHT for 21 days resulted in conversion of hair follicles to benign tumours resembling trichofolliculomas. The tumours were dependent on continuous activation of beta-catenin and by 28 days after removal of the drug they had largely regressed. We conclude that interfollicular epidermis and sebaceous glands retain the ability to be reprogrammed in adult life and that continuous beta-catenin signalling is required to maintain hair follicle tumours.  相似文献   

11.
Pregnant mice were whole-body irradiated with a single acute dose of gamma-rays (60Co) to investigate the effect of gamma-radiation on embryonic melanoblasts. The effect was studied by scoring changes in the differentiation of melanocytes in the hair follicles of mice heterozygous for the recessive coat color mutation pink-eyed dilution (p). Abnormal round melanocytes were found in the hair matrix and the dermal papilla of F1 offspring 3.5 days after birth. However, these round melanocytes possessed a melanin deposition of similar intensity to normal hair follicular melanocytes. The frequency of the abnormal hair follicles increased in a dose-dependent manner. Moreover, higher frequencies were found in the animals irradiated at earlier stages of embryonic development. These results indicate that gamma-radiation affects dendritogenesis and the location of mouse melanocytes in the hair follicles, with greater effects seen at the earlier stages of development.  相似文献   

12.
Mutant gene wallhaarig (wa) was acting as a modifier of the mutant gene waved alopecia (wal), substantially increasing hair loss rate in mice, as was previously shown in our laboratory. The current paper is devoted to a study of mutant gene angora- Y(Fgf5(go-Y)), which had extended anagen stage of the first and second generations hair growth cycles in triple heterozygotes (Fgf5(go-Y)/Fgf5(go-Y) we/we wal/wal). First generation guard hair in triple homozygotes had their anagen stage 4 days longer than the same stage in double homozygotes (+/+ we/we wal/wal). Hair loss started at a catagen stage in double homozygotes, while it started in triple homozygotes at the end of the same stage or even in a telogen. Such mutant gene interaction in hair follicle morphogenesis led to a partial recovery of a body hair coat in triple homozygotes.  相似文献   

13.
Oligonucleotide-mediated gene targeting is emerging as a powerful tool for the introduction of subtle gene modifications in mouse embryonic stem (ES) cells and the generation of mutant mice. However, its efficacy is strongly suppressed by DNA mismatch repair (MMR). Here we report a simple and rapid procedure for the generation of mouse mutants using transient down regulation of the central MMR protein MSH2 by RNA interference. We demonstrate that under this condition, unmodified single-stranded DNA oligonucleotides can be used to substitute single or several nucleotides. In particular, simultaneous substitution of four adjacent nucleotides was highly efficient, providing the opportunity to substitute virtually any given codon. We have used this method to create a codon substitution (N750F) in the Rb gene of mouse ES cells and show that the oligonucleotide-modified Rb allele can be transmitted through the germ line of mice.  相似文献   

14.
15.
Most mammals are coated with pigmented hair. Melanocytes in each hair follicle produce melanin pigments for the hair during each hair cycle. The key to understanding the mechanism of cyclic melanin production is the melanocyte stem cell (MelSC) population, previously known as 'amelanotic melanocytes'. The MelSCs directly adhere to hair follicle stem cells, the niche cells for MelSCs and reside in the hair follicle bulge-subbulge area, the lower permanent portion of the hair follicle, to serve as a melanocyte reservoir for skin and hair pigmentation. MelSCs form a stem cell system within individual hair follicles and provide a 'hair pigmentary unit' for each cycle of hair pigmentation. This review focuses on the identification of MelSCs and their characteristics and explains the importance of the MelSC population in the mechanisms of hair pigmentation, hair greying, and skin repigmentation.  相似文献   

16.
17.
18.
Mouse skin melanocytes originate from the neural crest and subsequently invade the epidermis and migrate into the hair follicles (HF) where they proliferate and differentiate. Here we demonstrate a role for the chemokine SDF-1/CXCL12 and its receptor CXCR4 in regulating the migration and positioning of melanoblasts during HF formation and cycling. CXCR4 expression by melanoblasts was upregulated during the anagen phase of the HF cycle. CXCR4-expressing cells in the HF also expressed the stem cell markers nestin and LEX, the neural crest marker SOX10 and the cell proliferation marker PCNA. SDF-1 was widely expressed along the path taken by migrating CXCR4-expressing cells in the outer root sheath (ORS), suggesting that SDF-1-mediated signaling might be required for the migration of CXCR4 cells. Skin sections from CXCR4-deficient mice, and skin explants treated with the CXCR4 antagonist AMD3100, contained melanoblasts abnormally concentrated in the epidermis, consistent with a defect in their migration. SDF-1 acted as a chemoattractant for FACS-sorted cells isolated from the anagen skin of CXCR4–EGFP transgenic mice in vitro, and AMD3100 inhibited the SDF-1-induced migratory response. Together, these data demonstrate an important role for SDF-1/CXCR4 signaling in directing the migration and positioning of melanoblasts in the HF.  相似文献   

19.
Expression of prostaglandin E(2) receptor subtypes in mouse hair follicles.   总被引:4,自引:0,他引:4  
We investigated the mRNA distribution of the prostaglandin (PG) E(2) receptor subtypes and cyclooxygenases (COXs) in hair follicles of the mouse dorsal skin. In the 3-week hair follicles, which are in the anagen phase, EP3 and EP4 mRNA were expressed in the dermal papilla cells and the outer root sheath cells located in the hair bulb region, respectively. In the 8-week hair follicles, which are in the telogen phase, the signals for both EP3 and EP4 mRNAs had disappeared. To study the hair cycle-dependent expression of mRNAs for the EPs and COXs, an area of dorsal hair was depilated from 8-week-old mice. On days 8 and 12 after depilation, EP3 and EP4 mRNA were reexpressed in the dermal papilla cells and the outer root sheath cells, and the induction of COX-2 mRNA was also observed in the outer root sheath cells, the upper area of EP4 expression site. These results suggest that EP3 and EP4 receptors may involve in the development and regrowth of the hair follicles.  相似文献   

20.
Precursors of cochlear and vestibular hair cells of the inner ear exit the cell cycle at midgestation. Hair cells are mitotically quiescent during late-embryonic differentiation stages and postnatally. We show here that the retinoblastoma gene Rb and the encoded protein pRb are expressed in differentiating and mature hair cells. In addition to Rb, the cyclin dependent kinase inhibitor (CKI) p21 is expressed in developing hair cells, suggesting that p21 is an upstream effector of pRb activity. p21 apparently cooperates with other CKIs, as p21-null mice exhibited an unaltered inner ear phenotype. By contrast, Rb inactivation led to aberrant hair cell proliferation, as analysed at birth in a loss-of-function/transgenic mouse model. Supernumerary hair cells expressed various cell type-specific differentiation markers, including components of stereocilia. The extent of alterations in stereociliary bundle morphology ranged from near-normal to severe disorganization. Apoptosis contributed to the mutant phenotype, but did not compensate for the production of supernumerary hair cells, resulting in hyperplastic sensory epithelia. The Rb-null-mediated proliferation led to a distinct pathological phenotype, including multinucleated and enlarged hair cells, and infiltration of hair cells into the mesenchyme. Our findings demonstrate that the pRb pathway is required for hair cell quiescence and that manipulation of the cell cycle machinery disrupts the coordinated development within the inner ear sensory epithelia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号