首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Elucidation of the biochemical mechanisms by which specific proteins transduce the all important intracellular calcium (Ca2+) signal at fertilization into events of egg activation will increase our understanding of the regulation of the onset of development and the extent to which these signals can be experimentally modified. Previously, we reported data supporting the hypothesis that mouse eggs have the capability to generate oscillations of the activity of Ca2+ and calmodulin-dependent kinase II (CaMKII), regulating the cell cycle and secretion. This study directly demonstrates transient increases of enzyme activity in relatively close synchrony with Ca2+ oscillations for the first hour of fertilization in single mouse eggs monitored for both Ca2+ and CaMKII activity. The extent of the enzyme activity increase was correlated with the level of intracellular Ca2+. After a rise in activity, the decrease in activity did not appear to be due to negative feedback from elevated Ca2+ or CaMKII activity over time, since enzyme activity persisted after 8 min of elevated Ca2+ from 7% ethanol activation. The contribution of CaMKII from a single sperm to the rise in CaMKII activity at fertilization appeared to be negligible. Also, long-term cell cycle inhibition was observed in fertilized eggs with the CaMKII antagonist myrAIP (50 microM), which did not inhibit the first large Ca2+ transient or subsequent early oscillations but did reduce the percentage of eggs fertilized. Thus, mammalian eggs appear to drive many activation events over time to completion with repeated short bursts of Ca2+ oscillation-dependent CaMKII activity, rather than by a steady-state, continuously elevated level of CaMKII activity that is maintained by periodic Ca2+ oscillations.  相似文献   

2.
Mammalian eggs remain arrested at metaphase of the second meiotic division (metII) for an indeterminate time before fertilization. During this period, which can last several hours, the continued attachment of sister chromatids is thought to be achieved by inhibition of the protease separase. Separase is known to be inhibited by binding either securin or Maturation (M-Phase)-Promoting Factor, a heterodimer of CDK1/cyclin B1. However, the relative contribution of securin and CDK/cyclin B1 to sister chromatid attachment during metII arrest has not been assessed. Although there are conditions in which either CDK1/cyclinB1 activity or securin can prevent sister chromatid disjunction, principally by overexpression of non-degradable cyclin B1 or securin, we find here that separase activity is primarily regulated by securin and not CDK1/cyclin B1. Thus the CDK1 inhibitor roscovitine and an antibody we designed to block the interaction of CDK1/cyclin B1 with separase, both failed to induce sister disjunction. In contrast, securin morpholino knockdown specifically induced loss of sister attachment, that could be restored by securin cRNA rescue. During metII arrest separase appears primarily regulated by securin binding, not CDK1/cyclin B1.  相似文献   

3.
4.
Fertilization-induced intracellular calcium (Ca(2+)) oscillations stimulate the onset of mammalian development, and little is known about the biochemical mechanism by which these Ca(2+) signals are transduced into the events of egg activation. This study addresses the hypothesis that transient increases in Ca(2+) similar to those at fertilization stimulate oscillatory Ca(2+)/calmodulin-dependent kinase II (CaMKII) enzyme activity, incrementally driving the events of egg activation. Since groups of fertilized eggs normally oscillate asynchronously, synchronous oscillatory Ca(2+) signaling with a frequency similar to fertilization was experimentally induced in unfertilized mouse eggs by using ionomycin and manipulating extracellular calcium. Coanalysis of intracellular Ca(2+) levels and CaMKII activity in the same population of eggs demonstrated a rapid and transient enzyme response to each increase in Ca(2+). Enzyme activity increased 370% during the first Ca(2+) rise, representing about 60% of maximal activity, and had decreased to basal levels within 5 min from the time Ca(2+) reached its peak value. Single fertilized eggs monitored for Ca(2+) had a mean increase in CaMKII activity of 185%. One and two ionomycin-induced Ca(2+) transients resulted in 39 and 49% mean cortical granule (CG) loss, respectively, while CG exocytosis and resumption of meiosis were inhibited by a CaMKII antagonist. These studies demonstrate that changes in the level of Ca(2+) and in CaMKII activity can be studied in the same cell and that CaMKII activity is exquisitely sensitive to experimentally induced oscillations of Ca(2+) in vivo. The data support the hypothesis that CaMKII activity oscillates for a period of time after normal fertilization and temporally regulates many events of egg activation.  相似文献   

5.
CDK1-cyclin B1 is a universal cell cycle kinase required for mitotic/meiotic cell cycle entry and its activity needs to decline for mitotic/meiotic exit. During their maturation, mouse oocytes proceed through meiosis I and arrest at second meiotic metaphase with high CDK1-cyclin B1 activity. Meiotic arrest is achieved by the action of a cytostatic factor (CSF), which reduces cyclin B1 degradation. Meiotic arrest is broken by a Ca2+ signal from the sperm that accelerates it. Here we visualised degradation of cyclin B1::GFP in oocytes and found that its degradation rate was the same for both meiotic divisions. Ca2+ was the necessary and sufficient trigger for cyclin B1 destruction during meiosis II; but it played no role during meiosis I and furthermore could not accelerate cyclin B1 destruction during this time. The ability of Ca2+ to trigger cyclin B1 destruction developed in oocytes following a restabilisation of cyclin B1 levels at about 12 h of culture. This was independent of actual first polar body extrusion. Thus, in metaphase I arrested oocytes, Ca2+ would induce cyclin B1 destruction and the first polar body would be extruded. In contrast to some reports in lower species, we found no evidence that oocyte activation was associated with an increase in 26S proteasome activity. We therefore conclude that Ca2+ mediates cyclin B1 degradation by increasing the activity of an E3 ubiquitin ligase. However, this stimulation occurs only in the presence of the ubiquitin ligase inhibitor CSF. We propose a model in which Ca2+ directly stimulates destruction of CSF during mammalian fertilisation.  相似文献   

6.
Reviews in Developmental Biology have covered the pathways that generate the all-important intracellular calcium (Ca2+) signal at fertilization [Miyazaki, S., Shirakawa, H., Nakada, K., Honda, Y., 1993a. Essential role of the inositol 1,4,5-trisphosphate receptor/Ca2+ release channel in Ca2+ waves and Ca2+ oscillations at fertilization of mammalian eggs. Dev. Biol. 158, 62-78; Runft, L., Jaffe, L., Mehlmann, L., 2002. Egg activation at fertilization: where it all begins. Dev. Biol. 245, 237-254] and the different temporal responses of Ca2+ in many organisms [Stricker, S., 1999. Comparative biology of calcium signaling during fertilization and egg activation in animals. Dev. Biol. 211, 157-176]. Those reviews raise the importance of identifying how Ca2+ causes the events of egg activation (EEA) and to what extent these temporal Ca2+ responses encode developmental information. This review covers recent studies that have analyzed how these Ca2+ signals are interpreted by specific proteins, and how these proteins regulate various EEA responsible for the onset of development. Many of these proteins are protein kinases (CaMKII, PKC, MPF, MAPK, MLCK) whose activity is directly or indirectly regulated by Ca2+, and whose amount increases during late oocyte maturation. We cover biochemical progress in defining the signaling pathways between Ca2+ and the EEA, as well as discuss how oscillatory or multiple Ca2+ signals are likely to have specific advantages biochemically and/or developmentally. These emerging concepts are put into historical context, emphasizing that key contributions have come from many organisms. The intricate interdependence of Ca2+, Ca2+-dependent proteins, and the EEA raise many new questions for future investigations that will provide insight into the extent to which fertilization-associated signaling has long-range implications for development. In addition, answers to these questions should be beneficial to establishing parameters of egg quality for human and animal IVF, as well as improving egg activation protocols for somatic cell nuclear transfer to generate stem cells and save endangered species.  相似文献   

7.
Cell fusions have been used to determine the biological activity of the MPF complex in murine oocytes during their progression through anaphase and telophase to metaphase II. Oocytes (1) at metaphase I, (2) during the anaphase-telophase transition, or (3) at metaphase II were fused to germinal vesicle-staged (immature) oocytes. The hybrids were cultured for 1 h in the presence of db cAMP before fixation and nuclear evaluation. Metaphase I oocytes invariably induced germinal vesicle breakdown (GVBD) in the immature partner. By contrast, anaphase/telophase oocytes never induced GVBD in immature oocytes. The capacity to induce GVBD reappears after the formation of the second metaphase plate. In a second study, histone H1 kinase activity was measured during mouse oocyte maturation in single oocytes. H1 kinase activity was low in GV oocytes, increased sharply at MI, declined during anaphase and telophase and increased again at MII. After egg activation, H1 kinase activity was reduced to basal levels. These results provide direct evidence that a drop in activity of MPF in murine oocytes occurs concomitantly with the exit from metaphase I; MPF activity remains low until the cell re-enters metaphase.  相似文献   

8.
Inositol 1,4,5-trisphosphate generated by the action of a phospholipase C (PLC) mediates release of intracellular Ca2+ that is essential for sperm-induced activation of mammalian eggs. Much attention currently focuses on the role of sperm-derived PLCζ in generating changes in egg intracellular Ca2+ despite the fact that PLCζ constitutes a very small fraction of the total amount of PLC in a fertilized egg. Eggs express several isoforms of PLC, but a role for an egg-derived PLC in sperm-induced Ca2+ oscillations has not been examined. Reducing egg PLCβ1 by a transgenic RNAi approach resulted in a significant decrease in Ca2+ transient amplitude, but not duration or frequency, following insemination. Furthermore, overexpressing PLCβ1 by microinjecting a Plcb1 cRNA significantly perturbed the duration and frequency of Ca2+ transients and disrupted the characteristic shape of the first transient. These results provide the first evidence for a role of an egg-derived PLC acting in conjunction with a sperm-derived PLCζ in egg activation.  相似文献   

9.
Intracellular Ca2+ oscillations in fertilized mammalian eggs, the key signal that stimulates egg activation and early embryonic development, are regulated by inositol 1,4,5-trisphosphate (IP3) signaling pathway. We investigated temporal changes in intracellular IP3 concentration ([IP3]i) in mouse eggs, using a fluorescent probe based on fluorescence resonance energy transfer between two green fluorescent protein variants, during Ca2+ oscillations induced by fertilization or expression of phospholipase Czeta (PLCzeta), an egg-activating sperm factor candidate. Fluorescence measurements suggested the elevation of [IP3]i in fertilized eggs, and the enhancement of PLCzeta-mediated IP3 production by cytoplasmic Ca2+ was observed during Ca2+ oscillations or in response to CaCl2 microinjection. The results supported the view that PLCzeta is the sperm factor to stimulate IP3 pathway, and suggested that high Ca2+ sensitivity of PLCzeta activity and positive feedback from released Ca2+ are important for triggering and maintaining Ca2+ oscillations.  相似文献   

10.
Sperm entry in mammalian eggs initiates oscillations in the concentration of free calcium ([Ca(2+)](i)). In mouse eggs, oscillations start at metaphase II (MII) and conclude as the zygotes progress into interphase and commence pronuclear (PN) formation. The inositol 1,4,5-trisphosphate receptor (IP(3)R-1), which underlies the oscillations, undergoes degradation during this transition, suggesting that one or more of the eggs' Ca(2+)-releasing machinery components may be regulated in a cell cycle-dependent manner, thereby coordinating [Ca(2+)](i) responses with the cell cycle. To ascertain the site(s) of interaction, we initiated oscillations at different stages of the cell cycle in zygotes with different IP(3)R-1 mass. In addition to sperm, we used two other agonists: porcine sperm factor (pSF), which stimulates production of IP(3), and adenophostin A, a non-hydrolyzable analogue of IP(3). None of the agonists tested induced oscillations at interphase, suggesting that neither decreased IP(3)R-1 mass nor lack of production or excessive IP(3) degradation can account for the insensitivity to IP(3) at this stage. Moreover, the releasable Ca(2+) content of the stores did not change by interphase, but it did decrease by first mitosis. More importantly, experiments revealed that IP(3)R-1 sensitivity and possibly IP(3) binding were altered at interphase, and our data demonstrate stage-specific IP(3)R-1 phosphorylation by M-phase kinases. Accordingly, increasing the activity of M-phase kinases restored the oscillatory-permissive state in zygotes. We therefore propose that the restriction of oscillations in mouse zygotes to the metaphase stage may be coordinated at the level of IP(3)R-1 and that this involves cell cycle stage-specific receptor phosphorylation.  相似文献   

11.
Summary In some strains of mice, eggs when X irradiated during the pronuclear stage, undergo a mitotic block in the G2 phase of the first cell cycle and cleave when the second division takes place in controls. The importance of this effect varies considerably with the strain and depends exclusively on the maternal genotype. In previous work, two-dimensional electrophoresis showed that eggs blocked at the one-cell stage after irradiation, undergo the same modifications in polypeptide synthesis as two-cell controls of the same age, except at the time of normal first mitosis, where three polypeptide sets of 30, 35 and 45 kDa appear only in cleaving controls. In the present study, we have found phosphorylations in dividing controls, on polypeptides of 30, 35 and 45 kDa. These phosphorylations are not seen in blocked irradiated eggs.  相似文献   

12.
Short-term exposure to okadaic acid (OA), a specific inhibitor of protein phosphatases 1 and 2A, induced resumption of meiosis, including metaphase spindle formation, in mouse oocytes treated with a phosphodiesterase inhibitor, while long incubations with OA arrested oocyte maturation at a step prior to spindle formation. To explore the basis for this difference, the overall patterns of protein synthesis and phosphorylation and the production of tissue-type plasminogen activator (tPA), the synthesis of which is induced after germinal vesicle breakdown (GVBD), were analyzed under various OA treatments. Short-term exposure to OA led to tPA production and did not greatly affect the maturation-associated changes in protein phosphorylation. By contrast, a long application of OA did not result in tPA production and induced more marked changes in protein phosphorylation. Microinjection into prophase oocytes of the product of the fission yeast gene p13suc1, known to inhibit p34cdc2 kinase activation and/or activity, prevented meiotic reinitiation. This effect was overcome by microinjection of OA, at concentrations higher than those required for induction of maturation in the absence of p13suc1. These observations suggest that inhibition of phosphatase 1 or 2A or both triggers meiotic resumption by acting at the same site or at a site proximal to the p13suc1-sensitive step of cdc2 kinase activation.  相似文献   

13.
The effect of monocytes (MNs) on baseline SCEs and kinetics of human lymphocytes in plasma leukocyte (PLCs) and whole blood cultures (WBCs) was studied. Baseline SCEs in PLCs were nearly two-fold over WBCs. No differences in SCEs were observed between PLCs and MN-depleted PLCs, indicating that SCEs from PLCs are independent of MNs. MNs titration into PLCs decreased proportionally SCEs. Reconstitution of depleted PLCs with concentration of MNs equivalent or higher than those of PLC decreased SCEs. No variations of lymphocyte kinetics in PLCs were observed in the absence/presence of MNs. The proportion of B and T-cell subsets among interphasic lymphocytes were similar in PLC in the absence/presence of MNs, but a significant increase in the proportion of mitotic T8 lymphocytes was observed. Accordingly, MNs modulate both the in vitro basal SCEs and the mitotic activity of T8, but not their cell-cycle kinetics.  相似文献   

14.
Tumor necrosis factor (TNF-alpha) in various cell types induces either cell death or mitogenesis through different signaling pathways. In the present study, we determined in human corneal epithelial cells how TNF-alpha also promotes cell survival. Human corneal epithelial (HCE) cells were cultured in DMEM/F-12 medium containing 10% FBS. TNF-alpha stimulation induced activation of a voltage-gated K+ channel detected by measuring single channel activity using patch clamp techniques. The effect of TNF-alpha on downstream events included NFkappaB nuclear translocation and increases in DNA binding activities, but did not elicit ERK, JNK, or p38 limb signaling activation. TNF-alpha induced increases in p21 expression resulting in partial cell cycle attenuation in the G1 phase. Cell cycle progression was also mapped by flow cytometer analysis. Blockade of TNF-alpha-induced K+ channel activity effectively prevented NFkappaB nuclear translocation and binding to DNA, diminishing the cell-survival protective effect of TNF-alpha. In conclusion, TNF-alpha promotes survival of HCE cells through sequential stimulation of K+ channel and NFkappaB activities. This response to TNF-alpha is dependent on stimulating K+ channel activity because following suppression of K+ channel activity TNF-alpha failed to activate NFkappaB nuclear translocation and binding to nuclear DNA.  相似文献   

15.
The mechanism of development of mouse fertilized eggs from the one-cell stage to the two-cell stage remains unclear to date. In the present study, we have evaluated protein kinase C (PKC) and M-phase promoting factor (MPF) kinase activity in fertilized mouse eggs treated with a PKC modulator. PKC and MPF activity have similar activity. The two subunits of MPF, p34(cdc2) and cyclin B, were shown to be included in the substrates phosphorylated by PKC in fertilized mouse eggs, while PKC modulator affected the electrophoretic mobility shift of cdc2 and cdc25C by dephosphorylation and phosphorylation. These results clearly indicate that PKC may affect the progression of the cell cycle through post-translational modification of MPF activity.  相似文献   

16.
17.
L. Zhang  Y. Liu 《Theriogenology》2010,73(8):1096-1103
Brain-derived neurotrophic factor (BDNF) can promote developmental competence in mammalian oocytes during in vitro maturation, but the signal transduction pathways are not clear. In this study, we investigated (using western blots) the effects of BDNF on the phosphorylation of protein kinase B (PKB) and mitogen-activated protein kinase (MAPK) in mouse oocytes and cumulus cells cultured in vitro. Treatment with BDNF enhanced phosphorylation of PKB in oocytes at 2 h (P = 0.0006) and 3 h (P < 0.0001) of in vitro maturation, compared with control oocytes. However, the pan-specific tyrosine kinase (Trk) inhibitor K252a together with BDNF completely inhibited phosphorylation of PKB in the oocytes. Furthermore, BDNF increased phosphorylation of MAPK in oocytes at 16 h of in vitro maturation (P = 0.0041), but K252a together with BDNF did not reduce phosphorylation of MAPK in the oocytes. For cumulus cells, BDNF significantly prolonged the phosphorylation of PKB and MAPK and increased the total amounts of PKB and MAPK proteins after 16 h of in vitro maturation. However, BDNF did not affect apoptosis of the cumulus cells during oocyte maturation in vitro. In conclusion, the PKB pathway is likely to be one signaling cascade activated by BDNF in combination with the TrkB receptor, whereas the MAPK pathway is not involved. These findings may have relevance for BDNF-induced promotion of developmental capacity of in vitro-matured oocytes.  相似文献   

18.
19.
Vertebrate eggs arrest at second meiotic metaphase. The fertilizing sperm causes meiotic exit through Ca(2+)-mediated activation of the anaphase-promoting complex/cyclosome (APC/C). Although the loss in activity of the M-phase kinase CDK1 is known to be an essential downstream event of this process, the contribution of phosphatases to arrest and meiotic resumption is less apparent, especially in mammals. Therefore, we explored the role of protein phosphatase 2A (PP2A) in mouse eggs using pharmacological inhibition and activation as well as a functionally dominant-negative catalytic PP2A subunit (dn-PP2Ac-L199P) coupled with live cell imaging. We observed that PP2A inhibition using okadaic acid induced events normally observed at fertilization: degradation of the APC/C substrates cyclin B1 and securin resulting from loss of the APC/C inhibitor Emi2. Although sister chromatids separated, chromatin remained condensed, and polar body extrusion was blocked as a result of a rapid spindle disruption, which could be ameliorated by non-degradable cyclin B1, suggesting that spindle integrity was affected by CDK1 loss. Similar cell cycle effects to okadaic acid were also observed using dominant-negative PP2Ac. Preincubation of eggs with the PP2A activator FTY720 could block many of the actions of okadaic acid, including Emi2, cyclin B1, and securin degradation and sister chromatid separation. Therefore, in conclusion, we used okadaic acid, dn-PP2Ac-L199P, and FTY720 on mouse eggs to demonstrate that PP2A is needed to for both continued metaphase arrest and successful exit from meiosis.  相似文献   

20.
Sperm-egg interaction was investigated in mouse eggs freed from the zona pellucida and injected with Clostridium difficile toxin B, the inhibitor of Rho family small G proteins. Toxin B reduced in a dose-dependent manner the percentage of eggs associated with sperm fusion on the surface or sperm nucleus decondensation in the ooplasm, examined by injection of a DNA-staining dye into the egg and transfer of the dye to the fused sperm head after recording intracellular Ca(2+) responses for 100 min postinsemination. The mean number of decondensed sperm nuclei per egg was remarkably decreased by approximately 1 microg/ml toxin B in the ooplasm. This was because spermatozoa were arrested at the fusion state without developing to sperm incorporation and tended to lose cytoplasmic continuity to the egg. The fusion-arrested spermatozoa caused transient small Ca(2+) oscillations in most of eggs, while an injected spermatozoon produced repetitive large Ca(2+) spikes unaffected by toxin B. A decrease in the rate of fused spermatozoa and decondensed sperm nuclei was also caused by 20-40 microM cytochalasin D, the inhibitor of actin polymerization. Immunostaining of Rho proteins showed that Rac1 and RhoB are present in the cortical ooplasm, but Cdc42 is absent. Actin filaments in the cortex appeared to be reduced in toxin B-injected eggs. This study suggests that Rho protein(s) regulating actin-based cytoskeletal reorganization is involved in the process leading to sperm incorporation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号