首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的:探讨黄芪是否对成年神经元具有保护作用以及是否影响成年神经元核苷酸的吸收.方法:培养成年的大鼠皮层神经元.加入黄芪及NGF作为药物干预,并以生理盐水作为对照组.研究加入核苷酸与不加核苷酸的神经元的活力改变及核苷酸吸收情况.结果:神经元再加入黄芪以及NGF后,细胞的活力明显增加.加入核苷酸后,NGF组、黄芪组及NGF组+黄芪组细胞的活力较未加核苷酸组增加,二者间比较,差异具有统计学意义(P<0.05).结论:黄芪与NGF能有效的改善成年神经元的活力,并且通过刺激核苷酸的吸收加强NGF的作用.  相似文献   

2.
To examine the possibility that different taste qualities arerepresented by the correlative activity of cortical gustatoryneurons, we made simultaneous recordings of neuron pairs duringapplication of four basic tastes into the oral cavity of anesthetizedrats and the following observations were made: (i) in 30 of67 pairs of taste responsive neurons, peaks (troughs in a fewcases) were produced in the cross-correlograms (CCs) duringstimulation with some tastants; (ii) the correlative dischargesoccupied 6–8% of the total spikes discharged by individualneurons during taste stimulation and occurred, in a considerablenumber of cases, even during stimulation with tastants to whichone or both of the component neurons of a pair were apparentlynon-responding (often sucrose and quinine); (iii) the numberof tastants to which a neuron pair responded with a significantcorrelative activity was often greater than the number of tastantsto which the component neurons of the same pair responded withsignificant changes in discharge rate; (iv) there was no significantdifference between the correlative (formation of peaks or troughsin the CC) and individual (change in discharge rate of individualneurons) ways of coding in the sensitivity to distinguish betweentwo taste qualities ranked to be adjacent on the basis of thenumber of spikes composing the response; and (v) the peaks ortroughs appearing in two CCs during stimulations with two kindsof tastants were compared with regard to overlapping of theirdelay ranges and widths. The spikes in the non-overlapping portionof each peak (suppressed spike number in the case of troughs)are supposed to be able to contribute to two-taste discrimination:the correlated discharges occurring with a delay time that correspondsto the overlapping portion can in no way be judged differently,but the spikes falling in the non-overlapping portion may contributeto the differentiation. The ratio of the non-overlapping portionto the entire peak (or trough) was 0.35 on average. It is concludedthat temporal coding of taste qualities seems to operate effectivelyin the gustatory cortex. Chem. Senses 22: 363–373, 1997.  相似文献   

3.
In early postnatal ontogenesis of cerebral cortex (visual area) of the white rat, a wide distribution of different types of membrane contacts have been found between developing nervous cells and their processes. The following types of contacts were observed: 1. Penetration of thin filopodia into specialized invaginations having all the features of coated vesicles; 2. Contacts of filopodia with thickened surface membrane; 3. Contacts of opposit filopodia; 4. Contacts of membranes with reciprocal invaginations alternating with filopodia or surface blebs.
These types of membrane interaction were regularly distributed along the surface of cells and their processes, and were situated in close approximation to typical tight junctions and other adhesional complexes. As a rule, filopodia were components of axon branches, and almost all invaginations were situated on plasma membranes of cell bodies or on dendrites, although sometimes there were invaginations on axon profiles and filopodia on dendrites.
It is suggested that the distribution and structural specialization of these membrane contacts reflect their participation in the process of programmed cell-to-cell recognition that precedes the formation of synaptic contact. Other reports and the current data reveal the special morphogenetic role of membrane communication in the formation and stability of integrative cell systems.  相似文献   

4.
5.
6.
To elucidate the molecular events involved in early ischemic neuronal death, we performed two-dimensional proteome profiling of primary cultures of rat cortical neurons following chemical ischemia induced by the administration of sodium azide under glucose-free conditions. Using a lactic dehydrogenase assay and Western blot analysis of dephosporylation of the voltage-gated potassium channel Kv2.1, we determined duration of chemical ischemia of 2 h to be the relevant time-point for early ischemic neuronal death. Sixty-one proteins were differentially expressed, and 26 different proteins were identified by MALDI-TOF with Mascot database searching. The proteome data indicated that chemical ischemia altered the expression of 20 proteins that are involved in stress response/chaperone, brain development, cytoskeletal/structural proteins, metabolic enzymes, and calcium ion homeostasis. Western blotting and immunocytochemical studies of the 6-most functionally significant proteins showed that, in the ischemia-treated group, the expression of glucose-related protein 78, heat shock protein 90 alpha, and α-enolase was significantly increased, while the expression of inositol triphosphate receptor 1 and ATP synthase beta subunit was decreased. In addition, the expression of dihydropyrimidinase-like 3 showed a truncated pattern in the ischemia group. The changes in the expression of these proteins might be significant indicators of early ischemic neuronal death.  相似文献   

7.
Respiration was measured polarographically in primary cultures enriched with cerebellar granule neurons or cerebral cortical neurons. The basal respiratory rate, measured on the sixth day after culturing, was 12.00 natom equiv. O/mg protein/min for the cortical neurons and 12.70 natom equiv. O/mg protein/min for the granule neurons. Maximal stimulation by 2,4-dinitrophenol produced a 20-40% increase over the basal rate for both neuronal types. Oligomycin inhibited neuronal basal respiration by 45%. These respiratory rates in neurons from primary culture are markedly lower than those measured in astrocytes grown under similar conditions.  相似文献   

8.
Acute brain ischemia is accompanied by the intense apoptotic and/or necrotic death of cortical neurons. This review deals with the molecular mechanisms underlying apoptosis, in particular those activated in progressive cerebral ischemic insult. We analyze the data of experimental studies and clinical findings that confirm the principal role of caspase-dependent cell death resulting from acute disorder of the brain circulation. The prospects for the use of apoptosis inhibitors in neurological practice for prevention or minimization of cerebral ischemic injury and reduction of neuronal degeneration within a penumbral zone are discussed.  相似文献   

9.
10.
11.
Calmodulin (CaM) is a ubiquitous Ca2+ sensor protein that plays a pivotal role in regulating innumerable neuronal functions, including synaptic transmission. In cortical neurons, most neurotransmitter release is triggered by Ca2+ binding to synaptotagmin-1; however, a second delayed phase of release, referred to as asynchronous release, is triggered by Ca2+ binding to an unidentified secondary Ca2+ sensor. To test whether CaM could be the enigmatic Ca2+ sensor for asynchronous release, we now use in cultured neurons short hairpin RNAs that suppress expression of ∼70% of all neuronal CaM isoforms. Surprisingly, we found that in synaptotagmin-1 knock-out neurons, the CaM knockdown caused a paradoxical rescue of synchronous release, instead of a block of asynchronous release. Gene and protein expression studies revealed that both in wild-type and in synaptotagmin-1 knock-out neurons, the CaM knockdown altered expression of >200 genes, including that encoding synaptotagmin-2. Synaptotagmin-2 expression was increased several-fold by the CaM knockdown, which accounted for the paradoxical rescue of synchronous release in synaptotagmin-1 knock-out neurons by the CaM knockdown. Interestingly, the CaM knockdown primarily activated genes that are preferentially expressed in caudal brain regions, whereas it repressed genes in rostral brain regions. Consistent with this correlation, quantifications of protein levels in adult mice uncovered an inverse relationship of CaM and synaptotagmin-2 levels in mouse forebrain, brain stem, and spinal cord. Finally, we employed molecular replacement experiments using a knockdown rescue approach to show that Ca2+ binding to the C-lobe but not the N-lobe of CaM is required for suppression of synaptotagmin-2 expression in cortical neurons. Our data describe a previously unknown, Ca2+/CaM-dependent regulatory pathway that controls the expression of synaptic proteins in the rostral-caudal neuraxis.  相似文献   

12.
The wide range of time scales involved in neural excitability and synaptic transmission might lead to ongoing change in the temporal structure of responses to recurring stimulus presentations on a trial-to-trial basis. This is probably the most severe biophysical constraint on putative time-based primitives of stimulus representation in neuronal networks. Here we show that in spontaneously developing large-scale random networks of cortical neurons in vitro the order in which neurons are recruited following each stimulus is a naturally emerging representation primitive that is invariant to significant temporal changes in spike times. With a relatively small number of randomly sampled neurons, the information about stimulus position is fully retrievable from the recruitment order. The effective connectivity that makes order-based representation invariant to time warping is characterized by the existence of stations through which activity is required to pass in order to propagate further into the network. This study uncovers a simple invariant in a noisy biological network in vitro; its applicability under in vivo constraints remains to be seen.  相似文献   

13.
Abstract: Glutamate-induced glutathione depletion in immature embryonic cortical neurons has been shown to lead to oxidative stress and cell death. We have used this in vitro model to investigate the mechanism(s) by which free radicals induce neuronal degeneration. We find that glutathione depletion leads to hypercondensation and fragmentation of chromatin into spherical or irregular shapes, a morphologic signature of apoptosis. These morphologic changes are accompanied by laddering of DNA into multiple oligonucleosomal fragments and can be prevented by the antioxidants idebenone and butylated hydroxyanisole. Cell death induced by glutathione depletion can also be prevented by inhibitors of macromolecular synthesis. Taken together, these observations suggest that oxidative stress can induce apoptosis in neurons.  相似文献   

14.
15.
Brain-derived neurotrophic factor (BDNF) and neurotrophin-4 (NT-4) are two neurotrophins that play distinct roles in geniculate (taste) neuron survival, target innervation, and taste bud formation. These two neurotrophins both activate the tropomyosin-related kinase B (TrkB) receptor and the pan-neurotrophin receptor p75. Although the roles of these neurotrophins have been well studied, the degree to which BDNF and NT-4 act via TrkB to regulate taste development in vivo remains unclear. In this study, we compared taste development in TrkB−/− and Bdnf−/−/Ntf4−/− mice to determine if these deficits were similar. If so, this would indicate that the functions of both BDNF and NT-4 can be accounted for by TrkB-signaling. We found that TrkB−/− and Bdnf−/−/Ntf4−/− mice lose a similar number of geniculate neurons by E13.5, which indicates that both BDNF and NT-4 act primarily via TrkB to regulate geniculate neuron survival. Surprisingly, the few geniculate neurons that remain in TrkB−/− mice are more successful at innervating the tongue and taste buds compared with those neurons that remain in Bdnf−/−/Ntf4−/− mice. The remaining neurons in TrkB−/− mice support a significant number of taste buds. In addition, these remaining neurons do not express the TrkB receptor, which indicates that either BDNF or NT-4 must act via additional receptors to influence tongue innervation and/or targeting.  相似文献   

16.
Various types of neural-based signals, such as EEG, local field potentials and intracellular synaptic potentials, integrate multiple sources of activity distributed across large assemblies. They have in common a power-law frequency-scaling structure at high frequencies, but it is still unclear whether this scaling property is dominated by intrinsic neuronal properties or by network activity. The latter case is particularly interesting because if frequency-scaling reflects the network state it could be used to characterize the functional impact of the connectivity. In intracellularly recorded neurons of cat primary visual cortex in vivo, the power spectral density of Vm activity displays a power-law structure at high frequencies with a fractional scaling exponent. We show that this exponent is not constant, but depends on the visual statistics used to drive the network. To investigate the determinants of this frequency-scaling, we considered a generic recurrent model of cortex receiving a retinotopically organized external input. Similarly to the in vivo case, our in computo simulations show that the scaling exponent reflects the correlation level imposed in the input. This systematic dependence was also replicated at the single cell level, by controlling independently, in a parametric way, the strength and the temporal decay of the pairwise correlation between presynaptic inputs. This last model was implemented in vitro by imposing the correlation control in artificial presynaptic spike trains through dynamic-clamp techniques. These in vitro manipulations induced a modulation of the scaling exponent, similar to that observed in vivo and predicted in computo. We conclude that the frequency-scaling exponent of the Vm reflects stimulus-driven correlations in the cortical network activity. Therefore, we propose that the scaling exponent could be used to read-out the “effective” connectivity responsible for the dynamical signature of the population signals measured at different integration levels, from Vm to LFP, EEG and fMRI.  相似文献   

17.
Cocaine Induces Apoptosis in Cortical Neurons of Fetal Mice   总被引:6,自引:1,他引:5  
Abstract: Exposure of fetal mouse brain cocultures to cocaine results selectively in the loss of neurites followed by neuronal death. By using enriched neuronal cultures, we here demonstrate that disappearance of neurons, when cultured with cocaine, is caused by apoptosis, based on (1) characteristic morphology of apoptotic nuclei at the level of neurons but not of glial cells by optic microscopy, and on total cell pellets by electron microscopy; (2) fragmentation of total DNA with a typical "ladder" pattern on agarose gels; (3) extensive in situ DNA fragmentation labeling (TUNEL method); and (4) prevention of cell loss by cycloheximide. The major metabolites of cocaine have no detectable effects on neurons, indicating that apoptosis is due to cocaine itself. Inappropriate neuronal apoptosis in cocaine-exposed fetal brain could perturb the neurodevelopmental program and contribute to the quantitative neuronal defects that are too frequently reported in the offspring of cocaine-abusing pregnant women.  相似文献   

18.
Neurite growth requires neurite extension and retraction, which are associated with protein degradation. Autophagy is a conserved bulk degradation pathway that regulates several cellular processes. However, little is known about autophagic regulation during early neurite growth. In this study, we investigated whether autophagy was involved in early neurite growth and how it regulated neurite growth in primary cortical neurons. Components of autophagy were expressed and autophagy was activated during early neurite growth. Interestingly, inhibition of autophagy by atg7 small interfering RNA (siRNA) caused elongation of axons, while activation of autophagy by rapamycin suppressed axon growth. Surprisingly, inhibition of autophagy reduced the protein level of RhoA. Moreover, expression of RhoA suppressed axon overelongation mediated by autophagy inhibition, whereas inhibition of the RhoA signaling pathway by Y-27632 recovered rapamycin-mediated suppression of axon growth. Interestingly, hnRNP-Q1, which negatively regulates RhoA, accumulated in autophagy-deficient neurons, while its protein level was reduced by autophagy activation. Overall, our study suggests that autophagy negatively regulates axon extension via the RhoA-ROCK pathway by regulating hnRNP-Q1 in primary cortical neurons. Therefore, autophagy might serve as a fine-tuning mechanism to regulate early axon extension.  相似文献   

19.
Distributions of corticospinal and corticobulbar neurons were revealed by tetramethylbenzidine (TMB) processing after injections of wheatgerm agglutinin conjugated to horseradish peroxidase (WGA:HRP) into the cervical or lumbar enlargements of the spinal cord, or medullary or pontine levels of the brain stem. Sections reacted for cytochrome oxidase (CO) allowed patterns of labeled neurons to be related to the details of the body surface map in the first somatosensory cortical area (SI). The results indicate that a number of cortical areas project to these subcortical levels: (1) Projection neurons in granular SI formed a clear somatotopic pattern. The hindpaw region projected to the lumbar enlargement, the forepaw region to the cervical enlargement, the whisker pad field to the lower medulla, and the more rostral face region to more rostral brain stem levels. (2) Each zone of labeled neurons in SI extended into adjacent dysgranular somatosensory cortex, forming a second somatotopic pattern of projection neurons. (3) A somatotopic pattern of projection neurons in primary motor cortex (MI) paralleled SI in mediolateral sequence corresponding to the hindlimb, forelimb, and face. (4) A weak somatotopic pattern of projection neurons was suggested in medial agranular cortex (Agm), indicating a premotor field with a rostromedial-to-caudolateral representation of hindlimb, forelimb, and face. (5) A somatotopic pattern of projection neurons representing the foot to face in a mediolateral sequence was observed in medial parietal cortex (PM) located between SI and area 17. (6) In the second somatosensory cortical area (SII), neurons projecting to the brain stem were immediately adjacent caudolaterally to the barrel field of SI, whereas neurons projecting to the upper spinal cord were more lateral. No projection neurons in this region were labeled by the injections in the lower spinal cord. (7) Other foci of projection neurons for the face and forelimb were located rostral to SII, providing evidence for a parietal ventral area (PV) in perirhinal cortex (PR) lateral to SI, and in cortex between SII and PM. None of these regions, which may be higher-order somatosensory areas, contained labeled neurons after injections in the lower spinal cord. Thus, more cortical fields directly influence brain stem and spinal cord levels related to sensory and motor functions of the face and forepaw than the hindlimb.

The termination patterns of corticospinal and corticobulbar projections were studied in other rats with injections of WGA:HRP in SI. Injections in lateral SI representing the face produced dense terminal label in the contralateral trigeminal complex. Injections in cortex devoted to the forelimb and forepaw labeled the contralateral cuneate nucleus and parts of the dorsal horn of the spinal cord. The cortical injections also demonstrated interconnections of parts of SI with some of the other regions of cortex with projections to the spinal cord, and provided further evidence for the existence of PV in rats.  相似文献   

20.
In this paper, we constructed a novel acellular nerve xenograft (ANX) seeded with neurons and Schwann cells to bridge long-distance gaps in rat sciatic nerves. The neurons and Schwann cells were induced from Sprague Dawley (SD) rat hair follicle neural crest stem cells with sonic hedgehog/retinoic acid and neuregulin 1, respectively. Fifty male SD rats were randomly divided into two groups (n = 25): ANX + cells group and ANX group. A 4-cm-long sciatic nerve defect was created on the right hind limb and bridged with cell-seeded ANX in ANX + cells group or ANX alone in ANX group. We found that the implanted neurons and Schwann cells could survive by 4 weeks and as far as 52 weeks posttransplantation. In implanted grafts, chemical synaptic structures were also found under transmission electron microscope and confirmed with immunostaining of synapsin 1, a synaptic marker. The number of regenerated axons in ANX + cells group was higher than that in ANX group (P < 0.01). This novel implantation of neurons and Schwann cells via acellular nerve graft may provide an alternative way for repairing peripheral nerve defect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号