首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Extinction of breeds threatens genetic diversity of livestock species. The need to conserve genetic diversity is widely accepted but involves in general two questions: (i) is the expected loss of diversity in a set of breeds within a defined future time horizon large enough to establish a conservation plan, and if so (ii) which breeds should be prioritised for such a conservation plan? The present study uses a marker assisted methodology to address these questions. The methodology combines core set diversity measures with a stochastic method for the estimation of expected future diversity and breed marginal diversities. The latter is defined as the change in the total diversity of all breeds caused by a one unit decrease in extinction probability of a particular breed. The stochastic method was validated by means of simulations. A large field data set consisting of 44 North Eurasian cattle breeds was analysed using simplified determined extinction probabilities. The results show that the expected loss of diversity in this set within the next 20 to 50 years is between 1 and 3% of the actual diversity, provided that the extinction probabilities which were used are approximately valid. If this loss is to be reduced, it is sufficient to include those three to five breeds with the highest marginal diversity in a conservation scheme.  相似文献   

2.
Microsatellites or simple sequence repeats (SSRs) were used for the estimation of genetic diversity among a group of 40 sunflower lines developed at the research area of Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad. Total numbers of alleles amplified by 22 polymorphic primers were 135 with an average of 6.13 alleles per locus, suggesting that SSR is a powerful technique for assessment of genetic diversity at molecular level. The expected heterozygosity (PIC) ranged from 0.17 to 0.89. The highest PIC value was observed at the locus C1779. The genetic distances ranged from 9% to 37%. The highest genetic distance was observed between the lines L50 and V3. Genetic distances were low showing lesser amount of genetic diversity among the sunflower lines.  相似文献   

3.
The possible origin of beef contamination and genetic diversity of Escherichia coli populations in beef cattle, on carcasses and ground beef, was examined by using random amplification of polymorphic DNA (RAPD) and PCR-restriction fragment length polymorphism (PCR-RFLP) analysis of the fliC gene. E. coli was recovered from the feces of 10 beef cattle during pasture grazing and feedlot finishing and from hides, carcasses, and ground beef after slaughter. The 1,403 E. coli isolates (855 fecal, 320 hide, 153 carcass, and 75 ground beef) were grouped into 121 genetic subtypes by using the RAPD method. Some of the genetic subtypes in cattle feces were also recovered from hides, prechilled carcasses, chilled carcasses, and ground beef. E. coli genetic subtypes were shared among cattle at all sample times, but a number of transient types were unique to individual animals. The genetic diversity of the E. coli population changed over time within individual animals grazing on pasture and in the feedlot. Isolates from one animal (59 fecal, 30 hide, 19 carcass, and 12 ground beef) were characterized by the PCR-RFLP analysis of the fliC gene and were grouped into eight genotypes. There was good agreement between the results obtained with the RAPD and PCR-RFLP techniques. In conclusion, the E. coli contaminating meat can originate from cattle feces, and the E. coli population in beef cattle was highly diverse. Also, genetic subtypes can be shared among animals or can be unique to an animal, and they are constantly changing.  相似文献   

4.
This paper presents data on the distribution of 3 amplified fragment length polymorphisms (D1S80, APOB, and YNZ22) in 5 populations of Central India. Using the polymerase chain reaction technique, 3 caste (Brahmin, Khatri, and Dhimer) and 2 tribal (Gond and Baiga) populations were studied for the 3 loci. The allelic variations observed in the caste populations are compatible with those of many Caucasian populations, but the caste populations showed significant overall and interpopulation variability within the region. D1S80 allele *24 varied from 32% (Dhimers) to 42% (Brahmins). Allele *18 was not observed in Baiga tribal populations, but in caste populations it varied from 11% (Dhimers) to 24% (Brahmins). Both tribal populations showed higher frequencies of allele *31 (17%-18%). For APOB, caste populations again showed bimodal distribution of alleles *35 and *37, but in tribal populations higher allele numbers (*47, *49) were also frequent. For YNZ22, extensive variation was observed for all populations studied. Allele *4 was the most common in caste populations, while alleles *2, *7, and *10 were prominent in tribal populations. The level of gene differentiation is not very high for the 3 systems studied in the 5 populations. Overall, allele frequency distribution, heterozygosity, and genetic diversity analysis show that the genetic diversity observed is socially and geographically structured.  相似文献   

5.
Elucidation of genetic variability and genetic relationship among breeds has direct relevance with the issues of sustainable use of domestic animal genetic resources. In the present study, genetic polymorphism was evaluated using 22 microsatellite loci in unrelated samples of Red Kandhari and Deoni cattle breeds inhabiting the same geographical area of Marathwada region in Maharashtra state (western India). This work was mainly aimed at assessing the current genetic diversity to understand whether the two zebu populations in question are genetically differentiated. A total of 164 alleles were detected with an average of 5.82 and 5.86 alleles per locus (MNA) in Red Kandhari and Deoni breeds, respectively. The estimated mean observed (Ho) and expected (He) heterozygosity were 0.47 and 0.64 in Red Kandhari vs. 0.57 and 0.69 in Deoni cattle, respectively, demonstrating considerable level of genetic variation in both the populations. Mean estimates of F statistics were: F (FIT) = 0.315 +/- 0.035, f(FIS) = 0.231 +/- 0.031, theta(FST) = 0.110 +/- 0.022, with both the breeds exhibiting significant deficit of heterozygotes (FIS = 0.179 in Deoni; 0.278 in Red Kandhari). The multilocus FST values implied that 11.0% of the total genetic variation corresponds to breed and were statistically greater than zero for the two populations, suggesting population division. The evaluation of exact test also indicated that allele frequencies across all the loci differed significantly (P < 0.001) between two zebu breeds, further supporting population differentiation. Different genetic distance measures showed considerable levels of distances between the two cattle breeds (0.318 = Nei's standard DS; 0.250 = Nei's DA; 0.416 = Cavalli-Sforza and Edwards's Dc; 0.164 = Reynold's, and 2.64 = Delta mu square (dmicro)2. Bayesian statistical approach to assign each individual to the population also supported considerable differentiation between the two cattle breeds, possibly reflecting the limited gene flow between the two Marthwada cattle populations. The existence of cohesive breeding structure of both the breeds was further substantiated by allele-sharing distance measures (DAS) among individual animals. The results of this study thus revealed that the two Bos indicus breeds sharing the common breeding tracts are genetically differentiated enough as separate breeds.  相似文献   

6.
Estimation of genetic diversity in varieties of Mucuna pruriens using RAPD   总被引:1,自引:0,他引:1  
Genetic diversity was estimated in 13 accessions of the otherwise self pollinated Mucuna pruriens (L.) DC. (velvetbean) comprising varieties pruriens and utilis collected from tropical humid forest using 15 RAPD primers. Similarity index value of 0.68 based on Nei and Li's similarity coefficient indicated high degree of genetic variability. Analysis of various genetic diversity indices like total heterozygosity, Nei's gene diversity, percentage of polymorphic loci, expected and observed number of alleles and Shannon index strongly suggests that variety pruriens is genetically more diverse than variety utilis. Chemical analysis with respect to 3,4-dihydroxy-L-phenylalanine (L-DOPA) content showed uniform distribution. Cluster analysis showed grouping of accessions into two major clusters and tendency of accessions of variety pruriens to group according to their geographical locations. Bootstrap analysis confirmed the robustness of the phenogram. The putative hybrid MMP6 with relatively low similarity value index and low L-DOPA content was promising as food or fodder.  相似文献   

7.
Ethiopian cattle are under threat from uncontrolled mating practices and are at high risk of becoming genetically homogeneous. Therefore, to evaluate genetic diversity, population structure and degree of admixture, 30 microsatellite markers were genotyped using 351 DNA samples from 10 Ethiopian cattle populations and the Holstein breed. The mean number of alleles per cattle population ranged from 6.93 ± 2.12 in Sheko to 7.50 ± 2.35 in Adwa. The mean observed and expected heterozygosities were 0.674 ± 0.015 and 0.726 ± 0.019 respectively. Ethiopian cattle populations have maintained a high level of within-population genetic differentiation (98.7%), the remainder being accounted for by differentiation among populations (1.3%). A highly significant deficiency in heterozygotes was detected within populations ( F IS = 0.071; P  <   0.001) and total inbreeding ( F IT = 0.083; P  <   0.001). The study populations were highly admixed but distinct from pure Bos taurus and Bos indicus breeds. The various levels of admixture and high genetic diversity make Ethiopian cattle populations suitable for future genetic improvement and utilization under a wide range of agro-ecologies in Ethiopia.  相似文献   

8.
The quantitative assessment of genetic diversity within and between populations is important for decision-making in genetic conservation plans. In our study, we applied the livestock core set method to define the contribution of 15 cattle breeds, 11 of which are Portuguese indigenous cattle breeds, to genetic diversity. In livestock core set theory genetic diversity is defined as the maximum genetic variance that can be obtained in a random-mating population that is bred from the populations present in that core set. Two methods to estimate marker-estimated kinships to obtain the contributions to the core set were used in this study: the weighted log-linear model (WLM) and the weighted log-linear mixed model (WLMM). The breeds that contributed most to diversity in the core set were Holstein-Friesian followed by the Portuguese Mertolenga and Cachena for both WLM and WLMM methods. The ranking of relative contributions of cattle breeds was maintained when we considered only the Portuguese cattle breeds. Furthermore, we were able to identify the marginal contributions and respective losses of diversity for each of the 11 Portuguese cattle breeds when we considered a subset of populations that are not threatened of being lost (the Safe set composed of the four exotic breeds present in this study). When WLM was used losses in genetic diversity ranged from 2.68 to 0.65% while the loss in founder genome equivalents ranged from 37.37 to 8.43% for Mertolenga and Brava de Lide breeds respectively. When WLMM was used losses in genetic diversity and founder genome equivalents were less extreme than for the WLM method, ranging from 1.27 to 0.69 and 26.8 to 12.99 respectively.  相似文献   

9.
Body weight and body measurements are commonly used to represent growth and measured at several growth stages in beef cattle. Those economically important traits should be genetically improved. To achieve breeding programs, genetic parameters are prerequisite, as they are needed for designing and predicting outcomes of breeding programs, as well as estimating of breeding values. (Co)variance components were estimated for BW and body measurements on Brahman cattle born between 1990 and 2016 from 17 research herds across Thailand. The traits measured were BW, heart girth (GR), hip height (HH) and body length (BL) and were measured at birth, 200 days, 400 days and 600 days of age. The number of records varied between traits from 18 890 for birth BW to 876 for GR at 600 days. Estimation of variance components was performed using restricted maximum likelihood using univariate and multivariate animal models. Pre-weaning traits were influenced by genetic and/or permanent environmental effects of the dam, except for BL. Heritability estimates from birth to 600 days of age ranged from 0.28±0.01 to 0.50±0.06 for BW, 0.27±0.01 to 0.43±0.09 for GR, 0.28±0.01 to 0.58±0.08 for HH and 0.34±0.01 to 0.51±0.08 for BL using univariate analysis. Heritability estimates for the traits studied increased with age. A similar trend was observed for the phenotypic and genetic correlations between subsequent BW and body measurements. A positive correlation was observed between different traits measured at a similar age, ranging from 0.22±0.01 to 0.72±0.01 for the phenotypic correlation and 0.25±0.04 to 0.97±0.11 for the genetic correlation. Also, a positive correlation was observed for similar traits across different age classes ranging from 0.07±0.03 to 0.76±0.02 for the phenotypic correlation and 0.24±0.11 to 0.92±0.05 for the genetic correlation. Therefore, all correlations between body measurements at the same age and across age classes were positive. The results show the potential improvement of growth traits in Brahman cattle, and those traits can be improved simultaneously under the same breeding program.  相似文献   

10.
DNA fingerprinting exhibits multilocus genotypes of individuals, detected by the use of a single multilocus probe. Consequently, population data on DNA fingerprinting do not provide a complete characterization of the genetic variation in terms of allele-frequency distributions, since neither the number of loci nor the locus affiliation of alleles is directly observable. Yet DNA fingerprinting has been proved to be a cost-effective method of detecting hypervariable polymorphisms in several organisms, where the traditional loci fail to detect enough variation for microevolutionary studies. In the present paper we demonstrate that the above-mentioned features of DNA fingerprinting data do not cause any serious problem when they are used in evolutionary studies. Bias-corrected estimators of Nei's standard and minimum genetic distances are derived, and, by an application of this theory to data on seven short tandem repeat loci in three major human populations, it is shown that these modified measures of genetic distances based on DNA fingerprint patterns are quite close to Nei's distances based on locus-specific allele frequencies. Empirical as well as theoretical support of the adequacy of such genetic distances from DNA fingerprinting data is also discussed, and it indicates that the technical limitations of DNA fingerprinting should not deter the use of the method for short-term evolutionary studies.   相似文献   

11.
12.
Curcuma longa L., commonly known as turmeric, is one of the economically and medicinally important plant species. It is predominantly cultivated in the tropical and sub tropical countries. India is the largest producer, and exporter of turmeric in the world, followed by China, Indonesia, Bangladesh and Thailand. In the present study, Directed Amplification of Minisatellite DNA (DAMD) and Inter Simple Sequence Repeats (ISSR), methods were used to estimate the genetic variability in indigenous turmeric germplasm. Cumulative data analysis for DAMD (15) and ISSR (13) markers resulted into 478 fragments, out of which 392 fragments were polymorphic, revealing 82 % polymorphism across the turmeric genotypes. Wide range of pairwise genetic distances (0.03–0.59) across the genotypes revealed that these genotypes are genetically quite diverse. The UPGMA dendrogram generated using cumulative data showed significant relationships amongst the genotypes. All 29 genotypes studied grouped into two clusters irrespective of their geographical affiliations with 100 % bootstrap value except few genotypes, suggesting considerable diversity amongst the genotypes. These results suggested that the current collection of turmeric genotypes preserve the vast majority of natural variations. The results further demonstrate the efficiency and reliability of DAMD and ISSR markers in determining the genetic diversity and relationships among the indigenous turmeric germplasm. DAMD and ISSR profiling have identified diverse turmeric genotypes, which could be further utilized in various genetic improvement programmes including conventional as well as marker assisted breeding towards development of new and desirable turmeric genotypes.  相似文献   

13.
晋南牛瘤胃中古菌分子多样性的研究   总被引:2,自引:0,他引:2  
采用3对古菌特异性引物扩增瘤胃古菌16S rRNA基因分别建立克隆库来研究晋南牛瘤胃古菌的多样性.每个克隆库随机挑选100个克隆.引物Arch f364/1386建立的克隆库中,克隆分为四类,分别与四种甲烷短杆菌1Y(61%)、SM9(23%)、NT7(14%)和AK-87(2%)相似.引物1Af/1100Ar建立的克隆库中,克隆分为两类,分别与Methanobacterium aarhusense(72%)和Methanosphaera stadtmanae DSM 3091(28%)相似.引物Met86F/Met1340R建立的克隆库反映的古菌种类较为全面,除以上4种甲烷短杆菌(所占比例分别为47%、26%、11%和3%)外,还有Methanomicrobium mobile(2%)、以及类似Methanobacterium aarhusense(1%)和Methanosphaera stadtmanae(3%)的序列,还有7%的未匹配序列.系统进化分析表明,这些克隆属于Methanobrevibacter、Methanobacterium、Methanosphaera、Methanomicrobium,和未知广域古菌等5个分支.有25类属于广域古菌的未知序列,提示瘤胃中存在大量的未知产甲烷菌.  相似文献   

14.
The ancestry of New World cattle was investigated through the analysis of mitochondrial and Y chromosome variation in Creoles from Argentina, Brazil, Mexico, Paraguay and the United States of America. Breeds that influenced the Creoles, such as Iberian native, British and Zebu, were also studied. Creoles showed high mtDNA diversity (H = 0.984 ± 0.003) with a total of 78 haplotypes, and the European T3 matriline was the most common (72.1%). The African T1a haplogroup was detected (14.6%), as well as the ancestral African‐derived AA matriline (11.9%), which was absent in the Iberian breeds. Genetic proximity among Creoles, Iberian and Atlantic Islands breeds was inferred through their sharing of mtDNA haplotypes. Y‐haplotype diversity in Creoles was high (H = 0.779 ± 0.019), with several Y1, Y2 and Y3 haplotypes represented. Iberian patrilines in Creoles were more difficult to infer and were reflected by the presence of H3Y1 and H6Y2. Y‐haplotypes confirmed crossbreeding with British cattle, mainly of Hereford with Pampa Chaqueño and Texas Longhorn. Male‐mediated Bos indicus introgression into Creoles was found in all populations, except Argentino1 (herd book registered) and Pampa Chaqueño. The detection of the distinct H22Y3 patriline with the INRA189‐90 allele in Caracú suggests introduction of bulls directly from West Africa. Further studies of Spanish and African breeds are necessary to elucidate the origins of Creole cattle, and determine the exact source of their African lineages.  相似文献   

15.
We estimated neutral diversity of 21 European cattle breeds with 105 microsatellites. Nine of them resembled unselected Balkan Buša strains with diffuse breeding barriers and the 12 others were strongly differentiated, isolated breeds. Because of the impact of neutral genetic diversity on long-term population adaptive capacity, we discuss the long-term outcome of different conservation priorities in a subdivided metapopulation of the investigated cattle breeds. The optimal contribution to a pool of total genetic diversity allocated more than 95% of long-term relevant neutral diversity to virtually unselected strains of the Balkan Buša, while the maximization of total variance preferred inbred breeds. Current artificial selection methods, such as genomic selection sped up and a recovery of underestimated traits becomes quickly impossible. We emphasize that currently neutral and even deleterious alleles might be required for future genotypes in sustainable and efficient livestock breeding and production systems of a 21st century. We provide cumulative evidences that long-term survival relies on genetic complexity and complexity relies on allelic diversity. Our results suggest that virtually unselected, nonuniform strains harbor a crucial proportion of neutral diversity and should be conserved with high global priority. As one example, we suggest a cooperative maintenance of the nondifferentiated, highly fragmented, and fast vanishing metapopulation of Balkan Buša.  相似文献   

16.
Joy N  Prasanth VP  Soniya EV 《Genetica》2011,139(8):1033-1043
The genotypes of black pepper are morphologically and genotypically highly diverse and carry all the cumulative variations inherited and maintained through generations. The present study describes the Simple Sequence Repeat (SSR) or microsatellite based assessment of genetic diversity among forty popular genotypes and four different species of black pepper in Southern region of India. For isolation of SSR primers, our earlier attempts with enrichment strategies like ‘Triplex affinity capture’ did not extract a single SSR primer due to close proximity of restriction sites to the SSR motif. Hence we developed a ‘Sequential Reverse Genome Walking (SRGW)’ strategy with better enrichment efficiency of 72% that generated seven new SSR primers. Genotyping precisely discriminated majority of genotypes which indicated that the SSR primers are very informative. A total of 62 alleles with an average of 15.5 alleles over 4 loci were identified. All the SSR primers showed an average Polymorphism Information Content (PIC) value of 0.85. The estimated average Shared Allele Frequency ranged between 1.57 and 20.12%. The PCA plot revealed four closely related individual groups and identified Karimunda, Wild pepper and a local landrace ‘local b’ as the most divergent genotypes. Cluster analysis exposed the genetic relatedness between hybrids and selections with other known cultivars. The introduction of black pepper from South India to Malaysia was emphasized from the observation of genetic similarity of Malaysian cultivar ‘Kuching’ with other indigenous popular cultivars. The study was first to portray the precise genetic relatedness among the major indigenous genotypes of black pepper.  相似文献   

17.
DNA samples of 948 individuals belonging to 27 populations from southern Andhra Pradesh were analyzed for nine AmpFlSTR Profiler Plus loci. The nature and extent of genomic diversity within and between these populations have been examined with reference to socioeconomic and geographic affiliations. The results suggest that the average heterozygosity is uniformly high in these populations (> 0.80) and that the patterns of allele distributions are similar across the populations. The value of the coefficient of gene differentiation and the AMOVA and structure analysis results suggest that these populations are highly homogeneous. The neighbor-joining tree constructed using either D(A) or F(ST) distances suggests no intelligible pattern of population clusters based on ethnohistoric or geographic affiliations. All these observations suggest either a common recent origin of these populations or extensive gene flow across the populations that erased the original genetic differences. Given strict endogamy, the latter explanation can hold only if there has been unauthorized or unrecognized gene flow transecting the social boundaries. Nevertheless, the regression plot of average heterozygosity versus distance from the centroid (Rii), based on Harpending and Ward's (1982) model, and the genetic distances computed between different hierarchical groups within Andhra Pradesh tend to support this conjecture. Overall, the results suggest lack of a significant degree of genetic stratification that is consistent with social stratification in Andhra Pradesh. Furthermore, the neighbor-joining tree based on comparative data from other Indian and continental populations brings out a single and compact cluster of all the Andhra populations that is clearly separated from the rest.  相似文献   

18.
Contrary to highly selected commercial breeds, indigenous domestic breeds are composed of semi-wild or feral populations subjected to reduced levels of artificial selection. As a consequence, many of these breeds have become locally adapted to a wide range of environments, showing high levels of phenotypic variability and increased fitness under natural conditions. Genetic analyses of three loci associated with milk production (alpha(S1)-casein, kappa-casein and prolactin) and the locus BoLA-DRB3 of the major histocompatibility complex indicated that the Argentinean Creole cattle (ACC), an indigenous breed from South America, maintains high levels of genetic diversity and population structure. In contrast to the commercial Holstein breed, the ACC showed considerable variation in heterozygosity (H(e)) and allelic diversity (A) across populations. As expected, bi-allelic markers showed extensive variation in He whereas the highly polymorphic BoLA-DRB3 showed substantial variation in A, with individual populations having 39-74% of the total number of alleles characterized for the breed. An analysis of molecular variance (AMOVA) of nine populations throughout the distribution range of the ACC revealed that 91.9-94.7% of the total observed variance was explained by differences within populations whereas 5.3-8.1% was the result of differences among populations. In addition, the ACC breed consistently showed higher levels of genetic differentiation among populations than Holstein. Results from this study emphasize the importance of population genetic structure within domestic breeds as an essential component of genetic diversity and suggest that indigenous breeds may be considered important reservoirs of genetic diversity for commercial domestic species.  相似文献   

19.
Genetic diversity and relationship among three genera namely Drimia, Dipcadi and Ledebouria of Hyacinthaceae in India was studied using RAPD and SRAP markers. Twenty one RAPD primers and nine SRAP were used for analyzing 41 accessions. RAPD gave an average 12.6 markers per primer, while SRAP generated 10.1 markers per primer pair. The family emerged very diverged with high polymorphism. The study resolved the three genera into monophyletic groups corresponding to three subfamilies; Urginoideae, Hyacinthoideae and Ornithogaloideae. Drimia wightii emerged a very distinct species and species specific markers were obtained with both marker systems. AMOVA analysis also revealed the genera to be quite well diverged. The two markers showed high correlation (r = 0.932) in Mantel matrix crresspondance test. The combined data also showed a very good correlation with the respective markers individually.  相似文献   

20.
Morphological diversity of ruminal bacteriophages from sheep and cattle   总被引:2,自引:0,他引:2  
Large numbers of bacteriophages (2 x 10(7) to 1 x 10(8)/ml) were present in ruminal fluid from sheep and cattle. Twenty-six distinct types were identified and placed in three morphological groups; several phages possessed unusual structural features. The large numbers and diversity of phages observed indicates a possible role in bacterial lysis and hence in the population dynamics of the ruminal bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号