首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synpatic responses were recorded extracellularly from single neurons at levels T12–T13 in response to microstimulation of the stepping strip of the dorsolateral funiculus in the thoracic and cervical portions of the spinal cord in cats decerebrated at the precollicular level [4]. The latent periods of these responses increased when the distance between the stepping point and recording point exceeded 20 mm, and when two stimuli had to be applied in order to evoke responses. Axons of neurons respondingtrans-synaptically to stimulation of the stepping strip were located on the boundary between the lateral and ventral funiculi close to the gray matter. Antidromic responses of neurons sending their axons in the caudal direction were found on average in 37% of cases, provided that the distance between the recording and stimulation points did not exceed 40 mm. Half of the neurons which generated synaptic responses to stimulation of spinal stepping points could be excited also by a series of three to six stimuli, applied to the mesencephalic locomotor point [15]. It is suggested that the neurons discovered may participate in the spread of activity toward the generator of stepping movements of the hind limb.Institute for Problems in Information Transmission, Academy of Sciences of the USSR, Moscow. M. V. Lomonosov Moscow State University. Translated from Neirofiziologiya, Vol. 17, No. 2, pp. 270–278, March–April, 1985.  相似文献   

2.
Synaptic responses of neurons in segments C2 and C3 to stimulation of locomotor points in the medulla or midbrain were recorded extracellularly in mesencephalic cats. Neurons generating responses with an index of 0.4–0.6 to stimulation with a frequency of 2 Hz maintained this same index at frequencies of 20–60 Hz. The discharge index of many neurons during stimulation at 2 Hz was low, and it increased to 0.4–0.6 when high-frequency stimulation was used. More than half of the cells were excited by stimulation of both ipsilateral and contralateral locomotor points; one-quarter of the neurons responded to stimulation of locomotor points in both medulla and midbrain. The cells studied were located 1.8–4.2 mm from the dorsal surface of the spinal cord. The mean latencies of responses with an index of not less than 0.5 lay within the range 2–30 msec, with a mode of 2–8 msec. Considerable fluctuations of latent period were observed for long-latency responses. The possibility that the neurons studied may participate in the transmission of activity from the locomotor region of the brain stem to stepping generators in the spinal cord is discussed.Institute for Problems of Information Transmission, Academy of Sciences of the USSR, Moscow. M. V. Lomonosov Moscow State University. Translated from Neirofiziologiya, Vol. 15, No. 4, pp. 355–361, July–August, 1983.  相似文献   

3.
Synaptic responses of single neurons to stimulation of the bulbar "locomotor strip" were recorded extracellularly from superior cervical segments in mesencephalic cats. With a strength of stimulation of about 30 µA these responses usually had a latent period of 2–7 msec and they arose in neurons located at a depth of between 2 and 4 mm from the dorsal surface (Rexed's laminae V–VIII). These neurons could not be excited antidromically by stimulation of the lumbar or lower cervical segments. However, antidromic responses could be evoked by stimulation of a region located 3–5 mm caudally to the site of recording. It is suggested that neurons of segments C2 and C3 excited by stimulation of the locomotor strip are components of a cell column along which activity spreads polysynaptically in the direction of spinal stepping generators.Institute for Problems in Information Transmission, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 11, No. 3, pp. 245–253, May–June, 1979.  相似文献   

4.
Synaptic responses of medullary neurons to stimulation of the bulbar locomotor strip with a current of about 20 µA were studied by an extracellular recording method in mesencephalic cerebellectomized cats. The mean latent period of response of 177 neurons was 3.2 msec. Neurons in which synaptic responses appeared were located in both the lateral and the medial parts of the reticular formation, but short-latency responses were recorded predominantly in the lateral part. In response to a single stimulus 32% of neurons generated a discharge of 2–4 spikes. "Respiratory" neurons were not excited by stimulation of the locomotor point. The results indicate that neurons of the locomotor strip may have an excitatory action not only on each other, but also on neurons located medially. The possible mechanisms of the spread of activity to the superior cervical segments of the spinal cord are discussed.Institute for Problems in Information Transmission, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 13, No. 3, pp. 275–282, May–June, 1981.  相似文献   

5.
Three points located approximately 8 mm apart were identified in a dorsolateral funiculus of the lower thoracic spinal cord in mesencephalic cats, each producing stepping movements on the ipsilateral hindlimb when stimulated. An area 5–17 mm caudal to the caudal stepping point (SP) was scanned for neurons responding synaptically to stimulating the rostral or caudal SP prior and subsequent to electrolytic coagulation of the medial SP. Relative incidence of neurons excited by stimulating the caudal SP did not change following this type of lesioning, although stimulation of the rostral SP at the rate of 4 Hz induced response 5 times less frequently than before. Even stimulation of the rostral SP at the rate of 40–60 Hz, which had considerably increased firing index prior to coagulation, could only produce excitation in tiny numbers of neurons. This indicates that synaptic excitation of neurons becomes considerably more difficult once the stepping strip between stimulation and recording sites has been damaged.Institute for Research into Information Transmission, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 20, No. 6, pp. 763–769, November–December, 1988.  相似文献   

6.
Transmission of impulsation from the visceral nerves to the bulbar reticular formation in the cat is effected by two systems of conductive pathways. The first (fast-conducting) is formed by the spinoreticular pathways of the lateral funiculi. This system activates reticular neurons with a latent period of 8–10 msec. The second system is made up of the polysynaptic pathways of the ventrolateral and ventral funiculi. Activation of reticular neurons through this pathway requires 10–20 msec or longer. Transection of the dorsal funiculi and the dorsal portion of the lateral funiculi causes no material changes in the synaptic activation of reticular neurons by visceral nerves.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 1, No. 2, pp. 177–185, September–October, 1969.  相似文献   

7.
Fictitious scratching, i.e., rhythmic activity of hind-limb motoneurons at the characteristic scratching frequency, was evoked by tactile stimulation of the ear in thalamic cats immobilized with flaxedil. Activity of propriospinal neurons in segments C1, C2, and T4–T7 was recorded extracellularly. The neurons were identified by their antidromic response to stimulation of their axons in segment L1. Most neurons did not respond to stimulation of the ear. Some neurons, however, were activated during fictitious scratching. Neurons of the cervical segments responded not only to stimulation of the ear, but also to tactile stimulation of the forelimbs and also to passive movements of those limbs. Neurons of the thoracic segments were activated only by stimulation of the ipsilateral ear; these neurons were inhibited by stimulation of the contralateral ear. The role of the propriospinal neurons in the activation of the spinal mechanisms of scratching is discussed.Institute for Problems of Information Transmission, Academy of Sciences of the USSR, Moscow. M. V. Lomonosov Moscow State University. Translated from Neirofiziologiya, Vol. 9, No. 5, pp. 504–511, September–October, 1977.  相似文献   

8.
Activity of reticulospinal neurons evoked by stimulation of the ventral, ventrolateral, dorsolateral, and dorsal funiculi of the spinal cord was recorded extracellularly in cats anesthetized with chloralose. Responses of 57 reticulospinal neurons, of which 22 projected into the ventral funiculus, 20 into the ventrolateral, and 15 into the dorsolateral, were studied. The functional properties (conduction velocity and refractory period) and the location of the neurons of the above-mentioned groups in the medulla did not differ appreciably. The most effective synaptic activation of all neurons was observed during stimulation of the dorsal and dorsolateral funiculi. Responses to stimulation of the dorsal funiculus had the lowest threshold. These responses arose in reticulospinal neurons of the ventral and ventrolateral funiculi after the shortest latent period. The effectiveness of synaptic influences from the dorsal and dorsolateral funiculi was identical in the group of neurons of the dorsolateral funiculus. Correlation between activity evoked by stimulation of the dorsal funiculus in reticulospinal neurons and peripheral nerves indicated that the responses appeared in these cells to stimulation of muscular (groups I and II) and cutaneous (group II) afferent fibers. The results indicate that impulses from low-threshold muscular and cutaneous afferents, which effectively activate reticulospinal neurons, are transmitted along ascending pathways of the dorsal funiculi.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 11, No. 3, pp. 254–263, May–June, 1979.  相似文献   

9.
Bulbar locomotor and inhibitory sites were located in the pons of mesencephalic decerebellate cats. Rhythmic stimulation of locomotor sites through microelectrodes at the rate of 60 Hz elicited stepping movements in the forelimbs which were halted when the inhibitory sites were rhythmically stimulated. Neuronal response was elicited by single or paired stimulation of locomotor sites at the rate of 1.5 Hz or by applying a series of 2–4 stimuli spaced 2 msec apart to the inhibitory site. Medial neurons generated synaptic responses (postsynaptic potentials or action potentials) to stimulation of the inhibitory site twice as frequently as when the locomotor site was stimulated. Responses in lateral neurons, however, occurred twice as frequently to stimulation of the locomotor site, while IPSP were only observed half as often as EPSP in neurons of both groups. In neurons excited by stimulation of the locomotor site, stimulation of the inhibitory site did not normally produce IPSP. Possible mechanisms underlying the halt of locomotion occurring in response to stimulation of the inhibitory site are discussed.Information Transmission Institute, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 18, No. 4, pp. 525–533, July–August, 1986.  相似文献   

10.
The localization of reticulospinal neurons responding antidromically to stimulation of fibers in the dorsolateral parts of the lateral funiculi (shown previously to be the principal collector of fibers conveying bulbar pressor influences) was determined in experiments on anesthetized and curarized cats. Most of these neurons were found to occupy the medioventral portions of the medulla, but they were concentrated in the rostral portions of the gigantocellular and ventral nuclei of the reticular formation. The velocity of conduction of excitation along axons of most reticulospinal neurons was 10–50 m/sec. Reflex responses to stimulation of the sciatic nerve with a latent period of 10–40 msec were found in 35 of 125 such cells. Stimulation of the sinus nerve did not activate them. Spontaneous activity occurred in 29 reticulospinal neurons; the mean firing rate of the various cells varied from 5 to 20/sec.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 6, No. 3, pp. 266–272, May–June, 1974.  相似文献   

11.
Synaptic responses (postsynaptic potentials and action potentials) were evoked in mesencephalic decerebellated cats by stimulating pontine bulbar locomotor and inhibitory sites (LS and IS, respectively) with a current of not more than 20 µA in "medial" and "lateral" neurons of the medulla. Some neurons even produced a response to presentation of single (actually low — 2–5 Hz — frequency) stimuli. The remaining cells responded to stimulation at a steady rate of 30–60 Hz only. Both groups of medial neurons were more receptive to input from LS. Lateral neurons responding to even single stimuli reacted more commonly to input from LS and those responding to steady stimulation only to input from IS. Many neurons with background activity (whether lateral or medial) produced no stimulus-bound response, but rhythmic stimulation either intensified or inhibited such activity. This response occurs most commonly with LS stimulation. Partial redistribution of target neurons in step with increasing rate of presynaptic input may play a major part in control of motor activity.Institute for Research into Information Transmission, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 22, No. 2, pp. 257–266, March–April, 1990.  相似文献   

12.
Synaptic response to regular stimulation of midbrain and bulbar locomotor sites (LS) and a pontine inhibitory site (IS) was recorded in medial and lateral bulbar neurons in cats (mesencephalic decerebellate preparation). Excitatory post-synaptic potentials (PSP) and discharges were usually noted in medial neurons; mixed PSP also occurred when stimulating the IS. Almost 50% of lateral and over 25% of medial neurons showed a change in background firing rate, failing to generate response time-locked to stimulus. Medial neurons producing a response time-locked to the stimulus showed equal sensitivity to stimulation of midbrain and bulbar LT and very little reaction to IS stimulation. Medial neurons with a response not time-locked to stimuli together with lateral neurons were most receptive to input from the bulbar LS, less sensitive to stimulation of the midbrain LS, and least responsive of all to IS stimulation. Convergence between influences from midbrain and bulbar LS was the same in neurons of all populations. The part played by different neuronal populations in initiation and cessation of locomotion is discussed.Institute for Research into Information Transmission, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 23, No. 3, pp. 297–306, May–June, 1991.  相似文献   

13.
Synaptic responses of single units in the "locomotor strip" of the hindbrain were recorded extracellularly. Short-latency responses appeared in neurons of the rostral part of the strip to stimulation of the "locomotor region" of the mesencephalon. Neurons of the caudal part of the strip responded to microstimulation of its other regions, including rostral. If the distance between the neuron and point of stimulation was under 2–3 mm, short-latency (1.2–1.6 msec) responses could be observed. The thresholds and latent periods of the responses increased when the distance apart increased. Polysynaptic responses with a latent period of 3–4 msec could be potentiated by an increase in the frequency of stimulation up to 30–40 Hz. It is suggested that axons of the "locomotor strip" are oriented in the rostrocaudal direction for a distance of 2–3 mm and give off collaterals which run toward neighboring neurons. The strip may be an integrative center, "intercalated" between the rostral portions of the brain stem and spinal cord.Deceased.Institute for Problems in Information Transmission, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 10, No. 5, pp. 510–518, September–October, 1978.  相似文献   

14.
Unit responses in the caudal part of the tegmentum were investigated by a microstimulation method in the mesencephalic cat. The thresholds of appearance of direct and synaptic responses with latencies of 0.8–1.4 and 1.1–2.0 msec were found to depend on the distance from the electrode to the cell recorded. Responses with a low threshold (0.2–1.1 µV) were found much more often in neurons located 6.3–7.0 mm from the surface of the inferior colliculus than in more dorsal or more ventral zones. The relationship between the threshold I, in A, of the direct response of the low-threshold cells and their distance r, in , from the stimulating electrode is approximated satisfactorily by the equation I=3.3·10–4r1.8+0.2. The curve of I as a function of r for synaptic responses is usually more sloping and it has minima for responses recorded not near the cell. The index of synaptic response of some cells rose with an increase in the frequency of stimulation to 20–60/sec.Institute of Problems in Information Transmission, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 5, No. 6, pp. 593–601, November–December, 1973.  相似文献   

15.
Electrical stimulation (10–20 µA, 20–30 Hz) of the rhombencephalon in decerebrate turtles can induce cyclic coordinated limb movemnts. The "locomotor region" is a strip, oriented in the rostro-caudal direction, which coincides in its location with the lateral reticular formation. Both in the medial and in the lateral reticular formation extracellular ipsilateral and contralateral synaptic responses of single neurons evoked by stimulation of the "locomotor region," (10–30 µA, 2 Hz), were recorded. Usually these responses had latent periods of between 3 and 12 msec (mode 5–6 msec). Excitation of the "locomotor region" thus leads to extensive spread of activity in the rhombencephalon. The possible mechanisms of this spread are discussed.Institute of Problems in Information Transmission, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 12, No. 4, pp. 382–390, July–August, 1980.  相似文献   

16.
The responses of the neurons to electrocutaneous stimulation, light flashes, and clicks in the cortical region of the motor representation of the rabbit forelimb were investigated by means of intra- and quasiintracellular recordings. In unanesthetized animals, in only eight out of 65 neurons did postsynaptic potentials (PSP) with a short (10–30 msec) latent period arise in response to light and sound. In 15 neurons, long latency (50–150 msec) responses to one or both of these stimuli were recorded. In most of the cells, short latency stable responses to stimulation of the contralateral forelimb and unstable long latency responses to light and/or sound, frequently of the nature of an increase in the background "synaptic noise," were observed. Under deep chloralose narcosis, the type of convergence was sharply changed: in most of the neurons, short latency responses to all the stimuli used appeared. However, the picture of convergence differed from that described earlier [5,6] for the motor cortex of the cat under chloralose narcosis. The responses to various stimuli were less similar to one another; the somesthetic modality substantially "predominated" (judging by the stability and nature of the interaction of the response).Brain Institute, Academy of Medical Sciences of the USSR. Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 3, No. 5, pp. 474–483, September–October, 1971.  相似文献   

17.
Response was recorded in the pyramidal tract (PT) under three experimental situations modelling the shaping of conditioned reflex (CR) during experiments on unrestrained but unanesthetized rabbits. The first paradigm consisted of direct stimulation of two points on the sensorimotor cortex, the second of the same stimuli combine with electrical stimulation (used as additional reinforcement) of the lateral hypothalamus (LH), and the third of LH stimulation in response to a rise occurring in PT response to above control level (modelling instrumental CR). An overall increase in the monosynaptic wave indicative of altered efficacy of synaptic connections was most commonly observed under all these conditions. Increase in the component directly reflecting pyramidal neuronal excitation appeared significantly more pronounced in the second and third than in the first experimental paradigm. The data obtained would point to reinforced efficacy of excitatory synaptic connections as the principal mechanism of CR, while the changed quality of electrical excitability at the membrane of cortical neurons reflects mechanisms underlying the contribution of reinforcement triggered by LH activation in cortical reordering of the motivational/emotional component of reinforcement.Higher Nervous Activity and Neurophysiology Research Institute, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 21, No. 6, pp. 805–811, November–December, 1989.  相似文献   

18.
Unit activity was recorded in the lumbosacral division of the spinal cord during evoked locomotion in mesencephalic cats with the afferent fibers from their hind limbs intact or divided. If the afferent fibers were intact, all neurons recorded showed modulation of activity during locomotion in the rhythm of stepping movements. In experiments on cats with afferent fibers from the hind limbs divided modulation was absent in 30% of neurons, while in the modulated neurons, the frequencies in the excitation phase were approximately the same as when the limb innervation was intact. Modulation of activity in some neurons occurred in response to stimulation of the locomotor region even before stepping movements began. The tuning of the spinal generator of stepping movements is discussed.M. V. Lomonosov Moscow State University. Institute of Problems in Information Transmission, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 4, No. 4, pp. 410–417, July–August, 1972.  相似文献   

19.
Single unit responses in the middle cervical sympathetic ganglion ofEmys orbicularis to stimulation of other nerves and changes in these responses during the action of sympathetic blocking agents on the ganglion were investigated. The results showed that some fibers of the cervical sympathetic trunk of the turtle are interrupted in this ganglion. Postganglionic fibers pass out of the ganglion and enter the lateral branch and the sympathetic trunk. Other fibers pass through the ganglion without interruption and, together with postganglionic fibers, leave the ganglion in the cervical sympathetic trunk in a cranial direction. The velocity of conduction of excitation along the preganglionic fibers is between 4–3 and 2–1.5 m/sec and along the postganglionic fibers between 4–2.6 and 0.7–0.5 m/sec (fibers of types B2 and C). Synaptic delay in the fast-conducting fibers averages 6.6 msec. Preganglionic fast-conducting fibers form synaptic contacts on neurons with type B2 axons, while preganglionic slow-conducting fibers form contacts on neurons with type C axons. Terminals of two preganglionic fibers differing very slightly in their threshold of excitability, and probably constituting the same group, converge on some neurons.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukranian SSR, Kiev. Translated from Neirofiziologiya, Vol. 4, No. 1, pp. 83–89, January–February, 1972.  相似文献   

20.
Fast fluctuations in the evoked potentials (EP) at a local point of the projection cortex following stimulation of different pathways may reflect the activity of pyramidal neurons of different cortical layers. Analysis shows that the afferent and interarea projections to the somatic sensory cortex terminate on different neurons which can be regarded as relay neurons for a given pathway. Each group of neurons has its own system of inhibition for selective control of impulses coming along this pathway at the cortical level.Institute of Normal and Pathological Physiology, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 2, No. 4, pp. 368–372, July–August, 1970.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号