首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Transgenic overexpression of G alpha(q) causes cardiac hypertrophy and depressed contractile responses to beta-adrenergic receptor agonists. The electrophysiological basis of the altered myocardial function was examined in left ventricular myocytes isolated from transgenic (G alpha(q)) mice. Action potential duration was significantly prolonged in G alpha(q) compared with nontransgenic (NTG) myocytes. The densities of inward rectifier K(+) currents, transient outward K(+) currents (I(to)), and Na(+)/Ca(2+) exchange currents were reduced in G alpha(q) myocytes. Consistent with functional measurements, Na(+)/Ca(2+) exchanger gene expression was reduced in G alpha(q) hearts. Kinetics or sensitivity of I(to) to 4-aminopyridine was unchanged, but 4-aminopyridine prolonged the action potential more in G alpha(q) myocytes. Isoproterenol increased L-type Ca(2+) currents (I(Ca)) in both groups, with a similar EC(50), but the maximal response in G alpha(q) myocytes was approximately 24% of that in NTG myocytes. In NTG myocytes, the maximal increase of I(Ca) with isoproterenol or forskolin was similar. In G alpha(q) myocytes, forskolin was more effective and enhanced I(Ca) up to approximately 55% of that in NTG myocytes. These results indicate that the changes in ionic currents and multiple defects in the beta-adrenergic receptor/Ca(2+) channel signaling pathway contribute to altered ventricular function in this model of cardiac hypertrophy.  相似文献   

2.
The alpha(1c) subunit of the cardiac L-type Ca(2+) channel, which contains the channel pore, voltage- and Ca(2+)-dependent gating structures, and drug binding sites, has been well studied in heterologous expression systems, but many aspects of L-type Ca(2+) channel behavior in intact cardiomyocytes remain poorly characterized. Here, we develop adenoviral constructs with E1, E3 and fiber gene deletions, to allow incorporation of full-length alpha(1c) gene cassettes into the adenovirus backbone. Wild-type (alpha(1c-wt)) and mutant (alpha(1c-D-)) Ca(2+) channel adenoviruses were constructed. The alpha(1c-D-) contained four point substitutions at amino acid residues known to be critical for dihydropyridine binding. Both alpha(1c-wt) and alpha(1c-D-) expressed robustly in A549 cells (peak L-type Ca(2+) current (I(CaL)) at 0 mV: alpha(1c-wt) -9.94+/-1.00pA/pF, n=9; alpha(1c-D-) -10.30pA/pF, n=12). I(CaL) carried by alpha(1c-D-) was markedly less sensitive to nitrendipine (IC(50) 17.1 microM) than alpha(1c-wt) (IC(50) 88 nM); a feature exploited to discriminate between engineered and native currents in transduced guinea-pig myocytes. 10 microM nitrendipine blocked only 51+/-5% (n=9) of I(CaL) in alpha(1c-D-)-expressing myocytes, in comparison to 86+/-8% (n=9) of I(CaL) in control myocytes. Moreover, in 20 microM nitrendipine, calcium transients could still be evoked in alpha(1c-D-)-transduced cells, but were largely blocked in control myocytes, indicating that the engineered channels were coupled to sarcoplasmic reticular Ca(2+) release. These alpha(1c) adenoviruses provide an unprecedented tool for structure-function studies of cardiac excitation-contraction coupling and L-type Ca(2+) channel regulation in the native myocyte background.  相似文献   

3.
Ca(2+) sparks are highly localized, transient releases of Ca(2+) from sarcoplasmic reticulum through ryanodine receptors (RyRs). In smooth muscle, Ca(2+) sparks trigger spontaneous transient outward currents (STOCs) by opening nearby clusters of large-conductance Ca(2+)-activated K(+) channels, and also gate Ca(2+)-activated Cl(-) (Cl((Ca))) channels to induce spontaneous transient inward currents (STICs). While the molecular mechanisms underlying the activation of STOCs by Ca(2+) sparks is well understood, little information is available on how Ca(2+) sparks activate STICs. In the present study, we investigated the spatial organization of RyRs and Cl((Ca)) channels in spark sites in airway myocytes from mouse. Ca(2+) sparks and STICs were simultaneously recorded, respectively, with high-speed, widefield digital microscopy and whole-cell patch-clamp. An image-based approach was applied to measure the Ca(2+) current underlying a Ca(2+) spark (I(Ca(spark))), with an appropriate correction for endogenous fixed Ca(2+) buffer, which was characterized by flash photolysis of NPEGTA. We found that I(Ca(spark)) rises to a peak in 9 ms and decays with a single exponential with a time constant of 12 ms, suggesting that Ca(2+) sparks result from the nonsimultaneous opening and closure of multiple RyRs. The onset of the STIC lags the onset of the I(Ca(spark)) by less than 3 ms, and its rising phase matches the duration of the I(Ca(spark)). We further determined that Cl((Ca)) channels on average are exposed to a [Ca(2+)] of 2.4 microM or greater during Ca(2+) sparks. The area of the plasma membrane reaching this level is <600 nm in radius, as revealed by the spatiotemporal profile of [Ca(2+)] produced by a reaction-diffusion simulation with measured I(Ca(spark)). Finally we estimated that the number of Cl((Ca)) channels localized in Ca(2+) spark sites could account for all the Cl((Ca)) channels in the entire cell. Taken together these results lead us to propose a model in which RyRs and Cl((Ca)) channels in Ca(2+) spark sites localize near to each other, and, moreover, Cl((Ca)) channels concentrate in an area with a radius of approximately 600 nm, where their density reaches as high as 300 channels/microm(2). This model reveals that Cl((Ca)) channels are tightly controlled by Ca(2+) sparks via local Ca(2+) signaling.  相似文献   

4.
μ-Calpain is a Ca(2+)-activated protease abundant in mammalian tissues. Here, we examined the effects of μ-calpain on three alternatively spliced variants of NCX1 using the giant, excised patch technique. Membrane patches from Xenopus oocytes expressing either heart (NCX1.1), kidney (NCX1.3), or brain (NCX1.4) variants of NCX1 were exposed to μ-calpain and their Na(+)-dependent (I(1)) and Ca(2+)-dependent (I(2)) regulatory phenotypes were assessed. For these exchangers, I(1) inactivation is evident as a Na(+)(i)-dependent decay of peak outward currents whereas I(2) regulation manifests as outward current activation by micromolar Ca(2+)(i) concentrations. Notably, with NCX1.1 and NCX1.4 but not in NCX1.3, higher Ca(2+)(i) levels alleviate I(1) inactivation. Our results show that (i) μ-calpain selectively ablates Ca(2+)-dependent (I(2)) regulation leading to a constitutive activation of exchange current, (ii) μ-calpain has much smaller effects on Na(+)-dependent (I(1)) regulation, produced by a slight destabilization of the I(1) state, and (iii) Ca(2+)-dependent regulation (I(2)) and Ca(2+)-mediated alleviation of I(1) appear to be functionally distinct mechanisms, the latter of which is left largely intact after μ-calpain treatment. The ability of μ-calpain to selectively and constitutively activate Na(+)-Ca(2+) exchange currents may have important pathophysiological implications in tissue where these splice variants are expressed.  相似文献   

5.
Using patch-clamp and calcium imaging techniques, we characterized the effects of ATP and histamine on human keratinocytes. In the HaCaT cell line, both receptor agonists induced a transient elevation of [Ca2+]i in a Ca(2+)-free medium followed by a secondary [Ca2+]i rise upon Ca2+ readmission due to store-operated calcium entry (SOCE). In voltage-clamped cells, agonists activated two kinetically distinct currents, which showed differing voltage dependences and were identified as Ca(2+)-activated (I(Cl(Ca))) and volume-regulated (I(Cl, swell)) chloride currents. NPPB and DIDS more efficiently inhibited I(Cl(Ca)) and I(Cl, swell), respectively. Cell swelling caused by hypotonic solution invariably activated I(Cl, swell) while regulatory volume decrease occurred in intact cells, as was found in flow cytometry experiments. The PLC inhibitor U-73122 blocked both agonist- and cell swelling-induced I(Cl, swell), while its inactive analogue U-73343 had no effect. I(Cl(Ca)) could be activated by cytoplasmic calcium increase due to thapsigargin (TG)-induced SOCE as well as by buffering [Ca2+]i in the pipette solution at 500 nM. In contrast, I(Cl, swell) could be directly activated by 1-oleoyl-2-acetyl-sn-glycerol (OAG), a cell-permeable DAG analogue, but neither by InsP3 infusion nor by the cytoplasmic calcium increase. PKC also had no role in its regulation. Agonists, OAG, and cell swelling induced I(Cl, swell) in a nonadditive manner, suggesting their convergence on a common pathway. I(Cl, swell) and I(Cl(Ca)) showed only a limited overlap (i.e., simultaneous activation), although various maneuvers were able to induce these currents sequentially in the same cell. TG-induced SOCE strongly potentiated I(Cl(Ca)), but abolished I(Cl, swell), thereby providing a clue for this paradox. Thus, we have established for the first time using a keratinocyte model that I(Cl, swell) can be physiologically activated under isotonic conditions by receptors coupled to the phosphoinositide pathway. These results also suggest a novel function for SOCE, which can operate as a "selection" switch between closely localized channels.  相似文献   

6.
We have used the whole cell configuration of the patch-clamp technique to measure sarcolemmal Ca(2+) transport by the Na(+)/Ca(2+) exchanger (NCX) and its contribution to the activation and relaxation of contraction in trout atrial myocytes. In contrast to mammals, cell shortening continued, increasing at membrane potentials above 0 mV in trout atrial myocytes. Furthermore, 5 microM nifedipine abolished L-type Ca(2+) current (I(Ca)) but only reduced cell shortening and the Ca(2+) carried by the tail current to 66 +/- 5 and 67 +/- 6% of the control value. Lowering of the pipette Na(+) concentration from 16 to 10 or 0 mM reduced Ca(2+) extrusion from the cell from 2.5 +/- 0.2 to 1.0 +/- 0.2 and 0.5 +/- 0.06 amol/pF. With 20 microM exchanger inhibitory peptide (XIP) in the patch pipette Ca(2+) extrusion 20 min after patch break was 39 +/- 8% of its initial value. With 16, 10, and 0 mM Na(+) in the pipette, the sarcoplasmic reticulum (SR) Ca(2+) content was 47 +/- 4, 29 +/- 6, and 10 +/- 3 amol/pF, respectively. Removal of Na(+) from or inclusion of 20 microM XIP in the pipette gradually eliminated the SR Ca(2+) content. Whereas I(Ca) was the same at -10 or +10 mV, Ca(2+) extrusion from the cell and the SR Ca(2+) content at -10 mV were 65 +/- 7 and 80 +/- 4% of that at +10 mV. The relative amount of Ca(2+) extruded by the NCX (about 55%) and taken up by the SR (about 45%) was, however, similar with depolarizations to -10 and +10 mV. We conclude that modulation of the NCX activity critically determines Ca(2+) entry and cell shortening in trout atrial myocytes. This is due to both an alteration of the transsarcolemmal Ca(2+) transport and a modulation of the SR Ca(2+) content.  相似文献   

7.
Calpain, a Ca(2+)-dependent cysteine protease, in vitro converts calcineurin (CaN) to constitutively active forms of 45 kDa and 48 kDa by cleaving the autoinhibitory domain of the 60 kDa subunit. In a mouse middle cerebral artery occlusion (MCAO) model, calpain converted the CaN A subunit to the constitutively active form with 48 kDa in vivo. We also confirmed increased Ca(2+)/CaM-independent CaN activity in brain extracts. The generation of constitutively active and Ca(2+)/CaM-independent activity of CaN peaked 2 h after reperfusion in brain extracts. Increased constitutively active CaN activity was associated with dephosphorylation of dopamine-regulated phosphoprotein-32 in the brain. Generation of constitutively active CaN was accompanied by translocation of nuclear factor of activated T-cells (NFAT) into nuclei of hippocampal CA1 pyramidal neurons. In addition, a novel calmodulin antagonist, DY-9760e, blocked the generation of constitutively active CaN by calpain, thereby inhibiting NFAT nuclear translocation. Together with previous studies indicating that NFAT plays a critical role in apoptosis, we propose that calpain-induced CaN activation in part mediates delayed neuronal death in brain ischemia.  相似文献   

8.
External divalent cations are known to play an important role in the function of voltage-gated ion channels. The purpose of this study was to examine the sensitivity of the voltage-gated K(+) currents of human atrial myocytes to external Ca(2+) ions. Myocytes were isolated by collagenase digestion of atrial appendages taken from patients undergoing coronary artery-bypass surgery. Currents were recorded from single isolated myocytes at 37 degrees C using the whole-cell patch-clamp technique. With 0.5 mM external Ca(2+), voltage pulses positive to -20 mV (holding potential = -60 mV) activated outward currents which very rapidly reached a peak (I(peak)) and subsequently inactivated (tau = 7.5 +/- 0.7 msec at +60 mV) to a sustained level, demonstrating the contribution of both rapidly inactivating transient (I(to1)) and non-inactivating sustained (I(so)) outward currents. The I(to1) component of I(peak), but not I(so), showed voltage-dependent inactivation using 100 msec prepulses (V(1/2) = -35.2 +/- 0.5 mV). The K(+) channel blocker, 4-aminopyridine (4-AP, 2 mM), inhibited I(to1) by approximately 76% and reduced I(so) by approximately 33%. Removal of external Ca(2+) had several effects: (i) I(peak) was reduced in a manner consistent with an approximately 13 mV shift to negative voltages in the voltage-dependent inactivation of I(to1). (ii) I(so) was increased over the entire voltage range and this was associated with an increase in a non-inactivating 4-AP-sensitive current. (iii) In 79% cells (11/14), a slowly inactivating component was revealed such that the time-dependent inactivation was described by a double exponential time course (tau(1) = 7.0 +/- 0.7, tau(2) = 90 +/- 21 msec at +60 mV) with no effect on the fast time constant. Removal of external Ca(2+) was associated with an additional component to the voltage-dependent inactivation of I(peak) and I(so) (V(1/2) = -20.5 +/- 1.5 mV). The slowly inactivating component was seen only in the absence of external Ca(2+) ions and was insensitive to 4-AP (2 mM). Experiments with Cs(+)-rich pipette solutions suggested that the Ca(2+)-sensitive currents were carried predominantly by K(+) ions. External Ca(2+) ions are important to voltage-gated K(+) channel function in human atrial myocytes and removal of external Ca(2+) ions affects I(to1) and 4-AP-sensitive I(so) in distinct ways.  相似文献   

9.
The aim of the present study was to provide a mechanistic insight into how phosphatase activity influences calcium-activated chloride channels in rabbit pulmonary artery myocytes. Calcium-dependent Cl- currents (I(ClCa)) were evoked by pipette solutions containing concentrations between 20 and 1000 nM Ca2+ and the calcium and voltage dependence was determined. Under control conditions with pipette solutions containing ATP and 500 nM Ca2+, I(ClCa) was evoked immediately upon membrane rupture but then exhibited marked rundown to approximately 20% of initial values. In contrast, when phosphorylation was prohibited by using pipette solutions containing adenosine 5'-(beta,gamma-imido)-triphosphate (AMP-PNP) or with ATP omitted, the rundown was severely impaired, and after 20 min dialysis, I(ClCa) was approximately 100% of initial levels. I(ClCa) recorded with AMP-PNP-containing pipette solutions were significantly larger than control currents and had faster kinetics at positive potentials and slower deactivation kinetics at negative potentials. The marked increase in I(ClCa) was due to a negative shift in the voltage dependence of activation and not due to an increase in the apparent binding affinity for Ca2+. Mathematical simulations were carried out based on gating schemes involving voltage-independent binding of three Ca2+, each binding step resulting in channel opening at fixed calcium but progressively greater "on" rates, and voltage-dependent closing steps ("off" rates). Our model reproduced well the Ca2+ and voltage dependence of I(ClCa) as well as its kinetic properties. The impact of global phosphorylation could be well mimicked by alterations in the magnitude, voltage dependence, and state of the gating variable of the channel closure rates. These data reveal that the phosphorylation status of the Ca2+-activated Cl- channel complex influences current generation dramatically through one or more critical voltage-dependent steps.  相似文献   

10.
The properties of several components of outward K(+) currents, including the pharmacological and kinetics profiles as well as the respective molecular correlates, have been identified in mouse cardiac myocytes. Surprisingly little is known with regard to the Ca(2+)-activated ionic currents. We studied the Ca(2+)-activated transient outward currents in mouse ventricular myocytes. We have identified a 4-aminopyridine (4-AP)- and tetraethyl ammonium-resistant transient outward current that is Ca(2+) dependent. The current is carried by Cl(-) and is critically dependent on Ca(2+) influx via voltage-gated Ca(2+) channels and the sarcoplasmic reticulum Ca(2+) store. The current can be blocked by the anion transport blockers niflumic acid and 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid. Single channel recordings reveal small conductance channels (approximately 1 pS in 140 mM Cl(-)) that can be blocked by anion transport blockers. Ensemble-averaged current faithfully mirrors the transient kinetics observed at the whole level. Niflumic acid (in the presence of 4-AP) leads to prolongation of the early repolarization. Thus this current may contribute to early repolarization of action potentials in mouse ventricular myocytes.  相似文献   

11.
T-wave alternans, characterized by a beat-to-beat change in T-wave morphology, amplitude, and/or polarity on the ECG, often heralds the development of lethal ventricular arrhythmias in patients with left ventricular hypertrophy (LVH). The aim of our study was to examine the ionic basis for a beat-to-beat change in ventricular repolarization in the setting of LVH. Transmembrane action potentials (APs) from epicardium and endocardium were recorded simultaneously, together with transmural ECG and contraction force, in arterially perfused rabbit left ventricular wedge preparation. APs and Ca(2+)-activated chloride current (I(Cl,Ca)) were recorded from left ventricular myocytes isolated from normal rabbits and those with renovascular LVH using the standard microelectrode and whole cell patch-clamping techniques, respectively. In the LVH rabbits, a significant beat-to-beat change in endocardial AP duration (APD) created beat-to-beat alteration in transmural voltage gradient that manifested as T-wave alternans on the ECG. Interestingly, contraction force alternated in an opposite phase ("out of phase") with APD. In the single myocytes of LVH rabbits, a significant beat-to-beat change in APD was also observed in both left ventricular endocardial and epicardial myocytes at various pacing rates. APD alternans was suppressed by adding 1 microM ryanodine, 100 microM 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), and 100 microM 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid (SITS). The density of the Ca(2+)-activated chloride currents (I(Cl,Ca)) in left ventricular myocytes was significantly greater in the LVH rabbits than in the normal group. Our data indicate that abnormal intracellular Ca(2+) fluctuation may exert a strong feedback on the membrane I(Cl,Ca), leading to a beat-to-beat change in the net repolarizing current that manifests as T-wave alternans on the ECG.  相似文献   

12.
Calcium-activated chloride channels (CaCCs) are crucial regulators of vascular tone by promoting a depolarizing influence on the resting membrane potential of vascular smooth muscle cells. However, the lack of a special blocker of CaCCs has limited the investigation of its functions for long time. Here, we report that CB is a novel potential blocker of I(Cl(Ca)) in rat pulmonary artery smooth muscle cells (PASMC). Cerebrosides (CB) were isolated from Baifuzi which is dried root tuber of the herb Typhonium giganteum Engl used for treatment of stroke in traditional medicine. Using the voltage-clamp technique, sustained Ca(2+)-activated Cl(-) current (I(Cl(Ca))) was evoked by a K(+)-free pipette solution containing 500nM Ca(2+) which exhibited typical outwardly rectifying and voltage-/time-dependence characterization. Data showed that CB played a distinct inhibitory role in modulating the CaCCs. Moreover, we investigated the kinetic effect of CB on I(Cl(Ca)) and found that it could slow the activation dynamics of the outward current, accelerate the decay of the inward tail current and change the time-dependence characterization. We conclude that CB is a novel potent blocker of CaCCs. The interaction between CB and CaCCs is discussed.  相似文献   

13.
Little is known of the excitatory mechanisms that contribute to the tonic contraction of the corpus cavernosum smooth muscle in the flaccid state. We used patch-clamp electrophysiology to investigate a previously unidentified inward current in freshly isolated rat and human corporal myocytes. Phenylephrine (PE) contracted cells and activated whole cell currents. Outward current was identified as large-conductance Ca(2+)-activated K(+) current. The inward current elicited by PE was dependent on the Cl(-) gradient and was inhibited by niflumic acid, indicative of a Ca(2+)-activated Cl(-) (Cl(Ca)) current. Furthermore, spontaneous transient outward and inward currents (STOCs and STICs, respectively) were identified in both rat and human corporal myocytes and derived from large-conductance Ca(2+)-activated K(+) and Cl(Ca) channel activity. STICs and STOCs were inhibited by PE and A-23187, and combined 8-bromoadenosine cAMP and 8-bromoadenosine cGMP decreased their frequency. When studied in vivo, chloride channel blockers transiently increased intracavernosal pressure and prolonged nerve-evoked erections. This report reveals for the first time Cl(Ca) current in rat and human corpus cavernosum smooth muscle cells and demonstrates its key functional role in the regulation of penile erection.  相似文献   

14.
The melastatin transient receptor potential (TRP) channel, TRPM4, is a critical regulator of smooth muscle membrane potential and arterial tone. Activation of the channel is Ca(2+)-dependent, but prolonged exposures to high global Ca(2+) causes rapid inactivation under conventional whole-cell patch clamp conditions. Using amphotericin B perforated whole cell patch clamp electrophysiology, which minimally disrupts cytosolic Ca(2+) dynamics, we recently showed that Ca(2+) released from 1,2,5-triphosphate receptors (IP(3)R) on the sarcoplasmic reticulum (SR) activates TRPM4 channels, producing sustained transient inward cation currents (TICCs). Thus, Ca(2+)-dependent inactivation of TRPM4 may not be inherent to the channel itself but rather is a result of the recording conditions. We hypothesized that under conventional whole-cell configurations, loss of intrinsic cytosolic Ca(2+) buffering following cell dialysis contributes to inactivation of TRPM4 channels. With the inclusion of the Ca(2+) buffers ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA, 10mM) or bis-ethane-N,N,N',N'-tetraacetic acid (BAPTA, 0.1mM) in the pipette solution, we mimic endogenous Ca(2+) buffering and record novel, sustained whole-cell TICC activity from freshly-isolated cerebral artery myocytes. Biophysical properties of TICCs recorded under perforated and whole-cell patch clamp were nearly identical. Furthermore, whole-cell TICC activity was reduced by the selective TRPM4 inhibitor, 9-phenanthrol, and by siRNA-mediated knockdown of TRPM4. When a higher concentration (10mM) of BAPTA was included in the pipette solution, TICC activity was disrupted, suggesting that TRPM4 channels on the plasma membrane and IP(3)R on the SR are closely opposed but not physically coupled, and that endogenous Ca(2+) buffer proteins play a critical role in maintaining TRPM4 channel activity in native cerebral artery smooth muscle cells.  相似文献   

15.
Zhou HY  Han CY  Wang XL 《生理学报》2006,58(2):136-140
心肌缺血损伤过程中,胞内Na^+、ATP及pH都出现明显变化。钠/钙交换对心肌细胞的钙平衡起重要的调节作用。本实验采用膜片钳全细胞记录豚鼠心室肌细胞钠/钙交换电流,研究温度和胞内Na^+、ATP及pH对钠/钙交换双向电流的影响。结果表明,温度从22℃升至34℃,钠/钙交换电流增大约4倍,而pH值的改变对钠/钙交换双向电流没有明显的影响。在22~24℃时,同时耗竭胞内ATP和胞内酸化对钠/钙交换双向转运功能影响程度小;而在34—37℃时,同时耗竭胞内ATP和胞内酸化能抑制钠/钙交换双向电流的外向和内向成分,且内向成分抑制程度高于外向成分抑制程度。表明同时耗竭胞内ATP和胞内酸化对钠/钙交换的作用具有温度依赖性。胞内Na^+超载能使钠/钙交换电流的外向成分增加,但不增加或减少内向电流(即正向转运)成分。因此,胞内酸化及耗竭胞内ATP损伤细胞排钙机制和胞内钠超载通过钠/钙反向交换引起钙内流是引起心肌细胞钙超载的两个独立的重要因素。  相似文献   

16.
The main purpose of this study was to characterize the stimulation of Ca(2+)-activated Cl(-) (Cl(Ca)) by store-operated Ca(2+) entry (SOCE) channels in rabbit pulmonary arterial smooth muscle cells (PASMCs) and determine if this process requires reverse-mode Na(+)/Ca(2+) exchange (NCX). In whole-cell voltage clamped PASMCs incubated with 1 μmol/L nifedipine (Nif) to inhibit Ca(2+) channels, 30 μmol/L cyclopiazonic acid (CPA), a SERCA pump inhibitor, activated a nonselective cation conductance permeable to Na(+) (I(SOC)) during an initial 1-3 s step, ranging from-120 to +60 mV, and Ca(2+)-activated Cl(-) current (I(Cl(Ca))) during a second step to +90 mV that increased with the level of the preceding hyperpolarizing step. Niflumic acid (100 μmol/L), a Cl(Ca) channel blocker, abolished I(Cl(Ca)) but had no effect on I(SOC), whereas the I(SOC) blocker SKF-96365 (50 μmol/L) suppressed both currents. Dual patch clamp and Fluo-4 fluorescence measurements revealed the appearance of CPA-induced Ca(2+) transients of increasing magnitude with increasing hyperpolarizing steps, which correlated with I(Cl(Ca)) amplitude. The absence of Ca(2+) transients at positive potentials following a hyperpolarizing step combined with the observation that SOCE-stimulated I(Cl(Ca)) was unaffected by the NCX blocker KB-R7943 (1 μmol/L) suggest that the SOCE/Cl(Ca) interaction does not require reverse-mode NCX in our conditions.  相似文献   

17.
We have recently compared the biophysical and pharmacological properties of native Ca(2+)-activated Cl(-) currents in murine portal vein with mCLCA1 channels cloned from murine portal vein myocytes (Britton, F. C., Ohya, S., Horowitz, B., and Greenwood, I. A. (2002) J. Physiol. (Lond.) 539, 107-117). These channels shared a similar relative permeability to various anions, but the expressed channel current lacked the marked time dependence of the native current. In addition, the expressed channel showed a lower Ca(2+) sensitivity than the native channel. As non-pore-forming regulatory beta-subunits alter the kinetics and increase the Ca(2+) sensitivity of Ca(2+)-dependent K(+) channels (BK channels) we investigated whether co-expression of beta-subunits with CLCA1 would alter the kinetics/Ca(2+) sensitivity of mCLCA1. Internal dialysis of human embryonic kidney cells stably expressing CLCA1 with 500 nM Ca(2+) evoked a significantly larger current when the beta-subunit KCNMB1 was co-expressed. In a small number of co-transfected cells marked time dependence to the activation kinetics was observed. Interaction studies using the mammalian two-hybrid technique demonstrated a physical association between CLCA1 and KCNMB1 when co-expressed in human embryonic kidney cells. These data suggest that activation of CLCA1 can be modified by accessory subunits.  相似文献   

18.
The bronchial vasculature plays an important role in airway physiology and pathophysiology. We investigated the ion currents in canine bronchial smooth muscle cells using patch-clamp techniques. Sustained outward K(+) current evoked by step depolarizations was significantly inhibited by tetraethylamonium (1 and 10 mM) or by charybdotoxin (10(-6) M) but was not significantly affected by 4-aminopyridine (1 or 5 mM), suggesting that it was primarily a Ca(2+)-activated K(+) current. Consistent with this, the K(+) current was markedly increased by raising external Ca(2+) to 4 mM but was decreased by nifedipine (10(-6) M) or by removing external Ca(2+). When K(+) currents were blocked (by Cs(+) in the pipette), step depolarizations evoked transient inward currents with characteristics of L-type Ca(2+) current as follows: 1) activation that was voltage dependent (threshold and maximal at -50 and -10 mV, respectively); 2) inactivation that was time dependent and voltage dependent (voltage causing 50% maximal inactivation of -26 +/- 22 mV); and 3) blockade by nifedipine (10(-6) M). The thromboxane mimetic U-46619 (10(-6) M) caused a marked augmentation of outward K(+) current (as did 10 mM caffeine) lasting only 10-20 s; this was followed by significant suppression of the K(+) current lasting several minutes. Phenylephrine (10(-4) M) also suppressed the K(+) current to a similar degree but did not cause the initial transient augmentation. None of these three agonists elicited inward current of any kind. We conclude that bronchial arterial smooth muscle expresses Ca(2+)-dependent K(+) channels and voltage-dependent Ca(2+) channels and that its excitation does not involve activation of Cl(-) channels.  相似文献   

19.
The current study provides biochemical and functional evidence that the targeting of protein kinase A (PKA) to sites of localized Ca(2+) release confers rapid, specific phosphoregulation of Ca(2+) signaling in pancreatic acinar cells. Regulatory control of Ca(2+) release by PKA-dependent phosphorylation of inositol 1,4, 5-trisphosphate (InsP(3)) receptors was investigated by monitoring Ca(2+) dynamics in pancreatic acinar cells evoked by the flash photolysis of caged InsP(3) prior to and following PKA activation. Ca(2+) dynamics were imaged with high temporal resolution by digital imaging and electrophysiological methods. The whole cell patch clamp technique was used to introduce caged compounds and to record the activity of a Ca(2+)-activated Cl(-) current. Photolysis of low concentrations of caged InsP(3) evoked Cl(-) currents that were inhibited by treatment with dibutryl-cAMP or forskolin. In contrast, PKA activators had no significant inhibitory effect on the activation of Cl(-) current evoked by uncaging Ca(2+) or by the photolytic release of higher concentrations of InsP(3). Treatment with Rp-adenosine-3',5'-cyclic monophoshorothioate, a selective inhibitor of PKA, or with Ht31, a peptide known to disrupt the targeting of PKA, largely abolished forskolin-induced inhibition of Ca(2+) release. Further evidence for the targeting of PKA to the sites of Ca(2+) mobilization was revealed using immunocytochemical methods demonstrating that the R(IIbeta) subunit of PKA was localized to the apical regions of acinar cells and co-immunoprecipitated with the type III but not the type I or type II InsP(3) receptors. Finally, we demonstrate that the pattern of signaling evoked by acetylcholine can be converted to one that is more "CCK-like" by raising cAMP levels. Our data provide a simple mechanism by which distinct oscillatory Ca(2+) patterns can be shaped.  相似文献   

20.
The effect of aging on cardiac membrane currents remains unclear. This study examined the inward rectifier K(+) current (I(K1)), the transient outward K(+) current (I(to)), and the L-type Ca(2+) channel current (I(Ca,L)) in ventricular myocytes isolated from young adult (6 mo) and aged (>27 mo) Fischer 344 rats using whole cell patch-clamp techniques. Along with an increase in the cell size and membrane capacitance, aged myocytes had the same magnitude of peak I(K1) with a greater slope conductance but displayed smaller steady-state I(K1). Aged myocytes also had a greater I(to) with an increased rate of activation, but the I(to) inactivation kinetics, steady-state inactivation, and responsiveness to L-phenylephrine, an alpha(1)-adrenergic agonist, were unaltered. The magnitude of peak I(Ca,L) in aged myocytes was decreased and accompanied by a slower inactivation, but the I(Ca,L) steady-state inactivation was unaltered. Action potential duration in aged myocytes was prolonged only at 90% of full repolarization (APD(90)) when compared with the action potential duration of young adult myocytes. Aged myocytes from Long-Evans rats showed similar changes in I(to) and I(Ca,L) but an increased I(K1). These results demonstrate aging-associated changes in action potential, in morphology, and in I(K1), I(to), and I(Ca,L) of rat ventricular myocytes that possibly contribute to the decreased cardiac function of aged hearts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号