首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of gramicidin S (GS), an antibiotic, on the rat heart membrane ATPases and contractile activity of the right ventricle strips were investigated. GS inhibited sarcolemmal Ca2+-stimulated ATPase (IC50 = 3 microM), Ca2+/Mg2+ ATPase which is activated by millimolar Ca2+ or Mg2+ (IC50 = 3.4 microM), and sarcoplasmic reticulum Ca2+-stimulated ATPase (IC50 = 6 microM). The type of inhibition for the sarcolemmal Ca2+/Mg2+ ATPase by GS was apparently uncompetitive, while that for Ca2+-stimulated ATPases in sarcolemma or sarcoplasmic reticulum was of mixed type. Other ATPases, including mitochondrial ATPase, sarcolemmal Na+-K+ ATPase, and myofibrillar ATPase, were not inhibited by this agent. GS also decreased the rat right ventricle maximum force development (half-maximal inhibitory concentration was 2-4 microM), maximum velocity of contraction, and maximum velocity of relaxation. The resting tension was increased by GS to over 200%. The contractile actions of GS were mostly irreversible upon washing the muscle 3 times over a 10-min period. Decreased Ca2+, Mg2+, Na+, K+ concentrations in the perfusate increased the effects of GS. These findings showed that GS was a potent inhibitor of divalent cation ATPases of heart sarcolemma and sarcoplasmic reticulum and it is suggested that these membrane effects may explain the cardiodepressant action of this agent.  相似文献   

2.
Effects of lanthanum on Ca2+-ATPase, Mg2+-ATPase, Na+-K+-ATPase, and calcium binding activities were studied in rat heart sarcolemma. Ten to 100 micrometers lanthanum depressed significantly the Ca2+-ATPase activity and 50--200 micrometers lanthanum inhibited the calcium binding activity. Lineweaver-Burk plots of the Ca2+-ATPase activity showed that the inhibition by lanthanum was competitive with calcium concentration. Neither Mg2+-ATPase nor Na+-K+-ATPase activities were affected by lanthanum when the assay medium contained 1 mM EDTA; however, in the absence of EDTA, these enzyme activities were significantly decreased by 10--100 micrometers lanthanum. Rat hearts perfused with HEPES buffer containing 0.5 mM lanthanum showed electron-dense deposits restricted to the outer cell surface and the sarcolemma obtained from these hearts also had the deposits, indicating that the membrane fraction isolated by the hypotonic shock--LiBr treatment method is of sarcolemmal origin. The Ca2+-ATPase activity of the sarcolemma isolated from lanthanum-perfused hearts, unlike the Mg2+-ATPase, Na+-K+-ATPase, and calcium binding activities, was significantly less than the control value. From these observations it is suggested that lanthanum may influence calcium movement across the sarcolemma by affecting sarcolemmal ATPase and calcium binding activities.  相似文献   

3.
Localization of the Ca2+ + Mg2+-ATPase of the sarcoplasmic reticulum in rat papillary muscle was determined by indirect immunofluorescence and immunoferritin labeling of cryostat and ultracryotomy sections, respectively. The Ca2+ + Mg2+-ATPase was found to be rather uniformly distributed in the free sarcoplasmic reticulum membrane but to be absent from both peripheral and interior junctional sarcoplasmic reticulum membrane, transverse tubules, sarcolemma, and mitochondria. This suggests that the Ca2+ + Mg2+-ATPase of the sarcoplasmic reticulum is antigenically unrelated to the Ca2+ + Mg2+-ATPase of the sarcolemma. These results are in agreement with the idea that the sites of interior and peripheral coupling between sarcoplasmic reticulum membrane and transverse tubules and between sarcoplasmic reticulum and sarcolemmal membranes play the same functional role in the excitation-contraction coupling in cardiac muscle.  相似文献   

4.
Isolation and characterization of cardiac sarcolemma.   总被引:11,自引:0,他引:11  
A procedure was developed for the isolation of cardiac sarcolemmal vesicles. These vesicles are enriched about ten-fold (with respect to the tissue homogenate) in K+-stimulated p-nitrophenylphosphatase, (Na+ + K+)-ATPase, 5'-nucleotidase activities and sialic acid content, all of which are believed to be components of the sarcolemma. The sarcolemma of tissue culture cardiac cells were radioiodinated and the distribution of this radioiodine paralleled the distribution of the other membrane markers above. There was very little contamination of the sarcolemmal fraction by sarcoplasmic reticulum (as judged by Ca2+-ATPase and glucose-6-phosphatase activities) or inner mitochondrial membranes (as judged by succinate dehydrogenase activity). There may, however, be some contamination by outer mitochondrial membranes (as judged by monoamine oxidase and rotenone-insensitive NADH cytochrome c reductase activities) which have rarely been monitored in cardiac sarcolemmal preparations. The purity of this preparation is good when compared with other cardiac sarcolemmal preparations. This preparation should be very useful in studying the roles of the cardiac sarcolemma (e.g. in excitation contraction coupling and Ca2+ binding).  相似文献   

5.
The Syrian cardiomyopathic hamster has a hereditary disease characterized by a progressive myocyte necrosis and intracellular calcium overload. Several systems in the heart sarcolemma that regulate the rate of Ca2+ entry or efflux were examined. There is a selective decrease of Ca2+-pumping ATPase activity in the heart sarcolemma of 40-day-old myopathic hamsters, while the Na+-Ca2+ exchange system and the ouabain-sensitive (Na+ + K+)-ATPase activity remain intact. This age-dependent decrease in Ca2+-ATPase activity closely parallels the time course of lesion development. Both the affinity for Ca2+ (Km) and the maximal velocity (Vmax) of the Ca2+-dependent ATP hydrolysis are altered. In addition, there is also an increased number of calcium channel receptor binding sites. Thus the data suggest that the imbalance in Ca2+ fluxes across the cardiac plasma membrane may be involved in the pathogenesis of this cardiomyopathy.  相似文献   

6.
Sarcolemmal and sarcoplasmic reticulum membrane vesicle fractions were isolated from cardiac microsomes. Separation of sarcolemmal and sarcoplasmic reticulum membrane markers was documented by a combination of correlative assay and centrifugation techniques. To facilitate the separation, the crude microsomes were incubated in the presence of ATP, Ca2+, and oxalate to increase the density of the sarcoplasmic reticulum vesicles. After sucrose gradient centrifugation, the densest subfraction (sarcoplasmic reticulum) contained the highest (K+,Ca2+)-ATPase activity and virtually no (Na2+,K+)-ATPase activity, even when latent (Na+,K+)-ATPase activity was unmasked. In addition, the sarcoplasmic reticulum fraction contained no significant sialic acid, beta receptor binding activity, or adenylate cyclase activity. Sarcolemmal membrane fractions were of low buoyant density. Preparations most enriched in sarcolemmal vesicles contained the highest level of all the other parameters and only about 10% of the (K+,Ca2+)-ATPase activity of the sarcoplasmic reticulum fraction. The results suggest that (Na+,K+)-ATPase, sialic acid, beta-adrenergic receptors, and adenylate cyclase can be entirely accounted for by the sarcolemmal content of cardiac microsomes. Gel electrophoresis of the sarcolemmal and sarcoplasmic reticulum membrane fractions showed distinct bands. Membrane proteins exclusive to each of the fractions were also demonstrated by phosphorylation. Cyclic AMP stimulated phosphorylation by [gamma-32P]ATP of two proteins of apparent Mr = 20,000 and 7,000 that were concentrated in sarcoplasmic reticulum, but the stimulation was markedly dependent on the presence of added soluble cyclic AMP-dependent protein kinase. Cyclic AMP also stimulated phosphorylation of membrane proteins in sarcolemma, but this phosphorylation was mediated by an endogenous protein kinase activity. The apparent molecular weights of these phosphorylated proteins were 165,000, 90,000, 56,000, 24,000, and 11,000. The results suggest that sarcolemma may contain an integral enzyme complex, not present in sarcoplasmic reticulum, that contains beta-adrenergic receptors, adenylate cyclase, cyclic AMP-dependent protein kinase, and several substrates of the protein kinase.  相似文献   

7.
The review systematizes and analyzes recent data about the role of different Ca(2+)-transport mechanisms in the regulation of Ca2+ metabolism and functional activity of the cardiomyocytes. During the cardiac action potential, Ca2+ enters the cardiomyocytes through sarcolemmal L-type calcium channels and via the Na+/Ca2+ exchange. This Ca2+ activates the release of additional Ca2+ from the sarcoplasmic reticulum. The sum of calcium from sarcolemmal influxes and sarcoplasmic release produces contractile effect. For the occurrence of relaxation, Ca2+ remove from the cytoplasm by three mechanisms, namely, sarcoplasmic Ca2+ pump, Na+/Ca2+ exchange and sarcolemmal Ca2+ pump. In this review, the structural and functional properties of the Ca2+ transport systems in the sarcolemmal membranes, sarcoplasmic reticulum and mitochondria are discussed. In addition alterations in regulation of intracellular calcium by activation of beta- and alpha-adrenergic receptors are consider.  相似文献   

8.
Although Na+-H+ exchange (NHE) inhibitors such as methyl-N-isobutyl amiloride (MIA) are known to depress the cardiac function, the mechanisms of their negative inotropic effect are not completely understood. In this study, isolated rat hearts were perfused with MIA to study its action on cardiac performance, whereas isolated subcellular organelles such as sarcolemma, myofibrils, sarcoplasmic reticulum, and mitochondria were treated with MIA to determine its effect on their function. The effect of MIA on intracellular Ca2+ mobilization was examined in fura-2-AM-loaded cardiomyocytes. MIA was observed to depress cardiac function in a concentration-dependent manner in HCO3- -free buffer. On the other hand, MIA had an initial positive inotropic effect followed by a negative inotropic effect in HCO3-containing buffer. MIA increased the basal concentration of intracellular Ca2+ ([Ca2+]i) and augmented the KCl-mediated increase in [Ca2+]i. MIA did not show any direct effect on myofibrils, sarcolemma, and sarcoplasmic reticulum ATPase activities; however, this agent was found to decrease the intracellular pH, which reduced the myofibrils Ca2+-stimulated ATPase activity. MIA also increased Ca2+ uptake by mitochondria without having any direct effect on sarcoplasmic reticulum Ca2+ uptake. In addition, MIA did not protect the hearts subjected to mild Ca2+ paradox as well as ischemia-reperfusion-mediated injury. These results suggest that the increase in [Ca2+]i in cardiomyocytes may be responsible for the initial positive inotropic effect of MIA, but its negative inotropic action may be due to mitochondrial Ca2+ overloading as well as indirect depression of myofibrillar Ca2+ ATPase activity. Thus the accumulation of [H+]i as well as occurrence of intracellular and mitochondrial Ca2+ overload may explain the lack of beneficial effects of MIA in preventing the ischemia-reperfusion-induced myocardial injury.  相似文献   

9.
Calmodulin-dependent Ca2+-pump ATPase of human smooth muscle sarcolemma   总被引:1,自引:0,他引:1  
L M Popescu  P Ignat 《Cell calcium》1983,4(4):219-235
An enzymatically active Ca2+-stimulated ATPase has been isolated from the sarcolemmal sheets of human smooth muscle (myometrium). Ca2+-ATPase activity was quantitated in an assay medium which simulated the characteristic free ionic concentrations of the cytosol. New computer programs for calculating the composition of solutions containing metals (Ca, Mg, Na, K) and ligands (EGTA, ATP), based on the updated stability constants, were used. In detergent-soluble form the enzyme has a high Ca2+-affinity expressed by an apparent Km (Ca2+) of 0.25 +/- 0.04 microM. The maximum specific activity (about 20 nmol of Pi/mg protein/min) was found in the micromolar domain of free-Ca2+ concentrations, the same levels required for normal maximal contractions in smooth muscle. The variation of free-Ca2+ concentration in the assay medium over 4 orders of magnitude (pCa 9 to pCa 5) resulted in a sigmoidal dependence of enzymatic activity, with a Hill coefficient of 1.4, which suggested the regulation of Ca2+-ATPase by allosteric effectors. The presence and the activator role of endogenous calmodulin in smooth muscle sarcolemma was proved by calmodulin-depletion experiments and by using suitable anticalmodulinic concentrations of trifluoperazine. The addition of exogenous calmodulin restored the enzyme activity. Apparently, the concentration of calmodulin in isolated smooth muscle sarcolemma is about 0.1% of sarcolemmal proteins, as deduced from the comparison of calmodulin-depletion and calmodulin-readdition experiments. Calmodulin increased significantly the enzyme Ca2+-affinity and Vmax (by a factor of about 10). At variance with the sarcoplasmic reticulum Ca2+-ATPase, the sarcolemmal Ca2+-ATPase is extremely sensitive to orthovanadate, half-maximal inhibition being observed at 0.8 microM vanadate. In conclusion, the Ca2+-ATPase isolated from smooth muscle sarcolemma appears very similar to the well-known Ca2+-pump ATPases of erythrocyte membrane, heart sarcolemma or axolemma. We suggest that this high-affinity Ca2+-ATPase represents the calmodulin-regulated Ca2+-extrusion pump of the smooth muscle sarcolemma.  相似文献   

10.
The effects of concanavalin A (Con A) on membrane Ca2+/Mg2+ ATPase activities as well as the characteristics of Con A binding were examined by employing rat heart sarcolemmal preparations. Con A stimulated the Ca2+ ATPase and Mg2+ ATPase activities in sarcolemma; maximal stimulation in these parameters was seen at a concentration of 10 micrograms/ml. The observed effects of Con A were blocked by alpha-methylmannoside. Sarcolemmal Na+-K+ ATPase and Ca2+-stimulated ATPase were not affected by Con A. Likewise, Con A did not alter the mitochondrial, sarcoplasmic reticular, and myofibrillar ATPase activities. Con A was found to bind to sarcolemma; alpha-methylmannoside prevented this binding. The Scatchard plot analysis of the data on specific Con A binding showed a straight line with a Kd of about 530 nM and a Bmax of 235 pmol/mg protein, thus indicating that there was only one kind of binding site for Con A in sarcolemma. These results suggest that Con A is a specific activator of the low affinity Ca2+/Mg2+ ATPase system in the heart sarcolemmal membrane.  相似文献   

11.
An active intracellular to extracellular Ca2+ efflux has been proposed in heart muscle. A myocardial sarcolemmal ATPase stimulated by an intracellular pCa and serving as a Ca2+ pump has been postulated. A recently developed myocardial sarcolemmal preparation has not permitter a search for such an enzymatic activity. In these studies, an ATPase has been demonstrated in the sarcolemma which is activated by Mg2+, stimulated as the Ca2+ is raised to a pCa of 6, and is inhibited by ouabain. These findings suggest a mechanism by which Ca2+ within the myocardium may be modulated and thus how the force of contraction may be altered by cardiac glycosides.  相似文献   

12.
The (Ca2+ + Mg2+) ATPase of dog heart sarcolemma (Caroni, P., and Carafoli, E. (1980) Nature 283, 765-767) has been characterized. The enzyme possesses an apparent Km (Ca2+) of 0.3 +/- 02 microM, a Vmax of Ca2+ transport of 31 nmol of Ca2+/mg of protein/min, and an apparent Km (ATP) of 30 microM. It is only slightly influenced by monovalent cations and is highly sensitive to orthovanadate (Ki = 0.5 +/- 0.1 microM). The high vanadate sensitivity has been used to distinguish the sarcolemmal and the contaminating sarcoplasmic reticulum Ca2+-dependent ATPase in heart microsomal fractions. Calmodulin has been shown to be present in heart sarcolemma. Its depletion results in the transition of the Ca2+-pumping ATPase to a low Ca2+ affinity; readdition of calmodulin reverses this effect. The Na+/Ca2+ exchange system was not affected by calmodulin. The results of calmodulin extraction can be duplicated by using the calmodulin antagonist trifluoperazine. The calmodulin-depleted Ca2+-ATPase has been solubilized from the sarcolemmal membrane and "purified" on a calmodulin affinity chromatography column. One major (Mr = 150,000) and 3 minor protein bands could be eluted from the column with ethylene glycol bis(beta-aminoethyl ether)N,N,N',N'-tetraacetic acid (EGTA). The major protein band (72%) has Ca2+-dependent ATPase activity and can be phosphorylated by [gamma]32P]ATP in a Ca2+-dependent reaction.  相似文献   

13.
Calcium-induced changes in (Na+ + K+)-ATPase activity and structural changes of membrane bound proteins in rat heart sarcolemma were investigated. Increasing concentrations of Ca2+ (0.1-8.0 mmol.l-1) gradually inhibited the (Na+ + K+)-ATPase activity and decreased the alpha-helix content of sarcolemmal proteins. Mathematical and graphical analysis of observed data yielded a quantitative relationship between Ca2+-induced changes in (Na+ + K+)-ATPase activity and the secondary structure of membrane proteins in cardiac sarcolemma.  相似文献   

14.
Bovine myocardial sarcolemma and sarcoplasmic reticulum vesicle preparations contained calcium-dependent protease inhibitor protein. No inhibitor was detected in mitochondrial membranes. The membrane-bound inhibitor co-purified with the marker enzymes for sarcolemma and sarcoplasmic reticulum, Na+,K+-ATPase and Ca2+,K+-ATPase respectively, on isopycnic ultracentrifugation through linear sucrose density gradients. Sarcolemma and sarcoplasmic reticulum vesicles contained about 1 mg of inhibitor per g of membrane protein. However, about one-half of the inhibitor in sarcoplasmic reticulum vesicles was not tightly associated with the membrane. The membrane-bound inhibitor may function to modulate calcium-dependent proteolytic cleavage of sarcolemmal or sarcoplasmic reticulum-associated proteins.  相似文献   

15.
Crystalline arrays of Ca2+ transport ATPase develop in sarcoplasmic reticulum membranes after treatment with Na3VO4 in a calcium-free medium [ Dux , L. and Martonosi , A. (1983) J. Biol. Chem. 258, 2599-2603]. The proportion of vesicles containing Ca2+-ATPase crystals in microsome preparations isolated from rat muscle of different fiber types (semimembranosus, levator ani, extensor digitorum longus, diaphragm, soleus, and heart) correlates well with the Ca2+-ATPase content and Ca2+-modulated ATPase activity. This implies that the concentration of Ca2+-ATPase in sarcoplasmic reticulum membranes of fast and slow skeletal or cardiac muscles differs only slightly, and the low Ca2+ transport activity of 'sarcoplasmic reticulum' preparations isolated from slow-twitch skeletal and cardiac muscles is due to the presence of large amount of non-sarcoplasmic-reticulum membrane elements. This is in accord with the relatively small differences in the density of 8.5-nm intramembranous particles seen by freeze-etch electron microscopy in sarcoplasmic reticulum of red and white muscles. The dimensions of the Ca2+-ATPase crystal lattice are similar in sarcoplasmic reticulum membranes of different fiber types; therefore if structural differences exist between 'isoenzymes' of Ca2+-ATPase, these are not reflected in the crystal-lattice.  相似文献   

16.
Cardiac muscle requires an external source of calcium for contraction, but current evidence supports an intracellular pool of bound calcium as the primary activator of contraction. The size of this intracellular pool modulates the amount of calcium released to troponin during systole and the resultant contractile response. Proposed mechanisms for modulation of activator calcium include: 1) an alteration in phase II "slow current" allowing increased electrogenic calcium flux; 2) a glycoside independent sodium-calcium exchange across the sarcolemma that can be modulated by changes in the sodium gradient; 3) potassium-calcium exchange system during cardiac repolarization; 4) an augmentation of calcium accumulation by cardiac sarcoplasmic reticulum related to various phosphorylation mechanisms; and 5) an alteration in phospholipid affinity effected by cardiac glycoside at sarcolemmal sites related to the Na+, K+-ATPase.  相似文献   

17.
Crude cardiac membrane vesicles were separated into subfractions of sarcolemma and sarcoplasmic reticulum. The subfractions were used to determine the origin and type of cyclic AMP-dependent protein kinase activity present in myocardial membranes. A cyclic AMP-binding protein of molecular weight 55,000 was covalently labeled with the photoaffinity probe 8-azido adenosine 3',5'-mono[32P]phosphate, and found to copurify with the (Na+ + K+)-ATPase activity of sarcolemma, and away from the (Ca2+ + K+)-ATPase activity of sarcoplasmic reticulum. Endogenous cyclic AMP-dependent protein kinase activity also copurified with sarcolemma. Protein substrates phosphorylated by cyclic AMP-dependent protein kinase activity had apparent molecular weights of 21,000 and 8000 and were present in both sarcolemma and sarcoplasmic reticulum. However, while addition of cyclic AMP alone resulted in phosphorylation of sarcolemma proteins, both cyclic AMP and exogenous, soluble cyclic AMP-dependent kinase were required for phosphorylation of sarcoplasmic reticulum proteins. Addition of the calcium-binding protein, calmodulin, to either sarcolemma or sarcoplasmic reticulum resulted in phosphorylation of the 21,000 and 8000-dalton proteins, as well. The results suggest that cardiac sarcolemma contains an intrinsic type II cyclic AMP-dependent protein kinase activity that is not present in sarcoplasmic reticulum. On the other hand, Ca2+- and calmodulin-dependent protein kinase activity is present in both sarcolemma and sarcoplasmic reticulum.  相似文献   

18.
Different antiarrhythmic agents such as quinidine, procaine amide, and lodocaine at 1 mM concentrations were found to depress the ability of an isolated perfused rat heart to generate contractile force. Quinidine, but not procaine amide or lidocaine, decreased calcium uptake by both mitochondrial and microsomal fractions at different concentrations of calcium. The mitochondrial phosphorylation rate, respiratory control index, and state 3 oxygen consumption, but not ADP:O ratio and state 4 oxygen consumption, were depressed by only quinidine. None of these agents had any effect on myofibrillar Mg2+-ATPase or Ca2+-stimulated ATPase activities. On the other hand, sarcolemmal Mg2+-ATPase and Ca2+-ATPase activities, but not Na+-K+-ATPase activity, were increased by all these drugs. The sarcolemmal adenylate cyclase (EC 4.6.1.1) activity was decreased by quinidine only. These results suggest some similarities and differences in the sites of action of quinidine, procaine amide, and lidocaine within the myocardium.  相似文献   

19.
Cardiac contractile function is dependent on the integrity and function of the sarcolemmal membrane. Swimming exercise training is known to increase cardiac contractile performance. The purpose of the present study was to examine whether a swimming exercise program would alter sarcolemmal enzyme activity, ion flux, and composition in rat hearts. After approximately 11 wk of exercise training, cardiac myosin and actomyosin Ca2+-adenosinetriphosphatase (ATPase) activity was significantly higher in exercised rat hearts than in sedentary control rat hearts. Glycogen content was increased in plantaris and gastrocnemius muscles from exercised animals as was succinic dehydrogenase activity in gastrocnemius muscle of exercised rats in comparison to sedentary rat preparations. Sarcolemmal vesicles were isolated from hearts of exercise-trained and control rats. Sarcolemmal Na+-K+-ATPase and K+-p-nitrophenylphosphatase activities, Na+-Ca2+ exchange, and passive Ca2+ binding did not differ between the two groups. ATP-dependent Ca2+ uptake and 5'-nucleotidase activity were elevated in the cardiac sarcolemmal vesicles isolated from exercised animals compared with sedentary control rats. Sarcolemmal phospholipid composition was not altered by the exercise training. Our results demonstrate that swimming training in rats does not affect most parameters of cardiac sarcolemmal function or composition. However, the elevated sarcolemmal Ca2+ pump activity in exercised rats may help to reduce intracellular Ca2+ and augment cardiac relaxation rates. The enhanced 5'-nucleotidase activity may stimulate adenosine production, which could affect myocardial blood flow. The present results further our knowledge on the subcellular response of the heart to swimming training in the rat.  相似文献   

20.
The purpose of this study was to determine whether cardiac biochemical adaptations are induced by chronic exercise training (ET) of miniature swine. Female Yucatan miniature swine were trained on a treadmill or were cage confined (C) for 16-22 wk. After training, the ET pigs had increased exercise tolerance, lower heart rates during exercise at submaximal intensities, moderate cardiac hypertrophy, increased coronary blood flow capacity, and increased oxidative capacity of skeletal muscle. Myosin from both the C and ET hearts was 100% of the V3 isozyme, and there were no differences between the myosin adenosine triphosphatase (ATPase) or myofibrillar ATPase activities of C and ET hearts. Also, the sarcoplasmic reticulum Ca(2+)-ATPase activity and Na(+)-Ca2+ exchange activity of sarcolemmal vesicles were the same in cardiac muscle of C and ET hearts. Finally, the glycolytic and oxidative capacity of ET cardiac muscle was not different from control, since phosphofructokinase, citrate synthase, and 3-hydroxyacyl-CoA dehydrogenase activities were the same in cardiac tissue from ET and C pigs. We conclude that endurance exercise training does not provide sufficient stress on the heart of a large mammal to induce changes in any of the three major cardiac biochemical systems of the porcine myocardium: the contractile system, the Ca2+ regulatory systems, or the metabolic system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号