首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Ammonium nitrate solution applied to the leaves of sugar-beetincreased plant dry weight and uptake of nitrogen by the roots.Uptake of phosphorus by the roots of swedes, but not sugar-beet,grown with high phosphorus supply to the roots, was decreasedby applying sodium phosphate solution to the leaves; uptakefrom a lower phosphorus supply to the roots was unaffected.Phosphorus applied to the leaves had no effect on dry weight.Potassium uptake by the roots of sugar-beet plants grown withhigh potassium supply to the roots was unaffected by paintingthe leaves with a potassium chloride solution, that of plantswith an intermediate potassium supply was increased, and plantsgrown with a low supply to the roots absorbed almost all theavailable potassium so painting could not much increase uptakeby the roots. Application of potassium to the leaves increaseddry weight of plants with low or medium potassium supply tothe roots and did not affect that of plants with a high potassiumsupply. The top: root ratio for phosphorus content in mg. per plantwas greater for phosphorus absorbed via leaves than for phosphorusabsorbed via roots. Increasing the phosphorus supply to theroots increased this ratio for phosphorus absorbed either vialeaves or roots. Potassium absorbed by leaves was slightly more efficient inincreasing dry weight than potassium absorbed at the same timeby the root. A similar comparison was not possible for nitrogenor phosphorus. The results of these and previous experiments indicate thatall the nitrogen and potassium and over 80 per cent. of thephosphorus applied to leaves was absorbed. The small amountof phosphorus remaining unabsorbed on the surface of the leafwas unaffected by phosphorus supply to the root.  相似文献   

2.
3.
It is probable that one of the functions of potassium in theplant is to maintain the ionic balance of the cell, and it hasbeen suggested that in potassium deficiency, the productionof organic bases such as putrescine serves to balance an excessof organic acids which might occur under these conditions. Themechanism for the increase in activity of the enzymes in thepathway leading to the formation of putrescine in potassium-deficientbarley leaves was studied, therefore, by investigating the effectof artificially increasing the acidity by feeding inorganicacids to the roots of barley seedlings. Feeding hydrochloric acid caused significant increases in L-argininecarboxy-lase (arginine decarboxylase) and N-carbamylputrescineamidohydrolase activity in the leaves when expressed on thebasis of fresh weight, dry weight, total nitrogen, or proteinnitrogen, and a similar increase was induced on feeding sulphuricacid. Acid feeding did not cause a significant change in potassiumcontent on a dry-weight basis. The arginine, agmatine, and putrescinecontents were increased in the acid-fed leaves. The possibilitythat the increased arginine content in the acid-fed leaves ledto an increase in arginine decarboxylase by enzyme inductionwas investigated by feeding arginine through the roots to barleyseedlings. No increase in decarboxylase activity could be detected.  相似文献   

4.
Two sugar beet (Beta vulgaris L.) genotypes were cultivated at different K+/Na+ concentration in nutrient solutions (mM, 3/0 (control groups), 0.03/2.97 (K-Na replacement groups), and 0.03/0 (K deficiency groups)) to investigate the effects of potassium deficiency and replacement of potassium by sodium on plant growth and to explore how sodium can compensate for a lack of potassium. After 22 days of growth were determined: (i) dry weights of leaves, stems, and roots, (ii) the Na+ and K+ contents, (iii) MDA level, (iv) the activities of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX), and (v) the level of free amino acids. Potassium deficit inhibited plant growth, decreased the K+ content in leaves and roots, activated GPX and SOD, suppressed CAT activity, and increased the content of most amino acids. In K-Na replacement groups, the effects of K+ deficiency, including changes in the MDA level, antioxidant enzyme activities, and the level of free amino acids, were alleviated, but the degree of recovery did not reach the values characteristic for the control groups. Based on these results, we concluded that low potassium could lead to the inhibition of seedling growth, oxidative damage, and amino acid accumulation. While sodium was able to substitute potassium to a large extent, it cannot fulfil potassium fundamental role as an essential nutrient in sugar beet.  相似文献   

5.
Cadmium(Cd) stress induced alterations in the activities of several representatives of the enzymatic antioxidant defense system such as guiacol peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) were comparatively studied in green and greening barley seedlings that represent two different stages of plant development. Although roots were the main site of Cd accumulation, 1.5–3% of Cd was translocated into leaves and it induced oxidative damage which was indicated by the reduced chlorophyll and increased malondialdehyde content of the leaves. In roots of both types of seedlings exposed to various Cd concentrations, the APX activity was enhanced without any increase in the activity of POD. In leaves, however, elevated activities of both POD and APX could be observed. In roots of green seedlings at high concentration of Cd, the APX activity was reduced on the fourth day of culture but no inhibition was found in the POD activity. Leaf CAT which mainly represented the peroxisomal enzyme activity did not display any changes under Cd stress. Our results show that at both developmental stages barley seedlings exhibit a well-defined activity of the enzymatic antioxidant system, which operates differentially in roots and shoots subjected to Cd stress.  相似文献   

6.
Summary Experiment in water culture was conducted to evaluate the calcium deficiency symptoms and their cause inSolanum tuberosum L. var. Chandramukhi. Meristematic regions at stem and roots were severely affected and ultimately ceased to grow. Plants remained stunted with few and smaller tubers. Reducing sugar, non-reducing sugar and starch accumulated more in the leaves and stems and less in roots and tubers of calcium deficient plants. Deficiency caused decrease in protein nitrogen, RNA, DNA and increase in soluble nitrogen in all the plant parts. Potassium, phosphorus, calcium and sodium contents were lower and magnesium content higher in the deficient plant, than that of the healthy ones. Morphological symptoms of calcium deficiency can be established by ionic balance and accumulation of oxalic acid in potato plants.  相似文献   

7.
Summary Two experiments on cacao seedlings grown in sand culture are described, the first of which was concerned with variations in the levels of nitrogen, phosphorus, potassium, calcium, magnesium and sulfur (the macronutrient experiment) and the second dealing with variations in the levels of iron, copper, zinc, boron, manganese, and molybdenum (the micronutrient experiment).Many of the deficiency symptoms obtained were similar to those reported in the literature and they have not been described again. However, additional information is provided for symptoms of phosphorus, potassium, calcium, iron, manganese, copper, boron, and molybdenum deficiencies.The effects of all treatments on the dry weights of leaves, stems, and roots are presented. The effects of the macronutrient treatments on the levels of nitrogen, phosphorus, potassium, calcium, and magnesium in the leaves of eight month old plants and the effects of micronutrient treatments on the levels of nitrogen, phosphorus, potassium, calcium, magnesium, iron, manganese, copper, zinc, boron, molybdenum, sodium, and aluminium in the leaves of eleven-month-old plants are presented and discussed.  相似文献   

8.
Summary Decreases in the concentrations of nitrogen, phosphorus, potassium, calcium and magnesium, in the shoots of wheat seedlings soon after the start of waterlogging were mainly attributed to an inhibition of ion uptake and transport by roots in the oxygen deficient soil. There was a small net accumulation of nitrogen, phosphorus and potassium by the aerial tissues, principally the tillers rather than the main shoot. By contrast, calcium and magnesium accumulated in both tillers and main shoot. With waterlogging, nitrogen, phosphorus and potassium were translocated from the older leaves to the younger growing leaves, and in the case of nitrogen this was associated with the onset of premature senescence. Calcium and magnesium were not translocated from the older leaves, the younger leaves acquiring these cations from the waterlogged soil. The promotion of leaf senescence by waterlogging was counteracted by applications of nitrate or ammonium to the soil surface, or by spraying the shoots with solutions of urea, but the beneficial effects on shoot growth were small.The role of mineral nutrition in relation to waterlogging damage to young cereal plants is discussed.  相似文献   

9.
三峡库区不同林龄马尾松土壤养分与酶活性的关系   总被引:13,自引:2,他引:13  
基于对三峡库区不同林龄马尾松林下土壤养分和酶活性的测定及典范对应分析,探讨了不同林龄马尾松林土壤养分、酶活性特征及其相互关系.结果表明:马尾松林0 ~ 20 cm土壤有机质、总氮、铵态氮和有效磷含量均表现出成熟林>中龄林>近熟林;随着林龄的增加,土壤转化酶活性先降低后增加,纤维素酶、多酚氧化酶活性逐渐降低,而脲酶和过氧化物酶活性先增加后降低.经典范对应分析,不同林分中主要土壤养分对酶活性的影响顺序为总氮>有机质>pH>容重>铵态氮>有效磷,转化酶与土壤有机质、总氮、总磷呈显著正相关,过氧化物酶与有机质、总氮、总磷、容重呈显著负相关,土壤主要养分含量高,转化酶活性较高,过氧化物酶活性相对较低.转化酶、纤维素酶和过氧化物酶是评价土壤质量及肥力较好的生物学指标.  相似文献   

10.
The activity of enzymes participating in the systems of antioxidant protection was assayed in the second leaf and roots of 21-day-old wheat seedlings (Triticum aestivum L.) grown in a medium with nitrate (NO 3 treatment), ammonium (NH+ 4 treatment), or without nitrogen added (N-deficiency treatment). The activities of superoxide dismutase (SOD), peroxidase, ascorbate peroxidase, glutathione reductase, and catalase in the leaves and roots of the NH+ 4 plants was significantly higher than in the plants grown in the nitrate medium. The activity of SOD decreased and ascorbate peroxidase markedly increased in leaves, whereas the activity of ascorbate peroxidase increased in the roots of N-deficient plants, as compared to the plants grown in nitrate and ammonium. Low-temperature incubation (5°, 12 h) differentially affected the antioxidant activity of the studied plants. Whereas leaf enzyme activities did not change in the NH+ 4 plants, the activities of SOD, peroxidase, ascorbate peroxidase, and catalase markedly increased in the NO 3 plants. In leaves of the N-deficient plant, the activity of SOD decreased; however, the activity of other enzymes increased. In response to temperature decrease, catalase activity increased in the roots of NO 3 and NH+ 4-plants, whereas in the N-deficient plants, the activity of peroxidase increased. Thus, in wheat, both nitrogen form and nitrogen deficiency changed the time-course of antioxidant enzyme activities in response to low temperature.  相似文献   

11.
  • Being the principal product of photosynthesis, sucrose is involved in many metabolic processes in plants. As magnesium (Mg) is phloem mobile, an inverse relationship between Mg shortage and sugar accumulation in leaves is often observed.
  • Mg deficiency effects on carbohydrate contents and invertase activities were determined in Sulla carnosa Desf. Plants were grown hydroponically at different Mg concentrations (0.00, 0.01, 0.05 and 1.50 mM Mg) for one month.
  • Mineral analysis showed that Mg contents were drastically diminished in shoots and roots mainly at 0.01 and 0.00 mM Mg. This decline was adversely associated with a significant increase of sucrose, fructose and mainly glucose in shoots of plants exposed to severe deficiency. By contrast, sugar contents were severely reduced in roots of these plants indicating an alteration of carbohydrate partitioning between shoots and roots of Mg‐deficient plants. Cell wall invertase activity was highly enhanced in roots of Mg‐deficient plants, while the vacuolar invertase activity was reduced at 0.00 mM Mg. This decrease of vacuolar invertase activity may indicate the sensibility of roots to Mg starvation resulting from sucrose transport inhibition. 14CO2 labeling experiments were in accordance with these findings showing an inhibition of sucrose transport from source leaves to sink tissues (roots) under Mg depletion.
  • The obtained results confirm previous findings about Mg involvement in photosynthate loading into phloem and add new insights into mechanisms evolved by S. carnosa to cope with Mg shortage in particular the increase of the activity of cell wall invertase.
  相似文献   

12.
Regulation of carbohydrate metabolism and compartmentation were studied during the acclimatization of tissue cultured Calathea plantlets. At transplantation plants were characterised by a heterotrophic metabolism with roots and stems as the main storage organs for carbohydrates. As acclimatization proceeded, a switch to autotrophic growth was observed: leaves became source organs, which was among others reflected by significant increases of invertase, sucrose synthase and sucrose-P synthase activities. Mobilization of reserves in roots and stems was also observed during the same period. Sucrose and starch accumulation in leaves was positively correlated with increasing light intensity.  相似文献   

13.
The objective of the present study was to determine the influence of potassium deprivation on the halophyte species Hordeum maritimum grown in hydroponics for 2 weeks. Treatments were with potassium (+K) or without potassium (−K). Growth, water status, mineral nutrition, parameters of oxidative stress [malondialdehyde (MDA), carbonyl groups (C=O), and hydrogen peroxide concentration (H2O2) contents], antioxidant enzyme activities [superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), guaiacol peroxidase (GPX, EC 1.11.1.7), ascorbate peroxidase (APX, EC 1.11.1.11), monodehydroascorbate peroxidase (MDHAR, EC 1.6.5.4), dehydroascorbate peroxidase (DHAR, EC 1.8.5.1), and glutathione reductase (GR, EC 1.6.4.2)], and antioxidant molecules [ascorbate (ASC), and glutathione (GSH)] were determined. Results showed that the growth of vegetative organs decreased owing to potassium deficiency with roots (−36%) more affected than shoots (−12%). Water status was only diminished in roots (reduction of 24%). Potassium deprivation decreased potassium concentration in both organs, this decrease was more pronounced in roots (−81%) than in shoots (−55%). In contrast to carbonyl groups, MDA content increased owing to potassium deprivation. Except for CAT activity that remained unaffected; SOD, GPX, APX, GR, MDHAR, and DHAR activities were significantly increased. H2O2 concentration was negatively correlated with the activities of enzymes and the accumulation of non-enzymatic antioxidants implicated in its detoxification. In conclusion, a cooperative process between the antioxidant systems is important for the tolerance of H. maritimum to potassium deficiency.  相似文献   

14.
Activated oxygen species such as superoxide radicals, singlet oxygen, hydrogen peroxide and hydroxyl radicals can be produced in plants exposed to low, non-freezing, non-injurious temperatures. To prevent or alleviate oxidative injury, plants have evolved several mechanisms which include scavenging by natural antioxidants and enzymatic antioxidant systems such as superoxide dismutases, catalase and peroxidases. Although overproduction of hydrogen peroxide and increased tolerance to oxidative stress can be induced in wheat by low-temperature treatments, data concerning changes in the enzymatic antioxidant systems are almost absent. With the aim to provide this information, antioxidant enzyme (superoxide dismutases, catalase and peroxidases) activities were analysed in leaves and roots of Triticum aestivum cvs Brasilia (frost resistant in field) and Eridano (less frost resistant in field) seedlings grown at day/night temperatures of 24/22°C (control treatment) and 12/5°C (low-temperature treatment). Our data showed that superoxide dismutase activities were unaffected by low-temperature treatment both in leaves and roots. Catalase activity in leaves and roots was decreased in 12/5°C-grown seedlings, but Brasilia maintained higher catalase activity than Eridano. Differences were also observed in guaiacol peroxidase activities between control and acclimated seedlings: Higher guaiacol peroxidase activities were found in the leaves of 12/5°C-grown seedlings while in roots these activities were lower. Moreover, Brasilia guaiacol peroxidase activities were higher than Eridano. Superoxide dismutase and peroxidase zymogram analyses showed that synthesis of new isoforms was not induced by low-temperature treatment. Changes in the activities of antioxidant enzymes induced by cold acclimation support the hypothesis that a frost-resistant wheat cultivar, in comparison with a less frost-resistant one, maintains a better defence against activated oxygen species during low-temperature treatment.  相似文献   

15.
The present study was aimed at understanding the effects of long term supplemental UV-B (3.6 kJ m?2 d?1) on biomass production, accumulation of reactive oxygen species, lipid peroxidation, and enzymatic antioxidants in leaves and roots of Withania somnifera (an indigenous medicinal plant). Under the UV-B treatment, a reduction in biomass and an increased malondialdehyde content (a characteristic of lipid peroxidation) were observed in both the shoots and roots. Amongst ROS, H2O2 content increased under UV-B in the leaves, whereas it decreased in the roots, and superoxide radical production rate decreased in both the plant parts. The activities of all enzymatic antioxidants tested (ascorbate peroxidase, catalase, glutathione reductase, peroxidase, polyphenol oxidase, and superoxide dismutase) increased under the UV-B treatment, the increase being greater in the roots.  相似文献   

16.
Characterization of nodule growth and function, phosphorus and nitrogen status of plant tissues and host-plant growth of nodulated soybean ( Glycine max L. Merr.) plants developing and recovering from phosphorus deficiency was used to evaluate the role of phosphorus in symbiotic dinitrogen fixation. The sequence of physiological responses during recovery from phosphorus deficiency was; (1) rapid uptake of phosphorus, (2) rapid increases in the phosphorus concentration of leaves and nodules, (3) enhanced growth and function of nodules, (4) increased nitrogen concentrations in all plant organs and (5) enhanced plant growth. The sequence of physiological responses to onset of phosphorus deficiency was; (1) decreased phosphorus uptake, (2) decreased phosphorus concentrations in leaves and nodules, (3) decreased nodule function, (4) decreased nitrogen concentration in plant organs and (5) decreased plant growth. These results, in conjunction with previously published data (Sa and Israel, Plant Physiol. 97: 928–935, 1991), support an interpretation that the total response of symbiotic dinitrogen fixation in soybean plants to altered phosphorus supply is a function of both indirect effects on host-plant growth and more direct effects on the metabolic function of nodules.  相似文献   

17.
Potassium is actively involved in many functions such as enzyme activation, osmotic adjustment and uptake of deleterious ions like Na. Present report analyses the effectivity of different potassium salts on growth and certain components of nitrogen metabolism and antioxidant system in oat and their possible role in amelioration of water stress. Potassium induced enhancement in the activities of nitrate reductase and aminotransferases was evident indicating a positive role of potassium in nitrogen metabolism. Potassium supplementation enhanced activities of antioxidant enzymes (superoxide dismutase, catalase and ascorbate peroxidase) and contents of total phenols and tannins, probably strengthening both the enzymatic as well as non enzymatic antioxidant system. Free amino acids, proline and free sugars also exhibited the same trend in treated plants ensuring better plant growth.  相似文献   

18.
Plant root sensing and adaptation to changes in the nutrient status of soils is vital for long-term productivity and growth. Reactive oxygen species (ROS) have been shown to play a role in root response to potassium deprivation. To determine the role of ROS in plant response to nitrogen and phosphorus deficiency, studies were conducted using wild-type Arabidopsis and several root hair mutants. The expression of several nutrient-responsive genes was determined by Northern blot, and ROS were quantified and localized in roots. The monitored genes varied in intensity and timing of expression depending on which nutrient was deficient. In response to nutrient deprivation, ROS concentrations increased in specific regions of the Arabidopsis root. Changes in ROS localization in Arabidopsis and in a set of root hair mutants suggest that the root hair cells are important for response to nitrogen and potassium. In contrast, the response to phosphorus deprivation occurs in the cortex where an increase in ROS was measured. Based on these results, we put forward the hypothesis that root hair cells in Arabidopsis contain a sensing system for nitrogen and potassium deprivation.  相似文献   

19.
不同类型菌根菌对烟草幼苗生理代谢的影响   总被引:13,自引:2,他引:11  
在自然土壤中以VA菌根菌接种烟草幼苗,测得叶片中N、P、K、叶绿素含量,硝酸还原酶活性及蛋白质含量均高于对照;与对照相比,接种的幼苗中丙二醛(MDA)、过氧化氢(H2O2)含量减少,超氧物歧化酶(SOD)、过氧化氢酶(CAT)、过氧化物酶(POD)活性增加,同时以外生菌根菌两个菌株分别接种,与所测指标变化趋势相同,而且其中的Calvatia lilacina菌株超过VA菌根菌接种的效果。  相似文献   

20.
Salinity influences the agricultural production all over the world. This constrain, similar to others biotic and abiotic stresses generate the reactive oxygen species such as superoxide, hydrogen peroxide and hydroxyl radicals. In the evolution process of halophyte plants the mechanisms to detoxify ROS, such as antioxidant enzymes, have been developed. Aeluropus littoralis is a special halophyte that selected to our research, so the plants treated with NaCl at different salt concentration (0, 250, 450 and 650 mM) for a period 45 days. Leaves and roots (separately) collected and their proteins extracted for superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and peroxidase (POD) activity assay. Meanwhile the electrolyte leakage of leaves analyzed and increased at 450 and 650 mM of NaCl concentrations. Superoxide dismutase and catalase showed same pattern for changing in enzymatic activities (increasing activity by salt stress in roots and decreasing in shoot at 450 and 650 mM stress), also peroxidase and ascorbate peroxidase activity almost increased in all stress conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号