首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. In view of widely diverse views held about the identity and structure of the Golgi apparatus in neurons of Mollusca, particularly gastropods, a study has been made on neurons of the common limpet, Patella vulgata, both by light and electron microscopy. A report is given also of observations made on epithelial cells of Patella by electron microscopy. 2. As revealed by Kolatchev's method, the Golgi apparatus in neurons consists basically of black filaments lying to one side of the nucleus. The filaments generally anastomose to form networks of various complexity. Rarely some cells contain only discrete filaments. Associated with some of the filaments is a weakly osmiophilic substance identified as archoplasm. Kolatchev's method also revealed spheroidal bodies (neutral red bodies, "lipochondria," etc.). 3. It has not been possible to demonstrate the Golgi apparatus using either iron-haematoxylin or Sudan black. 4. Examination of Kolatchev's preparations by electron microscopy has revealed that some of the Golgi filaments consist of chromophilic and chromophobic components. The chromophilic component consists of dense lamellae. 5. After fixation in buffered osmium tetroxide solution and examination by electron microscopy, it has been concluded that (a) the chromophilic component of the Golgi apparatus corresponds to a system of paired membranes (which usually enclose an inner dense substance), (b) the chromophobic component corresponds to a substance lying within small dilations of the paired membrane, and (c) the archoplasm corresponds to numerous small vesicles. 6. The paired membranes branch, anastomose, and can often be traced back to a common source. They are interpreted as lamelliform folds, and occasionally tubular processes, of essentially a single Golgi membrane. In cells containing a Golgi network it is suggested that the membrane extends through the whole of the apparatus in such a way that the substance it encloses may be regarded as being in a continuous phase. 7. Epithelial cells of Patella contain a juxtanuclear Golgi apparatus with an ultrastructure similar to that described for neurons.  相似文献   

2.
K Iijima  K Imai 《Histochemistry》1976,46(3):209-227
Detailed histochemical studies have been conducted on the distribution of various enzymes such as thiamine pyrophosphatase, alpha-glucan phosphorylase, hexokinase, glucose-6-phosphate dehydrogenase, aldolase, lactate dehydrogenase and succinate dehydrogenase in various components of the nucleus Edinger-Westphali, nucleus n. oculomotorii, nucleus ruber and nucleus niger of healthy adult male Wistar strain rats. The thiamine pyrophosphatase reaction showed the morphological patterns of the Golgi apparatus characteristic for each nucleus. The Golgi apparatus was well developed in the nucleus Edinger-Westphali, composing a network of highly fenestrated plates in the nucleus n. oculomotorii and nucleus ruber, and a simple network in the nucleus niger. These results indicate that the former three nuclei need a rich energy supply and argue against the possibility that the four nuclei have a secretory role. The neurons of the nucleus Edinger-Westphali may derive their energy mainly from glucose of the circulating blood, but glial cells may serve as energy donators to the neurons in the pars compacta of the nucleus niger, and the neurons of the other nuclei may derive energy from both sources. These conclusions are consistent with the morphological patterns of the Golgi apparatus.  相似文献   

3.
Summary Detailed histochemical studies have been conducted on the distribution of various enzymes such as thiamine pyrophosphatase, α-glucan phosphorylase, hexokinase, glucose-6-phosphate dehydrogenase, aldolase, lactate dehydrogenase and succinate dehydrogenase in various components of the nucleusEdinger-Westphali, nucleus n. oculomotorii, nucleus ruber and nucleus niger of healthy adult male Wistar strain rats. The thiamine pyrophosphatase reaction showed the morphological patterns of the Golgi apparatus characteristic for each nucleus. The Golgi apparatus was well developed in the nucleusEdinger-Westphali, composing a network of highly fenestrated plates in the nucleus n. oculomotorii and nucleus ruber, and a simple network in the nucleus niger. These results indicate that the former three nuclei need a rich energy supply and argue against the possibility that the four nuclei have a secretory role. The neurons of the nucleusEdinger-Westphali may derive their energy mainly from glucose of the circulating blood, but glial cells may serve as energy donators to the neurons in the pars compacta of the nucleus niger, and the neurons of the other nuclei may derive energy from both sources. These conclusions are consistent with the morphological patterns of the Golgi apparatus. It is suggested that the neurons of the nucleusEdinger-Westphali, nucleus n. oculomotorii, nucleus ruber and of the pars lateralis of the nucleus niger may be equipped almost equally with the Embden-Meyerhof pathway and with the hexose monophosphate shunt. But, the hexose monophosphate shunt is dominant in the pars compacta of the nucleus niger. It is also suggested that the pattern of distribution of succinate dehydrogenase may parallel that of lactate dehydrogenase. The nucleus n. oculomotorii, and nucleus ruber have a higher level of oxidative metabolism than the nucleusEdinger-Westphali and the nucleus niger. The nucleusEdinger-Westphali may be representative of autonomic nuclei with low oxidative metabolism whereas the nucleus n. oculomotorii may represent motor nuclei with high oxidative metabolism. Predominance of hexose monophosphate shunt, intense hexokinase reaction around the neurons, and weak activity of succinate dehydrogenase indicate that the pars compacta of the nucleus niger belongs to the category of “exceptional nuclei”.  相似文献   

4.
The relationship of the membrane structure, designated in electron microscopy as the Golgi apparatus, to the classic Golgi apparatus in the light microscope were studied withFagopyrum. Comparison of these structures in plant cells with the same or similar structures in animal cells led to the following conclusions: there exist two groups of formations, impregnable with osmium or silver, considered as the classic Golgi apparatus. The first group contains the active membrane structures. These are the dictyosomes and the anastomosing form of the electron microscopic Golgi apparatus. To this group belongs also the endoplasmatic reticulum, which in plant cells forms dense vacuoles, having the appearance of the classic Golgi apparatus, and in animal cells occasionally has a similar arrangement as the anastomosing form of the Golgi apparatus. The second group comprises formation containing reserve and secretion material, i.e. predominantly products of the activity of the electron microscopic Golgi apparatus and of the endoplasmic reticulum (matter of the dense vacuoles, lipochondria, secretory granula etc.). In the plant cells, especially ofFygopyrum, the dictyosomes contained in the structures of the first group are separated from the formations of a reserve character in the second group, formed in the lumen of the endoplasmic reticulum (dense vacuoles). The identity of the dictyosomes with the osmiophilic platelets, considered by some authors in the light microscope as the classic Golgi apparatus, has not been proved up to present, because of the one-sidedness of the methods used nowadays. WithFagopyrum no foundation has been observed for the assumed formation of net-form structures by grouping of the dictyosomes. Structures similar to the net-form of the classic Golgi apparatus in the animal cell form only dense vacuoles. On the basis of the differentiation of both types of formations in the plant cell, the foundations were laid for the characterization of the classic Golgi apparatus in the animal cell. The net-form of the classic Golgi apparatus in the animal cell is obviously not artificial, but reflects the ultrastructural arrangement of the electron microscopic Golgi apparatus or of the endoplasmic reticulum. The problem of the suitability and specification of the name Golgi apparatus in the animal and plant cell was also discussed. In contrast to the opinion of some authors, it does not appear useful to remove the name golgi apparatus, designating the dictyosomes and the anastomosing forms of the smooth membranes.  相似文献   

5.
cdc25C is a phosphatase which regulates the activity of the mitosis promoting factor cyclin B/cdk1 by dephosphorylation, thus triggering G(2)/M transition. The activity of cdc25C is regulated by phosphorylation which by itself is implicated in regulating the subcellular localization. It is well accepted that cdc25C has to enter the nucleus to activate the cyclin B/cdk1 complex at G(2)/M transition. Here, we will show that cdc25C is located in the cytoplasm at defined dense structures which by immunofluorescence analysis as well as by biochemical subfractionation turned out to be the Golgi apparatus. It will be further shown that cdc25C at the Golgi fraction is an active phosphatase suggesting an additional and new role of cdc25C at the Golgi apparatus.  相似文献   

6.
《The Journal of cell biology》1986,103(6):2229-2239
A monoclonal antibody (M3A5), raised against microtubule-associated protein 2 (MAP-2), recognized an antigen associated with the Golgi complex in a variety of non-neuronal tissue culture cells. In double immunofluorescence studies M3A5 staining was very similar to that of specific Golgi markers, even after disruption of the Golgi apparatus organization with monensin or nocodazole. M3A5 recognized one band of Mr approximately 110,000 in immunoblots of culture cell extracts; this protein, designated 110K, was enriched in Golgi stack fractions prepared from rat liver. The 110K protein has been shown to partition into the aqueous phase by Triton X-114 extraction of a Golgi-enriched fraction and was eluted after pH 11.0 carbonate washing. It is therefore likely to be a peripheral membrane protein. Proteinase K treatment of an isolated Golgi stack fraction resulted in complete digestion of the 110K protein, both in the presence and absence of Triton X-100. A the 110K protein is accessible to protease in intact vesicles in vitro, it is presumably located on the cytoplasmic face of the Golgi membrane in vivo. The 110K protein was able to interact specifically with taxol-polymerized microtubules in vitro. These results suggest that the 110K protein may serve to link the Golgi apparatus to the microtubule network and so may belong to a novel class of proteins: the microtubule-binding proteins.  相似文献   

7.
SOK1 is a Ste20 protein kinase of the germinal center kinase (GCK) family that has been shown to be activated by oxidant stress and chemical anoxia, a cell culture model of ischemia. More recently, it has been shown to be localized to the Golgi apparatus, where it functions in a signaling pathway required for cell migration and polarization. Herein, we demonstrate that SOK1 regulates cell death after chemical anoxia, as its down-regulation by RNA interference enhances cell survival. Furthermore, expression of SOK1 elicits apoptotic cell death by activating the intrinsic pathway. We also find that a cleaved form of SOK1 translocates from the Golgi to the nucleus after chemical anoxia and that this translocation is dependent on both caspase activity and on amino acids 275-292, located immediately C-terminal to the SOK1 kinase domain. Furthermore, SOK1 entry into the nucleus is important for the cell death response since SOK1 mutants unable to enter the nucleus do not induce cell death. In summary, SOK1 is necessary to induce cell death and can induce death when overexpressed. Furthermore, SOK1 appears to play distinctly different roles in stressed versus non-stressed cells, regulating cell death in the former.  相似文献   

8.
Summary In nongrowing secretory cells of plants, large quantities of membrane are transferred from the Golgi apparatus to the plasma membrane without a corresponding increase in cell surface area or accumulation of internal membranes. Movement and/or redistribution of membrane occurs also in trans Golgi apparatus cisternae which disappear after being sloughed from the dictyosome, and in secretory vesicles which lose much of their membrane in transit to the cell surface. These processes have been visualized in freeze-substituted corn rootcap cells and a structural basis for membrane loss during trafficking is seen. It involves three forms of coated membranes associated with the trans parts of the Golgi apparatus, with cisternae and secretory vesicles, and with plasma membranes. The coated regions of the plasma membrane were predominantly located at sites of recent fusion of secretory vesicles suggesting a vesicular mechanism of membrane removal. The two other forms of coated vesicles were associated with the trans cisternae, with secretory vesicles, and with a post Golgi apparatus tubular/vesicular network not unlike the TGN of animal cells. However, the trans Golgi network in plants, unlike that in animals, appears to derive directly from the trans cisternae and then vesiculate. The magnitude of the coated membrane-mediated contribution of the endocytic pathway to the formation of the TGN in rootcap cells is unknown. Continued formation of new Golgi apparatus cisternae would be required to maintain the relatively constant form of the Golgi apparatus and TGN, as is observed during periods of active secretion.  相似文献   

9.
In murine colonic epithelial cells, cell-coat glycoproteins are transported to the cell surface in vesicles that originate at the Golgi apparatus. To determine the role of microtubules in the movement of these vesicles the antimicrotubule agent colchicine was injected into mice at several time intervals prior to sacrifice. In the mice that were treated with colchicine for 4.5 h it was observed that the polarity of the cells was disturbed. The Golgi apparatus and nucleus often appeared interchanged in their positions. The glycoprotein-containing vesicles, normally located apically, were sparse in that location, but abundant near the lateral plasma membranes of the cells at the level of the nucleus and Golgi apparatus. Straining by the periodic acid-chromic acid-silver methenamine technique for glycoproteins clearly revealed the reduction of vesicles apically and accumulation of vesicles laterally. The mechanism responsible for the movement of the vesicles to this location is unclear. It is suggested that the accumulation of vesicles in the lateral region may reflect some hindrance in the fusion of the vesicles with the lateral cell membranes.  相似文献   

10.
The three-dimensional structure of the Golgi apparatus in cells of the Brunner's gland in the mouse was observed by using a confocal laser scanning microscope. Two lectins, FITC-labeled soybean agglutinin and Texas red-labeled Griffonia simplicifolia agglutinin II, were used to visualize the whole Golgi apparatus. Staining with the former lectin, which has been known to label the cis-stacks, showed a lacy dome-like structure situated in the supranuclear region. Staining with the latter lectin, known to label the intermediate-to-trans-stacks and the secretory granules, showed a dome-like structure consisting of network and cobblestone-like patterns in the same region and also granular stainings near the surface of the cobblestone-like patterns and the apical region of a cell. Double-staining demonstrated that the soybean agglutinin-labeled network always surrounded the G. simplicifolia agglutinin II-stained structure. Based on these observations, we propose a new three-dimensional model of the Golgi apparatus: it forms a dome-like structure over a nucleus, a network of cis-stacks forms its outer boundary, and this outer boundary is lined and paved with successive intermediate and trans-stacks. It is thought that secretory granules are released toward the internal space of the Golgi apparatus and transported to the apical cytoplasm through the holes of the network.  相似文献   

11.
The neuronal perikarya of the grasshopper contain sudanophilic lipochondria which exhibit an affinity for vital dyes. These lipochondria are membrane-delimited and display acid phosphatase activity; hence they correspond to lysosomes. Unlike those of most vertebrates, these lysosomes also hydrolyze thiamine pyrophosphate and adenosine triphosphate. Like vertebrate lysosomal "dense bodies," they are electron-opaque and contain granular, vesicular, or lamellar material. Along with several types of smaller dense bodies, they are found in close spatial association with the Golgi apparatus. The Golgi complexes are frequently arranged in concentric configurations within which these dense bodies lie. Some of the smaller dense bodies often lie close to or in association with the periphery of dense multivesicular bodies. Further, bodies occur that display gradations in structure between these multivesicular bodies and the dense lysosomes. Acid phosphatase activity is present in the small as well as the larger dense bodies, in the multivesicular bodies, and in some of the Golgi saccules, associated vesicles, and fenestrated membranes; thiamine pyrophosphatase is found in both the dense bodies and parts of the Golgi complex. The close spatial association of these organelles, together with their enzymatic similarities, suggests the existence of a functional or developmental relationship between them.  相似文献   

12.
The incorporation of fucose-3H in rat thyroid follicles was studied by radioautography in the light and electron microscopes to determine the site of fucose incorporation into the carbohydrate side chains of thyroglobulin, and to follow the migration of thyroglobulin once it had been labeled with fucose-3H. Radioautographs were examined quantitatively in vivo at several times after injection of fucose-3H into rats, and in vitro following pulse-labeling of thyroid lobes in medium containing fucose-3H. At 3–5 min following fucose-3H administration in vivo, 85% of the silver grains were localized over the Golgi apparatus of thyroid follicular cells. By 20 min, silver grains appeared over apical vesicles, and by 1 hr over the colloid. At 4 hr, nearly all of the silver grains had migrated out of the cells into the colloid. Analysis of the changes in concentration of label with time showed that radioactivity over the Golgi apparatus increased for about 20 min and then decreased, while that over apical vesicles increased to reach a maximum at 35 min. Later, the concentration of label over the apical vesicles decreased, while that over the colloid increased. Similar results were obtained in vitro. It is concluded that fucose, which is located at the end of some of the carbohydrate side chains, is incorporated into thyroglobulin within the Golgi apparatus of thyroid follicular cells, thereby indicating that some of these side chains are completed there. Furthermore, the kinetic analysis demonstrates that apical vesicles are the secretion granules which transport thyroglobulin from the Golgi apparatus to the apex of the cell and release it into the colloid.  相似文献   

13.
Intracellular localization of phospholipase D1 in mammalian cells   总被引:4,自引:0,他引:4       下载免费PDF全文
Phospholipase D (PLD) hydrolyzes phosphatidylcholine to generate phosphatidic acid. In mammalian cells this reaction has been implicated in the recruitment of coatomer to Golgi membranes and release of nascent secretory vesicles from the trans-Golgi network. These observations suggest that PLD is associated with the Golgi complex; however, to date, because of its low abundance, the intracellular localization of PLD has been characterized only indirectly through overexpression of chimeric proteins. We have used highly sensitive antibodies to PLD1 together with immunofluorescence and immunogold electron microscopy as well as cell fractionation to identify the intracellular localization of endogenous PLD1 in several cell types. Although PLD1 had a diffuse staining pattern, it was enriched significantly in the Golgi apparatus and was also present in cell nuclei. On fragmentation of the Golgi apparatus by treatment with nocodazole, PLD1 closely associated with membrane fragments, whereas after inhibition of PA synthesis, PLD1 dissociated from the membranes. Overexpression of an hemagglutinin-tagged form of PLD1 resulted in displacement of the endogenous enzyme from its perinuclear localization to large vesicular structures. Surprisingly, when the Golgi apparatus collapsed in response to brefeldin A, the nuclear localization of PLD1 was enhanced significantly. Our data show that the intracellular localization of PLD1 is consistent with a role in vesicle trafficking from the Golgi apparatus and suggest that it also functions in the cell nucleus.  相似文献   

14.
A comparative biochemical and radioautographic in vivo study was performed to identify the site of synthesis and route of migration of albumin in the parenchymal liver cell after labeling with leucine-14C or leucine-3H via the portal vein. Free cytoplasmic ribosomes, membrane-bound ribosomes, rough- and smooth-surfaced microsomes, and Golgi membranes were isolated. The purity of the Golgi fraction was examined morphologically and biochemically. After administration of leucine-14C, labeled albumin was extracted, and the sequence of transport was followed from one fraction to the other. Approximately 2 min after the intravenous injection, bound ribosomes displayed a maximal rate of leucine-14C incorporation into albumin. 4 min later, a peak was reached for rough microsomes. Corresponding maximal activities for smooth microsomes were recorded at 15 min, and for the Golgi apparatus at ~20 min. The relative amount of albumin, calculated on a membrane protein basis, was higher in the Golgi fraction than in the microsomes. By radioautography the silver grains were preferentially localized over the rough-surfaced endoplasmic reticulum at the 5 min interval. Apparent activity in the Golgi zone was noted 9 min after the injection; at 15 and 20 min, the majority of the grains were found in this location. Many of the grains associated with the Golgi apparatus were located over Golgi vacuoles containing 300–800 A electron-opaque bodies. It is concluded that albumin is synthesized on bound ribosomes, subsequently is transferred to the cavities of rough-surfaced endoplasmic reticulum, and then undergoes migration to the smooth-surfaced endoplasmic reticulum and the Golgi apparatus. In the latter organelle, albumin can be expected to be segregated together with very low density lipoprotein in vacuoles known to move toward the sinusoidal portion of the cell and release their content to the blood.  相似文献   

15.
In all eukaryotic cells, a membrane trafficking system connects the post-Golgi organelles, including the trans-Golgi network (TGN), endosomes, and vacuoles. This complex network plays critical roles in several higher-order functions in multicellular organisms. The TGN, one of the important organelles for protein transport in the post-Golgi network, functions as a sorting station, where cargo proteins are directed to the appropriate post-Golgi compartments. The TGN has been considered to be a compartment belonging to the Golgi apparatus, located on the trans side of the Golgi apparatus. However, in plant cells, recent studies have suggested that the TGN is an independent, dynamic organelle that possesses features different than those of TGNs in animal and yeast cells. In this review, we summarize recent progress regarding the dynamics and physiological functions of the plant TGN.  相似文献   

16.
Localization of silver grains detected by the silver-impregnation method, a technique used to detect the classical Golgi apparatus, was examined with light and electron microscopy. Two types of silvered images of the Golgi apparatus were compared; each was obtained by Da Fano 's silver-impregnation method, and one was modified with Caulfield 's fixative during the preliminary fixation. Under ordinary light microscopy the images were very similar and showed the duplex structure of the Golgi apparatus which consists of an argentophil wall and argentophobe core. With electron microscopy, the relationship between the fine structure of the Golgi complex and the silver deposits was obtained in greater detail by the latter technique because the fine structure of the Golgi complex was retained. Many fine silver grains were detected in the cytoplasm adjacent to the Golgi complex, but none were present in the Golgi cisternae. This suggests that the argentophil wall of the duplex structure of the classical Golgi apparatus may be formed from argentophil substances that locate in the cytoplasm adjacent to the Golgi lamellae, and that the argentophobe core may be related to the Golgi lamellae.  相似文献   

17.
Summary The differentiation of the spermatid, especially in reference to the formation of the flagellum, and transformation of the shape of the nucleus was investigated in the domestic fowl.In the early stage of the spermatid, a prominent Golgi apparatus appears around the centrioles. The Golgi vesicles then surround the axial-filament complex which develops from the distal centriole. These vesicles fuse to form continuous membrane at the earliest stage of flagellar formation, and in the succeeding stage Golgi lamellae are attached to the plasma membrane of the developing flagellum. From these observations, it is assumed that Golgi apparatus may be a source of the membrane system of the flagellum.The microtubules distributed around the nucleus form the circular manchette. The anterior region of the nucleus with the manchette is cylindrical in shape and the posterior region without it remains irregular in shape. When the circular manchette has been completed, the whole nucleus acquires a slender cylindrical shape. The circular manchette then changes into the longitudinal manchette. The nuclei of spermatids without a longitudinal manchette are abnormal in shape. In view of these observations it is assumed that the nuclear shaping of the spermatid may be accomplished by circular manchette and the maintenance of shape of the elongated nucleus by longitudinal manchette.The authors wish to thank Mr. Takayuki Mori for his helpful suggestions and technical advices  相似文献   

18.
1. Aoyama's silver impregnation method for the Golgi apparatus has been used on exocrine cells of the pancreas of the mouse and studied by electron microscopy in order to determine as precisely as possible where the silver is deposited. Similar cells have also been fixed in buffered osmium tetroxide solution and compared with cells treated by the silver technique. 2. Examination of the Aoyama preparations usually revealed a light deposition of silver in the cytoplasm (hyaloplasm or matrix) and a heavy deposition of silver around a series of closely apposed vacuoles. The heavy deposition of silver was regarded as revealing the chromophilic region of the Golgi apparatus while the vacuoles were identified as the chromophobic component. 3. Comparison of the silver preparations with those fixed in buffered osmium tetroxide solution showed that the silver was primarily deposited in the region of the Golgi membranes.  相似文献   

19.
The mechanisms underlying cell cycle progression and differentiation are tightly entwined with changes associated in the structure and composition of the cytoskeleton. Mammalian spermatogenesis is a highly intricate process that involves differentiation and polarization of the round spermatid. We found that pachytene spermatocytes and round spermatids have most of the microtubules randomly distributed in a cortical network without any apparent centrosome. The Golgi apparatus faces the acrosomal vesicle and some microtubules contact its surface. In round spermatids, at step 7, there is an increase in short microtubules around and over the nucleus. These microtubules are located between the rims of the acrosome and may be the very first sign in the formation of the manchette. This new microtubular configuration is correlated with the beginning of the migration of the Golgi apparatus from the acrosomal region towards the opposite pole of the cell. Next, the cortical microtubules form a bundle running around the nucleus perpendicular to the main axis of the cell. At later stages, the nuclear microtubules increase in size and a fully formed manchette appears at stage 9. On the other hand, acetylated tubulin is present in a few microtubules in pachytene spermatocytes and in the axial filament (precursor of the sperm tail) in round spermatids. Our results suggest that at step 7, the spermatid undergoes a major microtubular reordering that induces or allows organelle movement and prepares the cell for the formation of the manchette and further nuclear shaping. This new microtubular configuration is associated with an increase in short microtubules over the nucleus that may correspond to the initial step of the manchette formation. The new structure of the cytoskeleton may be associated with major migratory events occurring at this step of differentiation.  相似文献   

20.
The Golgi silver impregnation technique is a simple histological procedure that reveals complete three-dimensional neuron morphology. This method is based in the formation of opaque intracellular deposits of silver chromate obtained by the reaction between potassium dichromate and silver nitrate (black reaction). Camillo Golgi, its discoverer, and Santiago Ramón y Cajal its main exponent, shared the Nobel Prize of Medicine and Physiology in 1906 for their contribution to the knowledge of the nervous system structure, Their successes were largely due to the application of the silver impregnation method. However, Golgi and Cajal had different views on the structure of nervous tissue. According to the Reticular Theory, defended by Golgi, the nervous system was formed by a network of cells connected via axons within a syncytium. In contrast, Cajal defended the Neuron Doctrine which maintained that the neurons were independent cells. In addition, Golgi had used a variant of his "black reaction" to discover the cellular organelle that became known as the Golgi apparatus. Electron microscopy studies confirmed the postulates of the Neuron Doctrine as well as the existence of the Golgi complex and contributed to a resurgence of use of the Golgi stain. Although modern methods of intracellular staining reveal excellent images of neuron morphology, the Golgi technique is an easier and less expensive method for the study of normal and pathological morphology of neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号