首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 6 毫秒
1.
The effect of oryzalin (a specific inhibitor of tubulin polymerization in plant cells) on water retention by the leaves and roots of winter wheat (Triticum aestivum L.) seedlings was studied. The cultivars differing in their frost resistance were compared after their acclimation to low temperature (3°C for 3 or 7 days) and after treatment with ABA. In control untreated plants, oryzalin reduced the water-retaining capacity (WRC) of leaves and roots. Both hardening and ABA lowered the effect of the inhibitor on WRC in leaves, whereas their effects on water retention by roots were opposite, i.e., hardening weakened and ABA intensified the effect of oryzalin. Oryzalin-induced reduction of WRC decreased in the following sequence of cultivars: weakly frost resistant moderately frost resistant highly frost resistant. It was more pronounced in the leaves than in the roots, the latter being characterized by the lower WRC and lower frost resistance. After three-day-long hardening of plants, an additive effect of hypothermia and ABA on oryzalin-induced decrease in WRC of leaves and the lack of such effect in the roots were observed. The immunochemical analysis of the composition and content of cytoskeletal proteins with Western blotting showed that in the leaves the actin/tubulin ratio was higher than in the roots. The treatment of nonacclimated plants with ABA lowered the content of - and -tubulins and actin in roots but did not affect the level of actin in leaves. Hardening negated the effects of ABA on cytoskeletal proteins. Oryzalin produced the greatest inhibitory effect on WRC and an increase in frost resistance in ABA-treated plants in the experiments with leaves of the weakly frost resistant cultivar before and after hardening. Organ- and cultivar-specific and ABA-mediated dependence of WRC on cytoskeletal proteins and microtubules and microfilaments formed by them is supposed to result from their effect on the state of intracellular water and water permeability of the plasma membrane. In the course of cold acclimation of plants and upon their treatment with ABA, this dependence was more distinctly expressed in leaves than in roots, and especially in the plants of the weakly frost resistant cultivar.  相似文献   

2.
Thylakoids were isolated from nonhardened and cold-hardened winter rye (Secale cereale L. cv. Puma), and subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the presence and absence of sulfhydryl reagents. Electrophoresis of cold-hardened rye thylakoid proteins revealed the presence of a 35 kilodalton polypeptide and the absence of a 51 kilodalton polypeptide found in nonhardened rye thylakoid proteins. The 35 kilodalton band could be induced by adding β-mercaptoethanol to nonhardened rye thylakoid proteins, whereas the 51 kilodalton band could be formed by adding cupric phenanthroline to these same proteins. Sulfhydryl group titration showed that cold-hardened rye thylakoid proteins contained more free sulfhydryls than nonhardened rye proteins. Although amino acid analysis of thylakoid proteins revealed quantitative differences in several amino acid residues, the polarity of thylakoid proteins did not change during cold acclimation. No significant changes in sodium dodecyl sulfate-polyacrylamide gels of thylakoid proteins appeared when either nonhardened or cold-hardened plants were frozen in vivo or in vitro. However, thylakoid proteins did aggregate when frozen in the presence of β-mercaptoethanol. Although thylakoid proteins isolated from cold-hardened rye contained more reduced thiols, a general state of reduction did not act as a cryoprotectant. It is hypothesized that conformational changes of specific proteins may be important for low temperature growth of rye.  相似文献   

3.
The factors responsible for the low transpiration rates of citrus were investigated. Leaf resistance to water vapor exchange by orange seedlings (Citrus sinensis L. cv. Koethen) including a substantial boundary layer resistance, was as low as 1 s cm−1 in humid air. Leaf resistance of well watered plants increased to values as large as 5 s cm−1 when the difference in absolute humidity between leaf and air was increased. Leaf resistance was only slightly influenced by temperature between 20 and 30°C providing the humidity difference between leaf and air was kept constant. Leaf resistance increased when leaf temperature was increased between 20 and 30°C when the absolute humidity external to the leaf was kept constant. Increased humidity differences resulted in greater increases in leaf resistance during initial experiments than when the experiments were repeated with the same leaves indicating acclimation by the plant. It was concluded that the effects of humidity differences on leaf resistance are partially responsible for the low transpiration rates of citrus.  相似文献   

4.
During the first stage of hardening of winter rape plants (Brassica napus L. var. oleifera L., cv. Górczański), marked increase of ATP content in leaves was observed. Lowering the temperature from 5 to 0 C (the second stage of hardening) had no further effect on ATP content. In roots, not capable of hardening, pronounced decrease of ATP content was noted after prolonged exposure to cold. It was found that increased ATP content and higher energy charge in cold-treated leaves were due to light and dark processes.  相似文献   

5.
During cold acclimation of Puma rye (Secale cereale L. cv Puma), the intracellular osmotic potential nearly doubles. During this period, the accumulation of glycinebetaine, proline, and soluble sugars was monitored. The amount of glycinebetaine increased from 290 to 1300 micrograms per gram fresh weight during the 4-week acclimation period. Proline content did not change during the first 3 weeks of acclimation but then increased from 27 to 580 micrograms per gram fresh weight during the next 3 weeks. The total soluble sugar content more than doubled by the second week of cold acclimation, increasing from 11 to 26 milligrams per gram fresh weight. Most of this increase can be attributed to the accumulation of sucrose and raffinose, whose levels increased from 2.4 and 0 to 11 and 5 milligrams per gram fresh weight, respectively. The content of monosaccharides, predominantly glucose, remained at a constant 10 milligrams per gram fresh weight throughout the acclimation period. A comparison of the sugar content of protoplasts versus vacuoles isolated from cold-acclimated leaves revealed that the extravacuolar volume contained monosaccharides, sucrose, and raffinose. Thus, the increased amounts of sucrose and raffinose that occur during cold acclimation are present in compartments external to the vacuole and may contribute to cryoprotection.  相似文献   

6.
7.
The template activity of chromatin from winter wheat embryos gradually increased during germination and was regulated with some nonhistone proteins different from the two major ones, molecular weight 39k and 59k polypeptides, previously reported.  相似文献   

8.
9.
Changes in Soluble Proteins in Spring Wheat Stressed with Sodium Chloride   总被引:4,自引:0,他引:4  
Two newly developed salt-tolerant genotypes of spring wheat, S24 and S36 and their salt-tolerant parents, LU26S (from Pakistan) and Kharchia (from India) along with a salt-sensitive cv. Potohar were grown in full strength Hoagland's nutrient solution with 0 or 125 mM NaCl. At the onset of the booting stage third leaf from top was sampled for protein analysis. Total soluble protein content increased due to salt treatment in all cultivars/lines but this increase was more marked in salt-sensitive cv. Potohar and low in salt-tolerant S24 as compared with the other lines. Patterns of labelled polypeptides in all cultivars/lines were identical; the differences were only quantitative (for instance, 29 kD and 48 kD polypeptides were reduced significantly due to NaCl treatment only in the cv. Potohar). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Changes in the two-dimensional SDS-electrophoretic patterns of extracts of maturing denuded oocytes of the medaka ( Oryzias latipes ) were surveyed. In oocytes without follicular constituents several proteins became detectable in the area between the acidic and slightly basic proteins on the two-dimensional electrophoretograms, while a few of the protein spots disappeared during the process of oocyte maturation. The former proteins were detected also in oocytes that were induced to mature in vivo without breakdown of the germinal vesicle. Several proteins newly observed in extracts of post-vitellogenic oocytes during maturation after breakdown of the germinal vesicle were also identified by two-dimensional electrophoresis. Of several proteins that exhibited noticeable changes in maturing oocytes, only one spot incorporated 14C-labeled amino acid during maturation, suggesting that post-translational modification of many proteins occurred during oocyte maturation.  相似文献   

11.
Protein synthesis was studied in leaves, crown, and roots during cold hardening of freezing tolerant winter wheat (Triticum aestivum L. cv Fredrick and cv Norstar) and freezing sensitive spring wheat (T. aestivum L. cv Glenlea). The steady state and newly synthesized proteins, labeled with [35S]methionine, were resolved by one- and two-dimensional polyacrylamide gels. The results showed that cold hardening induced important changes in the soluble protein patterns depending upon the tissue and cultivar freezing tolerance. At least eight new proteins were induced in hardened tissues. A 200 kilodalton (kD) (isoelectric point [pl] 6.85) protein was induced concomitantly in the leaves, crown, and roots. Two proteins were specifically induced in the leaves (both 36 kD, pl 5.55 and 5.70); three in the crown with Mr 150 (pl 5.30), 45 (pl 5.75), and 44 kD (pl > 6.80); and two others in the roots with Mr 64 (pl 6.20) and 52 kD (pl 5.55). In addition, 19 other proteins were synthesized at a modified rate (increased or decreased) in the leaves, 18 in the crown and 23 in the roots. Among the proteins induced or increased in hardened tissues, some were expressed at a higher level in the freezing tolerant cultivars than in the sensitive one, indicating a correlation between the synthesis and accumulation of these proteins and the degree of freezing tolerance. These proteins, suggested to be freezing tolerance proteins, may have an important role in the cellular adaptation to freezing.  相似文献   

12.
Using plasma membranes with high purity isolated from winter rye seedlings (Secale cereale L. cv Puma) by an aqueous two-polymer phase partition technique, lipid and protein changes were determined during the development of cold hardiness.  相似文献   

13.
The effects of P deprivation on the two-dimensional electrophoreticpatterns of soluble proteins were evaluated in maize (Zea maysL.) leaves. P deprivation resulted in decreases in the relativeabundance of 11 of more than 450 polypeptides and increasesin that of 18 polypeptides. These changes are discussed in relationto leaf senescence. (Received March 23, 1995; Accepted June 30, 1995)  相似文献   

14.
Chromatin DNA-dependent RNA polymerases and RNases activities were measured in winter and spring varieties to understand the overall regulation of RNA synthesis during cold acclimation. We found that total RNA polymerase activities were significantly higher in chromatin isolated from winter wheat compared to the spring wheat during the acclimation period. This increase was parallel to the increase in protein and RNA contents during hardening. The ratio of RNA polymerase I to RNA polymerase II activity was higher than 2 in winter wheat after 30 days of hardening compared, to a ratio of 0.90 under the nonhardening conditions. The increase in activity and the ratio of polymerase I to polymerase II was maintained after the separation of the enzymes from the template, suggesting that RNA synthesis is regulated in part at the enzyme level. On the other hand, the chromatin associated RNase activity decreased in both varieties during acclimation, indicating a nonspecific inhibition caused by low temperature rather than a selective genetic response associated with cold acclimation.  相似文献   

15.
Highly enriched plasma membrane fractions were isolated from leaves of nonacclimated (NA) and acclimated (ACC) rye (Secale cereale L. cv Puma) seedlings. Collectively, free sterols, steryl glucosides, and acylated steryl glucosides constituted >50 mole% of the total lipid in both NA and ACC plasma membrane fractions. Glucocerebrosides containing hydroxy fatty acids constituted the major glycolipid class of the plasma membrane, accounting for 16 mole% of the total lipid. Phospholipids, primarily phosphatidylcholine and phosphatidylethanolamine with lesser amounts of phosphatidylglycerol, phosphatidic acid, phosphatidylserine, and phosphatidylinositol, comprised only 32 mole% of the total lipid in NA samples. Following cold acclimation, free sterols increased from 33 to 44 mole%, while steryl glucosides and acylated steryl glucosides decreased from 15 to 6 mole% and 4 to 1 mole%, respectively. Sterol analyses of these lipid classes demonstrated that free β-sitosterol increased from 21 to 32 mole% (accounting for the increase in free sterols as a class) at the expense of sterol derivatives containing β-sitosterol. Glucocerebrosides decreased from 16 to 7 mole% of the total lipid following cold acclimation. In addition, the relative proportions of associated hydroxy fatty acids, including 22:0 (h), 24:0 (h), 22:1 (h), and 24:1 (h), were altered. The phospholipid content of the plasma membrane fraction increased to 42 mole% of the total lipid following cold acclimation. Although the relative proportions of the individual phospholipids did not change appreciably after cold acclimation, there were substantial differences in the molecular species. Di-unsaturated molecular species (18:2/18:2, 18:2/18:3, 18:3/18:3) of phosphatidylcholine and phosphatidylethanolamine increased following acclimation. These results demonstrate that cold acclimation results in substantial changes in the lipid composition of the plasma membrane.  相似文献   

16.
During an early stage of cold acclimation, prominent changes in protein-synthetic activities were found to occur in the crown, which is the part where the stem joins the root of winter wheat (Triticum aestivum L. cv. Horoshirikomugi). This stage was complete within a week of cold treatment, and from the protein-synthetic activities, this stage of cold acclimation could be divided into four phases. First, when the plant seedlings were placed at 0°C, there was a lag period of 1d and no newly inducible proteins were formed during this time. During the second phase (1 to 2d), as the first response to cold, 16 new proteins were synthesized and the active synthesis of 6 preexisting proteins was reinitiated, while syntheses of at least 5 preexisting proteins were depressed. During the third phase (2 to 5d), the levels of most of the cold-inducible proteins reached a maximum, but synthesis of at least 6 preexisting proteins started to decrease. During the fourth phase (after 5d), the synthetic activities of the 6 proteins returned to the original levels and synthesis of another set of 3 new proteins started. During this phase, the synthesis of both protein fractions, the cold-inducible and the preexisting proteins, reached a steady state. After this period, no major changes in the protein profile could be detected. During the third phase, the most active synthesis of the cold-inducible proteins, in particular, proteins designated C10 (Mr 53k), C12a (Mr 46k), and C12b (Mr 46k), occurred, concurrent with the abrupt and transient decrease in the synthetic activities of a set of 6 preexisting proteins. These results suggest that, in addition to the induction of a set of new proteins, the preferential or selective synthesis of proteins required for accommodation to the cold environment takes place at an early stage of acclimation.  相似文献   

17.
Coleman EA  Bula RJ  Davis RL 《Plant physiology》1966,41(10):1681-1683,1685
Electrophoretic and immunological properties of the soluble root protein complement of 6 Medicago sativa L. genotypes in the cold hardened and non-hardened physiological condition were compared. These 6 genotypes were chosen to represent a range of abilities to survive exposure to subfreezing temperatures when in the cold hardened condition.  相似文献   

18.
HRGP在小麦抗寒锻炼过程中的变化及其与抗寒性的关系   总被引:8,自引:0,他引:8  
强抗寒小麦品种(R-025、中品94-19、品83-1、品83-2、品83-3、米罗诺夫808)经抗寒锻炼后,其幼苗体内的游离脯氨酸、细胞壁结合的羟脯氨酸和糖蛋白含量发生了明显的变化.游离脯氨酸含量比未经抗寒锻炼处理时增加5~32倍,细胞壁结合的羟脯氨酸含量比对照增加1.77~2.17倍,糖蛋白含量比对照增加4.68~9.72倍,而不抗寒小麦品种(中国春、冬103)增加量较小.脯氨酸积累进程各个品种间差异比较大,品83-1、品83-2积累较快,抗寒锻炼第21d时达到最高峰,而R-025在第56d达到最高峰.脯氨酸含量与小麦品种抗寒性相关不显著(相关系数为0.3462),而羟脯氨酸含量、糖蛋白含量与小麦品种抗寒性相关显著,相关系数分别为0.6491和0.7039.从小麦细胞壁纯化得到了2种伸展蛋白Extensm1和Ex-tensin2,其含量都和小麦品种抗寒性呈正相关.Extensin1是分子量为28kD、羟脯氨酸为主要成份(32mo1%)的富含羟脯氨酸糖蛋白.  相似文献   

19.
Lysin motif (LysM)-containing proteins (LYPs) are important pattern recognition receptors in plants. However, the evolutionary history and characteristics of LYP genes remain largely unclear in wheat. In this study, 62 LYPs were identified at genome wide in wheat. Based on phylogenetic and domain analysis, wheat LYPs were classified into 6 subgroups (group LysMe, LysMn, LYP, LYK, LysMFbox). Syntenic analysis showed the evolution of LYP genes in wheat. RNA-seq data showed that 22 genes were not expressed at any tissue or stress stimulation period. Some LYP and LYK genes were tissue- or stage- specific. The majority of TaLYK5s, TaLYK6s, TaLYP2s and TaLysMns genes were induced under chitin, flg22 and fungal treatment. qRT-PCR analysis showed that 4 genes were upregulated during Puccinia triticina infection with a peak at 18 h post inoculation. Our findings suggested that wheat LYPs may have specific roles in response to fungal infection and provided insights into the function and characteristics of wheat LYP genes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号