首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Basik M  Mousses S  Trent J 《BioTechniques》2003,35(3):580-2, 584, 586 passim
New technologies have greatly increased the scientist's ability to investigate complex molecular interactions that occur in cancer development and to identify genetic alterations and drug targets. However, these new capabilities have not accelerated drug development efforts; rather, they may be contributing to increased research and development costs because the large number of new drug targets discovered through genomics need to be investigated in great detail to characterize their putative functional involvement in the disease process. One solution to this bottleneck in functional analysis is the use of high-throughput technologies to produce efficient processes that can rapidly handle the large flood of information at every stage of disease. This review examines the use of new and emerging DNA, tissue, and live-cell transfection microarray technologies that can be used to discover, validate, and translate information resulting from the completion of the Human Genome Project.  相似文献   

3.
There is increasing evidence indicating that nutritional genomics represents a promise to improve public health. This goal will be reached by highlighting the mechanisms through which diet can reduce the risk of monogenic and common polygenic diseases. Indeed, nutrition is a very relevant environmental factor involved in the development and progression of metabolic disorders, as well as other kind of diseases. The revolutionary changes in the field of genomics have led to the development and implementation of new technologies and molecular tools. These technologies have a useful application in the nutritional sciences, since they allow a more precise and accurate analysis of biochemical alterations, in addition to filling fundamental gaps in the knowledge of nutrient–genome interactions in both health and disease. Overall, these advances will open undiscovered ways in genome-customized diets for disease prevention and therapy. This review summarizes the recent knowledge concerning this novel nutritional approach, paying attention to the human genome variations, such as single-nucleotide polymorphisms and copy number variations, gene expression and innovative molecular tools to reveal them.  相似文献   

4.
Probiotics are defined as live microorganisms that confer a health benefit to the host when administered in adequate amounts. In addition to human health benefits, probiotics can improve various aspects of growth and performance in livestock and poultry, as well as control undesirable microorganisms in food animals. Studies indicate that probiotics can prevent or treat certain conditions, including atopic disease in infants, food allergy, infection after surgery, acute diarrhea, and symptoms associated with irritable bowel syndrome. Understanding the complete mechanism, effectiveness, and potential use of probiotics is limited by the availability and sensitivity of current methods (i.e., culturing techniques). In recent years, real-time polymerase chain reaction (PCR) and microarrays have become prominent and promising methods to examine quantitative changes of specific members of the microbial community and the influence of probiotics on the structure and function of human and animal intestinal ecosystems. Culture-independent studies have established that only a fraction of organisms present in feces are cultivable, therefore, results obtained by cultivation are limited. Conversely, in-depth knowledge of microbial genomes has enabled real-time PCR and microarrays to be more sensitive and has resulted in precise methods for comprehensive analysis of the complex gut microbiota. Additionally, these technologies can assess the influence of intestinal microorganisms on host metabolism, nutrient status, and disease. This paper reviews method technologies and applications of real-time PCR and microarray assays as they relate to the effect and use of probiotics on the intestinal microbiota and gastrointestinal disease.  相似文献   

5.
Avian proteomics: advances, challenges and new technologies   总被引:1,自引:0,他引:1  
Proteomics is defined as an analysis of the full complement of proteins of a cell or tissue under given conditions. Avian proteomics, or more specifically chicken proteomics, has focussed on the study of individual tissues and organs of interest to specific researchers. Researchers have looked at skeletal muscle and growth, and embryonic development and have performed initial studies in avian disease. Traditional proteomics involves identifying and cataloguing proteins in a cell and identifying relative changes in populations between two or more states, be that physiological or disease-induced states. Recent advances in proteomic technologies have included absolute quantification, proteome simplification and the ability to determine the turnover of individual proteins in a global context. This review discusses the current developments in this relatively new field, new technologies and how they may be applied to biological questions, and the challenges faced by researchers in this ever-expanding and exciting field.  相似文献   

6.
Oxidized and chlorinated phospholipids are generated under inflammatory conditions and are increasingly understood to play important roles in diseases involving oxidative stress. MS is a sensitive and informative technique for monitoring phospholipid oxidation that can provide structural information and simultaneously detect a wide variety of oxidation products, including chain-shortened and -chlorinated phospholipids. MSn technologies involve fragmentation of the compounds to yield diagnostic fragment ions and thus assist in identification. Advanced methods such as neutral loss and precursor ion scanning can facilitate the analysis of specific oxidation products in complex biological samples. This is essential for determining the contributions of different phospholipid oxidation products in disease. While many pro-inflammatory signalling effects of oxPLs (oxidized phospholipids) have been reported, it has more recently become clear that they can also have anti-inflammatory effects in conditions such as infection and endotoxaemia. In contrast with free radical-generated oxPLs, the signalling effects of chlorinated lipids are much less well understood, but they appear to demonstrate mainly pro-inflammatory effects. Specific analysis of oxidized and chlorinated lipids and the determination of their molecular effects are crucial to understanding their role in disease pathology.  相似文献   

7.
8.
Proteomics, analogous with genomics, is the analysis of the protein complement present in a cell, organ, or organism at any given time. While the genome provides information about the theoretical status of the cellular proteins, the proteome describes the actual content, which ultimately determines the phenotype. The broad application of proteomic technologies in basic science and clinical medicine has the potential to accelerate our understanding of the molecular mechanisms underlying disease and may facilitate the discovery of new drug targets and diagnostic disease markers. Proteomics is a rapidly developing and changing scientific discipline, and the last 5 yr have seen major advances in the underlying techniques as well as expansion into new applications. Core technologies for the separation of proteins and/or peptides are one- and two-dimensional gel electrophoresis and one- and two-dimensional liquid chromatography, and these are coupled almost exclusively with mass spectrometry. Proteomic studies have shown that the most effective analysis of even simple biological samples requires subfractionation and/or enrichment before protein identification by mass spectrometry. Selection of the appropriate technology or combination of technologies to match the biological questions is essential for maximum coverage of the selected subproteome and to ensure both the full interpretation and the downstream utility of the data. In this review, we describe the current technologies for proteome fractionation and separation of biological samples, based on our lab workflow for biomarker discovery and validation.  相似文献   

9.
Cotton and corn plants with insect resistance traits introduced through biotechnological methods and derived from the bacterium Bacillus thuringiensis (Bt) have been widely adopted since they were first introduced in 1996. Because of concerns about resistance evolving to these Bt crops, they have been released with associated IRM programs that employ multiple components and reflect the input of academic, industrial and regulatory experts. This paper summarizes the current status of Bt crop technologies in cotton and corn, the principles of IRM for Bt crops and what they mean for the design of IRM programs. It describes how these IRM programs have been implemented and some of the key factors affecting successful implementation. Finally, it suggests how they may evolve to properly steward these traits in different geographies around the world. The limited number of reported cases of resistance after more than 15 years of intensive global use of Bt crops suggest that this exercise has been broadly successful. Where resistance issues have been observed, they have been associated with first generation technologies and incomplete or compromised IRM programs (i.e., inadequate structured refuge). Next generation technologies with multiple pyramided modes of action, together with the implementation of IRM strategies that are more dependent upon manufacturing and less dependent upon grower behavior, such as seed mixes, should further enhance IRM programs for Bt crops.  相似文献   

10.
Reliable, precise and accurate estimates of disease severity are important for predicting yield loss, monitoring and forecasting epidemics, for assessing crop germplasm for disease resistance, and for understanding fundamental biological processes including co-evolution. Disease assessments that are inaccurate and/or imprecise might lead to faulty conclusions being drawn from the data, which in turn can lead to incorrect actions being taken in disease management decisions. Plant disease can be quantified in several different ways. This review considers plant disease severity assessment at the scale of individual plant parts or plants, and describes our current understanding of the sources and causes of assessment error, a better understanding of which is required before improvements can be targeted. The review also considers how these can be identified using various statistical tools. Indeed, great strides have been made in the last thirty years in identifying the sources of assessment error inherent to visual rating, and this review highlights ways that assessment errors can be reduced—particularly by training raters or using assessment aids. Lesion number in relation to area infected is known to influence accuracy and precision of visual estimates—the greater the number of lesions for a given area infected results in more overestimation. Furthermore, there is a widespread tendency to overestimate disease severity at low severities (<10%). Both interrater and intrarater reliability can be variable, particularly if training or rating aids are not used. During the last eighty years acceptable accuracy and precision of visual disease assessments have often been achieved using disease scales, particularly because of the time they allegedly save, and the ease with which they can be learned, but recent work suggests there can be some disadvantages to their use. This review considers new technologies that offer opportunity to assess disease with greater objectivity (reliability, precision, and accuracy). One of these, visible light photography and digital image analysis has been increasingly used over the last thirty years, as software has become more sophisticated and user-friendly. Indeed, some studies have produced very accurate estimates of disease using image analysis. In contrast, hyperspectral imagery is relatively recent and has not been widely applied in plant pathology. Nonetheless, it offers interesting and potentially discerning opportunities to assess disease. As plant disease assessment becomes better understood, it is against the backdrop of concepts of reliability, precision and accuracy (and agreement) in plant pathology and measurement science. This review briefly describes these concepts in relation to plant disease assessment. Various advantages and disadvantages of the different approaches to disease assessment are described. For each assessment method some future research priorities are identified that would be of value in better understanding the theory of disease assessment, as it applies to improving and fully realizing the potential of image analysis and hyperspectral imagery.  相似文献   

11.
Vaccination is the single most effective way to control viral diseases. However, many currently used vaccines have safety concerns, efficacy issues or production problems. For other viral pathogens, classic approaches to vaccine development have, thus far, been unsuccessful. Virus-like particles (VLPs) are increasingly being considered as vaccine candidates because they offer significant advantages over many currently used vaccines or developing vaccine technologies. VLPs formed with structural proteins of Newcastle disease virus, an avian paramyxovirus, are a potential vaccine candidate for Newcastle disease in poultry. More importantly, these VLPs are a novel, uniquely versatile VLP platform for the rapid construction of effective vaccine candidates for many human pathogens, including genetically complex viruses and viruses for which no vaccines currently exist.  相似文献   

12.
Numerous technologies have contributed to the recent development of landscape ecology, especially the geospatial technological advances constitute a revolution in landscape ecology. Extensive applications of geospatial technologies, such as fractal theory, geographic information systems (GIS) and remote sensing (RS) in landscape ecology research, suggest the necessity of such a review of research progress in this field. In this study, a brief introduction to fractal theory, GIS and RS and how they were applied in landscape ecology were provided first. Then, the current state-of-the-art was summarized and analyzed as reference for further promoting the development of landscape ecology science and its applications. Finally, opportunities and challenges of landscape ecology applications using these new technologies were discussed and concluded for future research. It was contended that a combination and integration of these technologies can substantially advance the study of landscape ecology for data acquisition, process modeling, scale transformation, result analysis and visualization. However, as no theoretical framework and application cases of applying an integration of fractal theory, GIS and RS techniques to landscape ecology research have been established, further studies are still much needed.  相似文献   

13.
In this review, we describe the synthesis, physical properties, surface functionalization, and biological applications of silicon nanoparticles (also known as quantum dots). We compare them against current technologies, such as fluorescent organic dyes and heavy metal chalcogenide-based quantum dots. In particular, we examine the many different methods that can be used to both create and modify these nanoparticles and the advantages they may have over current technologies that have stimulated research into designing silicon nanoparticles for in vitro and in vivo applications.  相似文献   

14.
The genetic and physiological similarities between mice and humans have focused considerable attention on rodents as potential models of human health and disease. Together with the wealth of resources, knowledge, and technologies surrounding the mouse as a model system, these similarities have propelled this species to the forefront of biomedical research. The advent of genomic manipulation has quickly led to the creation and use of genetically engineered mice as powerful tools for cutting edge studies of human disease research including the discovery, refinement, and utility of many currently available therapeutic regimes. In particular, the creation of genetically modified mice as models of human disease has remarkably changed our ability to understand the molecular mechanisms and cellular pathways underlying disease states. Moreover, the mouse models resulting from gene transfer technologies have been important components correlating an individual’s gene expression profile to the development of disease pathologies. The objective of this review is to provide physician-scientists with an expansive historical and logistical overview of the creation of mouse models of human disease through gene transfer technologies. Our expectation is that this will facilitate on-going disease research studies and may initiate new areas of translational research leading to enhanced patient care.  相似文献   

15.
Proteomics of breast carcinoma   总被引:10,自引:0,他引:10  
Beast cancer is the most diagnosed cancer in women, accounting for approximately 40,000 deaths annually in the USA. Significant advances have been made in the areas of detection and treatment, but a significant number of breast cancers are detected late. The advent of proteomics provides the hope of discovering novel biological markers that can be used for early detection, disease diagnosis, prognostication and prediction of response to therapy. Several proteomics technologies including 2D-PAGE, 2D-DIGE, ICAT, SELDI-TOF, MudPIT and protein arrays have been used to uncover molecular mechanisms associated with breast carcinoma at the global level, and a number of these technologies, particularly the SELDI-TOF hold promise as a proteomic approach that can be applied at the bedside for discovering protein patterns that distinguish disease and disease-free states with high sensitivity and specificity. Laser microdissection, a method for selection of homogenous cell populations, coupled to 2D-DIGE or MudPIT constitute a new proteomics-based paradigm for detecting disease in pathology specimens and monitoring disease response to therapy. This review describes proteomics technologies, and their application in the proteomic analysis of breast carcinoma.  相似文献   

16.
Dow LE  Lowe SW 《Cell》2012,148(6):1099-1109
Analyses of the human genome have proven extremely successful in identifying changes that contribute to human disease. Genetically engineered mice provide a powerful tool to analyze these changes, although they are slow and costly and do not always recapitulate human biology. Recent advances in genomic technologies, rodent-modeling approaches, and the production of patient-derived reprogrammed cell lines now provide a plethora of complementary systems to study disease states and test new therapies. Continued evolution and integration of these model systems will be the key to realizing the benefits of the genomic revolution and refining our understanding and treatment of human diseases.  相似文献   

17.
In this special section of BioTechniques, we examine the role of rapid molecular technologies in the detection and identification of agents of infectious disease (ID) and biological weapons (BWs). Besides the threat posed by the global proliferation of BW technologies, there are numerous emerging and reemerging ID agents with significant public health consequences. Further compounding this already complicated situation are the estimated 600 million international tourists annually, many with the potential to the spread disease globally in a matter of hours. While clinical laboratories have key roles in the detection and identification of potential ID/BW agents, most staff are unfamiliar with these agents because of their rarity and the often laborious conventional methodologies needed to identify them. To meet this challenge, a vast array of rapid assay strategies has been developed for use in clinical diagnostics and environmental detection. Technologies have been developed or adapted to the challenges posed by these agents, permitting detection and identification in several minutes to hours. In particular, the development of improved reagents and detection systems has led to dramatic improvements in the sensitivity and specificity of immunological and nucleic acid-based systems, allowing an ever-increasing range of analytes to be identified and quantitated. In the accompanying articles, we have brought together experts from the many overlapping aspects of this arena in order to present a comprehensive and critical analysis of these technologies.  相似文献   

18.
Diseases such as obesity, diabetes, and atherosclerosis result from multiple genetic and environmental factors, and importantly, interactions between genetic and environmental factors. Identifying susceptibility genes for these diseases using genetic and genomic technologies is accelerating, and the expectation over the next several years is that a number of genes will be identified for common diseases. However, the identification of single genes for disease has limited utility, given that diseases do not originate in complex systems from single gene changes. Further, the identification of single genes for disease may not lead directly to genes that can be targeted for therapeutic intervention. Therefore, uncovering single genes for disease in isolation of the broader network of molecular interactions in which they operate will generally limit the overall utility of such discoveries. Several integrative approaches have been developed and applied to reconstructing networks. Here we review several of these approaches that involve integrating genetic, expression, and clinical data to elucidate networks underlying disease. Networks reconstructed from these data provide a richer context in which to interpret associations between genes and disease. Therefore, these networks can lead to defining pathways underlying disease more objectively and to identifying biomarkers and more-robust points for therapeutic intervention.  相似文献   

19.
活体动物体内光学成像技术的研究进展   总被引:7,自引:2,他引:7  
张怡  韩彧  赵春林 《生命科学》2006,18(1):25-30
生物发光和荧光成像作为近年来新兴的活体动物体内光学成像技术,以其操作简便及直观性成为研究小动物活体成像的一种理想方法,在生命科学研究中得以不断发展。利用这种成像技术,可以直接实时观察标记的基因及细胞在活体动物体内的活动及反应。利用光学标记的转基因动物模型可以研究疾病的发生发展过程,进行药物研究及筛选等。本文综述了现有活体动物体内光学成像技术的原理、应用领域及发展前景,比较了生物发光与几种荧光技术的不同特点和应用。  相似文献   

20.
Methods of comparative proteomic profiling for disease diagnostics   总被引:4,自引:0,他引:4  
The recent development of numerous technologies for proteome analysis holds the promise of new and more precise methods for disease diagnosis. In this review, we provide an overview of some of these technologies including two-dimensional gel electrophoresis (2DE), historically the workhorse of proteomic analysis, as well as some newer approaches such as liquid phase separations combined with mass spectrometry, and protein microarrays. It is evident that each method has its own strengths and weaknesses and no single method will be optimal in all applications. However, the continuing development of innovative strategies for protein separation and analysis is providing a wealth of new tools for multi-dimensional protein profiling that will advance our capabilities in disease diagnostics and our understanding of disease pathology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号