首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs) is well known to terminate cell signaling by sorting activated receptors to the MVB/lysosomal pathway. Here we identify a distinct role of Hrs in promoting rapid recycling of endocytosed signaling receptors to the plasma membrane. This function of Hrs is specific for receptors that recycle in a sequence-directed manner, in contrast to default recycling by bulk membrane flow, and is distinguishable in several ways from previously identified membrane-trafficking functions of Hrs/Vps27p. In particular, Hrs function in sequence-directed recycling does not require other mammalian Class E gene products involved in MVB/lysosomal sorting, nor is receptor ubiquitination required. Mutational studies suggest that the VHS domain of Hrs plays an important role in sequence-directed recycling. Disrupting Hrs-dependent recycling prevented functional resensitization of the beta(2)-adrenergic receptor, converting the temporal profile of cell signaling by this prototypic G protein-coupled receptor from sustained to transient. These studies identify a novel function of Hrs in a cargo-specific recycling mechanism, which is critical to controlling functional activity of the largest known family of signaling receptors.  相似文献   

2.
The beta(2)-adrenergic receptor and delta opioid receptor represent distinct G protein-coupled receptors that undergo agonist-induced endocytosis via clathrin-coated pits but differ significantly in their postendocytic sorting between recycling and degradative membrane pathways, respectively. Previous results indicate that a distal portion of the carboxyl-terminal cytoplasmic domain of the beta(2)-adrenergic receptor, which engages in PDZ domain-mediated protein interaction, is required for efficient recycling of receptors after agonist-induced endocytosis. Here we demonstrate that a four-residue sequence (DSLL) comprising the core of this protein interaction domain functions as a transplantable endocytic sorting signal that is sufficient to re-route endocytosed delta opioid receptor into a rapid recycling pathway, to inhibit proteolytic down-regulation of receptors, and to mediate receptor-autonomous sorting of mutant receptors from the wild type allele when co-expressed in the same cells. These observations define a transplantable signal mediating rapid recycling of a heterologous G protein-coupled receptor, and they suggest that rapid recycling of certain membrane proteins does not occur by bulk membrane flow but is instead mediated by a specific endocytic sorting mechanism.  相似文献   

3.
Phosphatidylinositol 3-kinase inhibitors have been shown to affect endocytosis or subsequent intracellular sorting in various receptor systems. Agonist-activated beta(2)-adrenergic receptors undergo desensitization by mechanisms that include the phosphorylation, endocytosis and degradation of receptors. Following endocytosis, most internalized receptors are sorted to the cell surface, but some proportion is sorted to lysosomes for degradation. It is not known what governs the ratio of receptors that recycle versus receptors that undergo degradation. To determine if phosphatidylinositol 3-kinases regulate beta(2)-adrenergic receptor trafficking, HEK293 cells stably expressing these receptors were treated with the phosphatidylinositol 3-kinase inhibitors LY294002 or wortmannin. We then studied agonist-induced receptor endocytosis and postendocytic sorting, including recycling and degradation of the internalized receptors. Both inhibitors amplified the internalization of receptors after exposure to the beta-agonist isoproterenol, which was attributable to the sorting of a significant fraction of receptors to an intracellular compartment from which receptor recycling did not occur. The initial rate of beta(2)-adrenergic receptor endocytosis and the default rate of receptor recycling were not significantly altered. During prolonged exposure to agonist, LY294002 slowed the degradation rate of beta(2)-adrenergic receptors and caused the accumulation of receptors within rab7-positive vesicles. These results suggest that phosphatidylinositol 3-kinase inhibitors (1) cause a misrouting of beta(2)-adrenergic receptors into vesicles that are neither able to efficiently recycle to the surface nor sort to lysosomes, and (2) delays the movement of receptors from late endosomes to lysosomes.  相似文献   

4.
Molecular sorting of G protein-coupled receptors (GPCRs) between divergent recycling and lysosomal pathways determines the functional consequences of agonist-induced endocytosis. The carboxyl-terminal cytoplasmic domain of the beta2 adrenergic receptor (beta2AR) mediates both PDZ binding to Na+/H+ exchanger regulatory factor/ezrin/radixin/moesin-binding phosphoprotein of 50 kDa (NHERF/EBP50) family proteins and non-PDZ binding to the N-ethylmaleimide-sensitive factor (NSF). We have investigated whether PDZ interaction(s) are actually sufficient to promote rapid recycling of endocytosed receptors and, if so, whether PDZ-mediated sorting is restricted to the beta2AR tail or to sequences that bind NHERF/EBP50. The trafficking effects of short (10 residue) sequences differing in PDZ and NSF binding properties were examined using chimeric mutant receptors. The recycling activity of the beta2AR-derived tail sequence was not blocked by a point mutation that selectively disrupts binding to NSF, and naturally occurring PDZ ligand sequences were identified that do not bind detectably to NSF yet function as strong recycling signals. The carboxyl-terminal cytoplasmic domain of the beta1-adrenergic receptor, which does not bind either to NSF or NHERF/EBP50 and interacts selectively with a distinct group of PDZ proteins, promoted rapid recycling of chimeric mutant receptors with efficiency similarly high as that of the beta2AR tail. These results indicate that PDZ domain-mediated protein interactions are sufficient to promote rapid recycling of GPCRs, independent of binding to NSF. They also suggest that PDZ-directed recycling is a rather general mechanism of GPCR regulation, which is not restricted to a single GPCR, and may involve additional PDZ domain-containing protein(s) besides NHERF/EBP50.  相似文献   

5.
We show that most of the internalized rat LH receptor is routed to a lysosomal degradation pathway whereas a substantial portion of the human LH receptor is routed to a recycling pathway. Chimeras of these two receptors identified a linear amino acid sequence (GTALL) present near the C terminus of the human LH receptor that, when grafted onto the rat LH receptor, redirects most of the rat LH receptor to a recycling pathway. Removal of the GTALL sequence from the human LH receptor failed to affect its routing, however. The GTALL sequence shows homology with the C-terminal tetrapeptide (DSLL) of the beta2-adrenergic receptor, a motif that has been reported to mediate the recycling of the internalized beta2-adrenergic receptor by binding to ezrin-radixin-moesin-binding phosphoprotein-50. Addition of the DSLL tetrapeptide to the C terminus of the rat LH receptor also redirects most of the internalized rat LH receptor to a recycling pathway but, like the recycling of the human LH receptor, this rerouting is not mediated by ezrin-radixin-moesin-binding phosphoprotein-50. We conclude that most of the internalized rat LH receptor is degraded because its C-terminal tail lacks motifs that promote recycling and that two distinct, but homologous, motifs (DSLL at the C terminus or GTALL near the C terminus) can reroute the internalized rat LH receptor to a recycling pathway that is independent of ezrin-radixin-moesin-binding phosphoprotein-50.  相似文献   

6.
A critical event determining the functional consequences of G protein-coupled receptor (GPCR) endocytosis is the molecular sorting of internalized receptors between divergent recycling and degradative membrane pathways. The D1 dopamine receptor recycles rapidly and efficiently to the plasma membrane after agonist-induced endocytosis and is remarkably resistant to proteolytic down-regulation. Whereas the mechanism mediating agonist-induced endocytosis of D1 receptors has been investigated in some detail, little is known about how receptors are sorted after endocytosis. We have identified a sequence present in the carboxyl-terminal cytoplasmic domain of the human D1 dopamine receptor that is specifically required for the efficient recycling of endocytosed receptors back to the plasma membrane. This sequence is distinct from previously identified membrane trafficking signals and is located in a proximal portion of the carboxyl-terminal cytoplasmic domain, in contrast to previously identified GPCR recycling signals present at the distal tip. Nevertheless, fusion of this sequence to the carboxyl terminus of a chimeric mutant delta opioid neuropeptide receptor is sufficient to re-route internalized receptors from lysosomal to recycling membrane pathways, defining this sequence as a bona fide endocytic recycling signal that can function in both proximal and distal locations. These results identify a novel sorting signal controlling the endocytic trafficking itinerary of a physiologically important dopamine receptor, provide the first example of such a sorting signal functioning in a proximal portion of the carboxyl-terminal cytoplasmic domain, and suggest the existence of a diverse array of sorting signals in the GPCR superfamily that mediate subtype-specific regulation of receptors via endocytic membrane trafficking.  相似文献   

7.
After endocytosis, some membrane proteins recycle from early endosomes to the plasma membrane whereas others are transported to late endosomes and lysosomes for degradation. Conjugation with the small polypeptide ubiquitin is a signal for lysosomal sorting. Here we show that the hepatocyte growth factor-regulated tyrosine kinase substrate, Hrs, is involved in the endosomal sorting of ubiquitinated membrane proteins. Hrs contains a clathrin-binding domain, and by electron microscopy we show that Hrs localizes to flat clathrin lattices on early endosomes. We demonstrate that Hrs binds directly to ubiquitin by way of a ubiquitin-interacting motif (UIM), and that ubiquitinated proteins localize specifically to Hrs- and clathrin-containing microdomains. Whereas endocytosed transferrin receptors fail to colocalize with Hrs and rapidly recycle to the cell surface, transferrin receptors that are fused to ubiquitin interact with Hrs, localize to Hrs- and clathrin-containing microdomains and are sorted to the degradative pathway. Overexpression of Hrs strongly and specifically inhibits recycling of ubiquitinated transferrin receptors by a mechanism that requires a functional UIM. We conclude that Hrs sorts ubiquitinated membrane proteins into clathrin-coated microdomains of early endosomes, thereby preventing their recycling to the cell surface.  相似文献   

8.
delta and micro opioid receptors are homologous G protein-coupled receptors that are differentially sorted between divergent degradative and recycling membrane pathways following agonist-induced endocytosis. Whereas delta opioid receptors are selectively sorted to lysosomes, micro opioid receptors recycle rapidly to the plasma membrane by a process that has been proposed to occur via bulk membrane flow. We have observed that micro opioid receptors do not recycle by default and have defined a specific sequence present in the cytoplasmic tail of the cloned micro opioid receptor that is both necessary and sufficient for rapid recycling of internalized receptors. This sequence is completely distinct from a sequence shown previously to be required for recycling of the beta2 adrenergic receptor yet is functionally interchangeable when tested in chimeric mutant receptors. These results indicate that signal-dependent recycling is a more common property of G protein-coupled receptors than previously appreciated and demonstrate that such a modular recycling signal distinguishes the regulation of homologous receptors that are naturally co-expressed.  相似文献   

9.
Many G protein-coupled receptors (GPCRs) recycle after agonist-induced endocytosis by a sequence-dependent mechanism, which is distinct from default membrane flow and remains poorly understood. Efficient recycling of the β2-adrenergic receptor (β2AR) requires a C-terminal PDZ (PSD-95/Discs Large/ZO-1) protein-binding determinant (PDZbd), an intact actin cytoskeleton, and is regulated by the endosomal protein Hrs (hepatocyte growth factor-regulated substrate). The PDZbd is thought to link receptors to actin through a series of protein interaction modules present in NHERF/EBP50 (Na+/H+ exchanger 3 regulatory factor/ezrin-binding phosphoprotein of 50 kDa) family and ERM (ezrin/radixin/moesin) family proteins. It is not known, however, if such actin connectivity is sufficient to recapitulate the natural features of sequence-dependent recycling. We addressed this question using a receptor fusion approach based on the sufficiency of the PDZbd to promote recycling when fused to a distinct GPCR, the δ-opioid receptor, which normally recycles inefficiently in HEK293 cells. Modular domains mediating actin connectivity promoted receptor recycling with similarly high efficiency as the PDZbd itself, and recycling promoted by all of the domains was actin-dependent. Regulation of receptor recycling by Hrs, however, was conferred only by the PDZbd and not by downstream interaction modules. These results suggest that actin connectivity is sufficient to mimic the core recycling activity of a GPCR-linked PDZbd but not its cellular regulation.G protein-coupled receptors (GPCRs)2 comprise the largest family of transmembrane signaling receptors expressed in animals and transduce a wide variety of physiological and pharmacological information. While these receptors share a common 7-transmembrane-spanning topology, structural differences between individual GPCR family members confer diverse functional and regulatory properties (1-4). A fundamental mechanism of GPCR regulation involves agonist-induced endocytosis of receptors via clathrin-coated pits (4). Regulated endocytosis can have multiple functional consequences, which are determined in part by the specificity with which internalized receptors traffic via divergent downstream membrane pathways (5-7).Trafficking of internalized GPCRs to lysosomes, a major pathway traversed by the δ-opioid receptor (δOR), contributes to proteolytic down-regulation of receptor number and produces a prolonged attenuation of subsequent cellular responsiveness to agonist (8, 9). Trafficking of internalized GPCRs via a rapid recycling pathway, a major route traversed by the β2-adrenergic receptor (β2AR), restores the complement of functional receptors present on the cell surface and promotes rapid recovery of cellular signaling responsiveness (6, 10, 11). When co-expressed in the same cells, the δOR and β2AR are efficiently sorted between these divergent downstream membrane pathways, highlighting the occurrence of specific molecular sorting of GPCRs after endocytosis (12).Recycling of various integral membrane proteins can occur by default, essentially by bulk membrane flow in the absence of lysosomal sorting determinants (13). There is increasing evidence that various GPCRs, such as the β2AR, require distinct cytoplasmic determinants to recycle efficiently (14). In addition to requiring a cytoplasmic sorting determinant, sequence-dependent recycling of the β2AR differs from default recycling in its dependence on an intact actin cytoskeleton and its regulation by the conserved endosomal sorting protein Hrs (hepatocyte growth factor receptor substrate) (11, 14). Compared with the present knowledge regarding protein complexes that mediate sorting of GPCRs to lysosomes (15, 16), however, relatively little is known about the biochemical basis of sequence-directed recycling or its regulation.The β2AR-derived recycling sequence conforms to a canonical PDZ (PSD-95/Discs Large/ZO-1) protein-binding determinant (henceforth called PDZbd), and PDZ-mediated protein association(s) with this sequence appear to be primarily responsible for its endocytic sorting activity (17-20). Fusion of this sequence to the cytoplasmic tail of the δOR effectively re-routes endocytic trafficking of engineered receptors from lysosomal to recycling pathways, establishing the sufficiency of the PDZbd to function as a transplantable sorting determinant (18). The β2AR-derived PDZbd binds with relatively high specificity to the NHERF/EBP50 family of PDZ proteins (21, 22). A well-established biochemical function of NHERF/EBP50 family proteins is to associate integral membrane proteins with actin-associated cytoskeletal elements. This is achieved through a series of protein-interaction modules linking NHERF/EBP50 family proteins to ERM (ezrin-radixin-moesin) family proteins and, in turn, to actin filaments (23-26). Such indirect actin connectivity is known to mediate other effects on plasma membrane organization and function (23), however, and NHERF/EBP50 family proteins can bind to additional proteins potentially important for endocytic trafficking of receptors (23, 25). Thus it remains unclear if actin connectivity is itself sufficient to promote sequence-directed recycling of GPCRs and, if so, if such connectivity recapitulates the normal cellular regulation of sequence-dependent recycling. In the present study, we took advantage of the modular nature of protein connectivity proposed to mediate β2AR recycling (24, 26), and extended the opioid receptor fusion strategy used successfully for identifying diverse recycling sequences in GPCRs (27-29), to address these fundamental questions.Here we show that the recycling activity of the β2AR-derived PDZbd can be effectively bypassed by linking receptors to ERM family proteins in the absence of the PDZbd itself. Further, we establish that the protein connectivity network can be further simplified by fusing receptors to an interaction module that binds directly to actin filaments. We found that bypassing the PDZ-mediated interaction using either domain is sufficient to mimic the ability of the PDZbd to promote efficient, actin-dependent recycling of receptors. Hrs-dependent regulation, however, which is characteristic of sequence-dependent recycling of wild-type receptors, was recapitulated only by the fused PDZbd and not by the proposed downstream interaction modules. These results support a relatively simple architecture of protein connectivity that is sufficient to mimic the core recycling activity of the β2AR-derived PDZbd, but not its characteristic cellular regulation. Given that an increasing number of GPCRs have been shown to bind PDZ proteins that typically link directly or indirectly to cytoskeletal elements (17, 27, 30-32), the present results also suggest that actin connectivity may represent a common biochemical principle underlying sequence-dependent recycling of various GPCRs.  相似文献   

10.
Type-specific sorting of G protein-coupled receptors after endocytosis   总被引:7,自引:0,他引:7  
The beta(2)-adrenergic receptor (B2AR) and delta-opioid receptor (DOR) are structurally distinct G protein-coupled receptors (GPCRs) that undergo rapid, agonist-induced internalization by clathrin-coated pits. We have observed that these receptors differ substantially in their membrane trafficking after endocytosis. B2AR expressed in stably transfected HEK293 cells exhibits negligible (<10%) down-regulation after continuous incubation of cells with agonist for 3 h, as assessed both by radioligand binding (to detect functional receptors) and immunoblotting (to detect total receptor protein). In contrast, DOR exhibits substantial (>/=50%) agonist-induced down-regulation when examined by similar means. Degradation of internalized DOR is sensitive to inhibitors of lysosomal proteolysis. Flow cytometric and surface biotinylation assays indicate that differential sorting of B2AR and DOR between distinct recycling and non-recycling pathways (respectively) can be detected within approximately 10 min after endocytosis, significantly before the onset of detectable proteolytic degradation of receptors ( approximately 60 min after endocytosis). Studies using pulsatile application of agonist suggest that after this sorting event occurs, later steps of membrane transport leading to lysosomal degradation of receptors do not require the continued presence of agonist in the culture medium. These observations establish that distinct GPCRs differ significantly in endocytic membrane trafficking after internalization by the same membrane mechanism, and they suggest a mechanism by which brief application of agonist can induce substantial down-regulation of receptors.  相似文献   

11.
The human endothelial vascular endothelial growth factor receptor 2 (VEGFR2/kinase domain region, KDR/fetal liver kinase-1, Flk-1) tyrosine kinase receptor is essential for VEGF-mediated physiological responses including endothelial cell proliferation, migration and survival. How VEGFR2 kinase activation and trafficking are co-coordinated in response to VEGF-A is not known. Here, we elucidate a mechanism for endothelial VEGFR2 response to VEGF-A dependent on constitutive endocytosis co-ordinated with ligand-activated ubiquitination and proteolysis. The selective VEGFR kinase inhibitor, SU5416, blocked the endosomal sorting required for VEGFR2 trafficking and degradation. Inhibition of VEGFR2 tyrosine kinase activity did not block plasma membrane internalization but led to endosomal accumulation. Lysosomal protease activity was required for ligand-stimulated VEGFR2 degradation. Activated VEGFR2 codistributed with the endosomal hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs)/signal-transducing adaptor molecule (STAM) complex in a ligand and time-dependent manner, implying a role for this factor in sorting of ubiquitinated VEGFR2. Increased tyrosine phosphorylation of the Hrs subunit in response to VEGF-A links VEGFR2 activation and Hrs/STAM function. In contrast, VEGFR2 in quiescent cells was present on both the endothelial plasma membrane and early endosomes, suggesting constitutive recycling between these two compartments. This pathway was clathrin-linked and dependent on the AP2 adaptor complex as the A23 tyrphostin inhibited VEGFR2 trafficking. We propose a mechanism whereby the transition of endothelial VEGFR2 from a constitutive recycling itinerary to a degradative pathway explains ligand-activated receptor degradation in endothelial cells. This study outlines a mechanism to control the VEGF-A-mediated response within the vascular system.  相似文献   

12.
Sustained activation of most G protein-coupled receptors causes a time-dependent reduction of receptor density in intact cells. This phenomenon, known as down-regulation, is believed to depend on a ligand-promoted change of receptor sorting from the default endosome-plasma membrane recycling pathway to the endosome-lysosome degradation pathway. This model is based on previous studies of epidermal growth factor (EGF) receptor degradation and implies that receptors need to be endocytosed to be down-regulated. In stable clones of L cells expressing beta(2)-adrenergic receptors (beta(2)ARs), sustained agonist treatment caused a time-dependant decrease in both beta(2)AR binding sites and immuno-detectable receptor. Blocking beta(2)AR endocytosis with chemical treatments or by expressing a dominant negative mutant of dynamin could not prevent this phenomenon. Specific blockers of the two main intracellular degradation pathways, lysosomal and proteasome-associated, were ineffective in preventing beta(2)AR down-regulation. Further evidence for an endocytosis-independent pathway of beta(2)AR down-regulation was provided by studies in A431 cells, a cell line expressing both endogenous beta(2)AR and EGF receptors. In these cells, inhibition of endocytosis and inactivation of the lysosomal degradation pathway did not block beta(2)AR down-regulation, whereas EGF degradation was inhibited. These data indicate that, contrary to what is currently postulated, receptor endocytosis is not a necessary prerequisite for beta(2)AR down-regulation and that the inactivation of beta(2)ARs, leading to a reduction in binding sites, may occur at the plasma membrane.  相似文献   

13.
For the beta(2)-adrenergic receptor (beta(2)AR), published evidence suggests that an intact actin cytoskeleton is required for the endocytosis of receptors and their proper sorting to the rapid recycling pathway. We have characterized the role of the actin cytoskeleton in the regulation of beta(2)AR trafficking in human embryonic kidney 293 (HEK293) cells using two distinct actin filament disrupting compounds, cytochalasin D and latrunculin B (LB). In cells pretreated with either drug, beta(2)AR internalization into transferrin-positive vesicles was not altered but both agents significantly decreased the rate at which beta(2)ARs recycled to the cell surface. In LB-treated cells, nonrecycled beta(2)ARs were localized to early embryonic antigen 1-positive endosomes and also accumulated in the recycling endosome (RE), but only a small fraction of receptors localized to LAMP-positive late endosomes and lysosomes. Treatment with LB also markedly enhanced the inhibitory effect of rab11 overexpression on receptor recycling. Dissociating receptors from actin by expression of the myosin Vb tail fragment resulted in missorting of beta(2)ARs to the RE, while the expression of various CART fragments or the depletion of actinin-4 had no detectable effect on beta(2)AR sorting. These results indicate that the actin cytoskeleton is required for the efficient recycling of beta(2)ARs, a process that likely is dependent on myosin Vb.  相似文献   

14.
Many signaling receptors require covalent modification by ubiquitin for agonist-induced down-regulation via endocytic trafficking to lysosomes, a process that is mediated by a conserved set of endosome-associating proteins also required for vacuolar protein-sorting (VPS) in yeast. The delta opioid receptor (DOR) is a G protein-coupled receptor that can undergo agonist-induced proteolysis via endocytic trafficking to lysosomes but does not require covalent modification by ubiquitin to do so. This raises the question of whether lysosomal down-regulation of this "ubiquitination-independent" GPCR is mediated by a completely distinct biochemical mechanism or if similar VPS machinery is involved. Agonist-induced proteolysis of DOR was significantly inhibited by dominant negative mutant versions of Vps4/Skd1, an AAA-family ATPase required for a late step in lysosomal sorting of ubiquitinated membrane cargo. Furthermore, overexpression and interfering RNA-mediated knockdown indicated that lysosomal trafficking of opioid receptors is also dependent on Hrs, a VPS protein that mediates an early step in lysosomal sorting of ubiquitinated cargo. However, interfering RNA-mediated knockdown of Tsg101, a VPS protein that is essential for an intermediate step of the conserved lysosomal sorting mechanism, did not detectably affect agonist-induced proteolysis of DOR in the same cells in which (ubiquitination-dependent) lysosomal trafficking of epidermal growth factor receptors was clearly inhibited. These results indicate that opioid receptors, despite their ability to undergo efficient agonist-induced trafficking to lysosomes in the absence of covalent modification by ubiquitin, utilize some (Vps4 and Hrs) but perhaps not all (Tsg101) of the VPS machinery required for lysosomal sorting of ubiquitinated membrane cargo.  相似文献   

15.
The keratinocyte growth factor receptor or fibroblast growth factor receptor 2b (KGFR/FGFR2b) is activated by the specific interaction with the keratinocyte growth factor (KGF/FGF7), which targets the receptor to the degradative pathway, and the fibroblast growth factor 10 (FGF10/KGF2), which drives the receptor to the juxtanuclear recycling route. Hrs plays a key role in the regulation of the endocytic degradative transport of ubiquitinated receptor tyrosine kinases, but the direct involvement of this protein in the regulation of FGFR endocytosis has not been investigated yet. We investigated here the possible role of Hrs in the alternative endocytic pathways of KGFR. Quantitative immunofluorescence microscopy and biochemical analysis showed that both overexpression and siRNA interference of Hrs inhibit the KGF-triggered KGFR degradation, blocking receptor transport to lysosomes and causing its rapid reapparance at the plasma membrane. In contrast, the FGF10-induced KGFR targeting to the recycling compartment is not affected by Hrs overexpression or depletion. Coimmunoprecipitation approaches indicated that Hrs is recruited to KGFR only after KGF treatment, although it is not tyrosine phosphorylated by the ligand. In conclusion, Hrs regulates the KGFR degradative pathway, but not its juxtanuclear recycling transport. In addition, the results suggest that Hrs recruitment to the receptor, but not its ligand-induced phosphorylation, could be required for its function.  相似文献   

16.
Epithelial Na+ absorption is regulated by Nedd4-2, an E3 ubiquitin ligase that reduces expression of the epithelial Na+ channel (ENaC) at the cell surface. Defects in this regulation cause Liddle syndrome, an inherited form of hypertension. Previous work found that Nedd4-2 functions through two distinct effects on trafficking, enhancing both ENaC endocytosis and ENaC degradation in lysosomes. To investigate the mechanism by which Nedd4-2 targets ENaC to lysosomes, we tested the role of hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs), a component of the endosomal sorting complexes required for transport (ESCRT)-0 complex. We found that α-, β-, and γENaC each interact with Hrs. These interactions were enhanced by Nedd4-2 and were dependent on the catalytic function of Nedd4-2 as well as its WW domains. Mutation of ENaC PY motifs, responsible for inherited hypertension (Liddle syndrome), decreased Hrs binding to ENaC. Moreover, binding of ENaC to Hrs was reduced by dexamethasone/serum- and glucocorticoid-inducible kinase and cAMP, which are signaling pathways that inhibit Nedd4-2. Nedd4-2 bound to Hrs and catalyzed Hrs ubiquitination but did not alter Hrs protein levels. Expression of a dominant negative Hrs lacking its ubiquitin-interacting motif (Hrs-ΔUIM) increased ENaC surface expression and current. This occurred through reduced degradation of the cell surface pool of proteolytically activated ENaC, which enhanced its recycling to the cell surface. In contrast, Hrs-ΔUIM had no effect on degradation of uncleaved inactive channels. The data support a model in which Nedd4-2 induces binding of ENaC to Hrs, which mediates the sorting decision between ENaC degradation and recycling.  相似文献   

17.
Liang W  Hoang Q  Clark RB  Fishman PH 《Biochemistry》2008,47(45):11750-11762
Agonist-mediated ubiquitination regulates some G protein-coupled receptors by targeting them to lysosomes for degradation. Phosphorylation also regulates receptor endocytosis and trafficking to lysosomes. To explore the roles of the two post-translational modifications, we mutated the three C-terminal lysines to arginines in the human beta 2-adrenergic receptor (beta 2AR) (K348/372/375R). The level of agonist-mediated ubiquitination of the mutant (3K/R) was greatly reduced compared to that of wild-type (WT) beta 2AR in whole cells and in cell-free assays. Downregulation of 3K/R also was attenuated compared to that of the WT, whereas internalization and recycling were more similar. During endocytosis, WT and 3K/R appeared in different vesicles and WT, but not 3K/R, was transported to lysosomes. Both were rapidly phosphorylated in agonist-stimulated cells, but upon agonist removal, the rate of dephosphorylation of 3K/R initially was approximately 5 times faster than that of WT. The increased rate also was observed in a cell-free, soluble assay and, thus, was not due to differences in receptor trafficking. Okadaic acid, a potent phosphatase inhibitor, reduced the level of dephosphorylation and increased the levels of lysosomal targeting and degradation of 3K/R. The reduced level of ubiquitination and rapid dephosphorylation of 3K/R appear to prevent it from being sorted to lysosomes in contrast to the phosphorylated and ubiquitinated WT beta 2AR. Our findings indicate that both phosphorylation and ubiquitination are involved in the intracellular sorting of beta 2AR between pathways of recycling to the plasma membrane and degradation in lysosomes, and that the rate of dephosphorylation may be another mechanism of regulating the sorting.  相似文献   

18.
The functional consequences of signaling receptor endocytosis are determined by the endosomal sorting of receptors between degradation and recycling pathways. How receptors recycle efficiently, in a sequence-dependent manner that is distinct from bulk membrane recycling, is not known. Here, in live cells, we visualize the sorting of a prototypical sequence-dependent recycling receptor, the beta-2 adrenergic receptor, from bulk recycling proteins and the degrading delta-opioid receptor. Our results reveal a remarkable diversity in recycling routes at the level of individual endosomes, and indicate that sequence-dependent recycling is an active process mediated by distinct endosomal subdomains distinct from those mediating bulk recycling. We identify a specialized subset of tubular microdomains on endosomes, stabilized by a highly localized but dynamic actin machinery, that mediate this sorting, and provide evidence that these actin-stabilized domains provide the physical basis for a two-step kinetic and affinity-based model for protein sorting into the sequence-dependent recycling pathway.  相似文献   

19.
Cell surface receptor proteins that have undergone endocytosis are transported to the endosome. From the endosome, ligand-activated receptor tyrosine kinases are further transported to the lysosome for degradation, a process called "receptor downregulation." By contrast, nutrient receptors, such as those for low-density lipoprotein and transferrin, are recycled back to the plasma membrane. Sorting of these two types of receptors occurs at the endosome, where ubiquitination of receptor proteins serves as the sorting signal. Namely, ubiquitinated receptors are incorporated into the lysosomal degradation pathway, whereas those that are not ubiquitinated are returned to the cell surface. Hrs and STAM are proteins that form a complex on the endosomal membrane. Recent studies have shown that the Hrs/STAM complex binds ubiquitin moieties and acts as sorting machinery that recognizes ubiquitinated receptors and transfers them to further sequential lysosomal sorting/trafficking processes.  相似文献   

20.
Heterotrimeric G proteins have been implicated in the regulation of membrane trafficking, but the mechanisms involved are not well understood. Here, we report that overexpression of the stimulatory G protein subunit (Galphas) promotes ligand-dependent degradation of epidermal growth factor (EGF) receptors and Texas Red EGF, and knock-down of Galphas expression by RNA interference (RNAi) delays receptor degradation. We also show that Galphas and its GTPase activating protein (GAP), RGS-PX1, interact with hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs), a critical component of the endosomal sorting machinery. Galphas coimmunoprecipitates with Hrs and binds Hrs in pull-down assays. By immunofluorescence, exogenously expressed Galphas colocalizes with myc-Hrs and GFP-RGS-PX1 on early endosomes, and expression of either Hrs or RGS-PX1 increases the localization of Galphas on endosomes. Furthermore, knock-down of both Hrs and Galphas by double RNAi causes greater inhibition of EGF receptor degradation than knock-down of either protein alone, suggesting that Galphas and Hrs have cooperative effects on regulating EGF receptor degradation. These observations define a novel regulatory role for Galphas in EGF receptor degradation and provide mechanistic insights into the function of Galphas in endocytic sorting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号