首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Lactoferrin and host defense.   总被引:8,自引:0,他引:8  
Lactoferrin is a multifunctional member of the transferrin family of nonheme iron-binding glycoproteins. Lactoferrin is found at the mucosal surface where it functions as a prominent component of the first line of host defense against infection and inflammation. The protein is also an abundant component of the specific granules of neutrophils and can be released into the serum upon neutrophil degranulation. While the iron-binding properties were originally believed to be solely responsible for the host defense properties ascribed to lactoferrin, it is now known that other mechanisms contribute to the broad spectrum anti-infective and anti-inflammatory roles of this protein. In this article, current information on the functions and mechanism of action of lactoferrin are reviewed, with particular emphasis on the activities that contribute to this protein's role in host defense. In addition, studies demonstrating that lactoferrin inhibits allergen-induced skin inflammation in both mice and humans, most likely secondary to TNF-alpha (tumor necrosis factor alpha) production, are summarized. Collectively, these results suggest that lactoferrin functions as a key component of mammalian host defense at the mucosal surface.  相似文献   

2.
3.
4.
Cytokines in host defense against Salmonella.   总被引:6,自引:0,他引:6  
Cytokines are key communication molecules between host cells in the defense against the enteric pathogen, Salmonella. Infection with Salmonella induces expression of multiple chemokines and proinflammatory cytokines in cultured intestinal epithelial cells and macrophages. In animal models, protective roles have been shown for IL-1alpha, TNFalpha, IFN-gamma, IL-12, IL-18 and IL-15, whereas IL-4 and IL-10 inhibit host defenses against Salmonella.  相似文献   

5.
6.
7.
Surfactant protein-D (SP-D) participates in the innate response to inhaled microorganisms and organic antigens, and contributes to immune and inflammatory regulation within the lung. SP-D is synthesized and secreted by alveolar and bronchiolar epithelial cells, but is also expressed by epithelial cells lining various exocrine ducts and the mucosa of the gastrointestinal and genitourinary tracts. SP-D, a collagenous calcium-dependent lectin (or collectin), binds to surface glycoconjugates expressed by a wide variety of microorganisms, and to oligosaccharides associated with the surface of various complex organic antigens. SP-D also specifically interacts with glycoconjugates and other molecules expressed on the surface of macrophages, neutrophils, and lymphocytes. In addition, SP-D binds to specific surfactant-associated lipids and can influence the organization of lipid mixtures containing phosphatidylinositol in vitro. Consistent with these diverse in vitro activities is the observation that SP-D-deficient transgenic mice show abnormal accumulations of surfactant lipids, and respond abnormally to challenge with respiratory viruses and bacterial lipopolysaccharides. The phenotype of macrophages isolated from the lungs of SP-D-deficient mice is altered, and there is circumstantial evidence that abnormal oxidant metabolism and/or increased metalloproteinase expression contributes to the development of emphysema. The expression of SP-D is increased in response to many forms of lung injury, and deficient accumulation of appropriately oligomerized SP-D might contribute to the pathogenesis of a variety of human lung diseases.  相似文献   

8.
Both plants and humans have inducible defense mechanisms. This passive defense strategy leaves the host unprotected for a period of time until resistance is activated. Moreover, many bacterial pathogens have evolved cell-cell communication (quorum-sensing) mechanisms to mount population-density-dependent attacks to overwhelm the host's defense responses. Several chemicals and enzymes have been investigated for years for their potential to target the key components of bacterial quorum-sensing systems. These quorum-quenching reagents, which block bacterial cell-cell communications, can disintegrate a bacterial population-density-dependent attack. It has now been shown that a quorum-quenching mechanism can be engineered in plants and might be used as a strategy in controlling bacterial pathogens and to build up a proactive defense barrier.  相似文献   

9.
Recent interest has focused on immune response in an evolutionary context, with particular attention to disease resistance as a life-history trait, subject to trade-offs against other traits such as reproductive effort. Immune defense has several characteristics that complicate this approach, however; for example, because of the risk of autoimmunity, optimal immune defense is not necessarily maximum immune defense. Two important types of cost associated with immunity in the context of life history are resource costs, those related to the allocation of essential but limited resources, such as energy or nutrients, and option costs, those paid not in the currency of resources but in functional or structural components of the organism. Resource and option costs are likely to apply to different aspects of resistance. Recent investigations into possible trade-offs between reproductive effort, particularly sexual displays, and immunity have suggested interesting functional links between the two. Although all organisms balance the costs of immune defense against the requirements of reproduction, this balance works out differently for males than it does for females, creating sex differences in immune response that in turn are related to ecological factors such as the mating system. We conclude that immune response is indeed costly and that future work would do well to include invertebrates, which have sometimes been neglected in studies of the ecology of immune defense.  相似文献   

10.
Watts C 《Cell》2006,126(1):17-19
Activation of proteases in the phagosomes of neutrophils occurs by neutralization of the phagosomal pH by NADPH oxidase. In this issue, Savina et al. (2006) show that dendritic cell phagosomes also recruit NADPH oxidase but with different results. Here, the neutralization of phagosomal pH reduces protease activity, which preserves antigens for crosspresentation on class I MHC molecules.  相似文献   

11.
12.
Complement is a system of plasma proteins that aids in the elimination of pathogens from the body. We hypothesized that there is a functional complement system present in the lung that aids in the removal of pathogens. Western blot analysis revealed complement proteins of the alternative and classical pathways of complement in bronchoalveolar lavage fluids (BALF) from healthy volunteers. Functional classical pathway activity was detected in human BALF, but there was no significant alternative pathway activity in lavage fluid, a finding that correlates with the low level of the alternative pathway protein, factor B, in these samples. Although the classical pathway of complement was functional in lavage fluid, the level of the classical pathway activator C1q was very low. We tested the ability of the lung- specific surfactant proteins, surfactant protein A (SP-A) and surfactant protein D (SP-D), to substitute for C1q in classical pathway activation, since they have structural homology to C1q. However, neither SP-A nor SP-D restored classical pathway activity to C1q-depleted serum. These data suggest that the classical pathway of complement is functionally active in the lung where it may play a role in the recognition and clearance of bacteria.  相似文献   

13.
14.
15.
Hancock RE  McPhee JB 《Cell》2005,122(3):320-322
The bacterial pathogen Salmonella typhimurium resides within phagosomes in host cells and is able to deflect the host immune response. In this issue of Cell, Bader et al. (2005) decipher an elegant mechanism by which the PhoQ sensor kinase of Salmonella is switched on by host cationic antimicrobial peptides, leading to changes in gene expression that enable Salmonella to combat the host immune response.  相似文献   

16.
Small RNAs in viral infection and host defense   总被引:2,自引:0,他引:2  
Small RNAs are the key mediators of RNA silencing and related pathways in plants and other eukaryotic organisms. Silencing pathways couple the destruction of double-stranded RNA with the use of the resulting small RNAs to target other nucleic acid molecules that contain the complementary sequence. This discovery has revolutionized our ideas about host defense and genetic regulatory mechanisms in eukaryotes. Small RNAs can direct the degradation of mRNAs and single-stranded viral RNAs, the modification of DNA and histones, and the inhibition of translation. Viruses might even use small RNAs to do some targeting of their own to manipulate host gene expression. This review highlights the current understanding and new insights concerning the roles of small RNAs in virus infection and host defense in plants.  相似文献   

17.
肺孢子菌肺炎(Pneumocystis pneumonia,PCP)是由酵母样真菌耶氏肺孢子菌(Pneumocystis jirovecii,Pj)引起的肺炎,是免疫缺陷患者重要的致死原因。Pj一般不导致系统性感染,仅在肺部繁殖,引发严重损害肺换气功能的间质性肺炎。Pj通过主要表面糖蛋白(major surface glycoprotein,MSG)的抗原转换,逃避宿主免疫系统清除,而宿主利用dectin-1识别β-(1,3)-D-葡聚糖(beta-1,3-D-glucan,BG)、甘露糖受体识别MSG,启动天然免疫反应,继而CD4+T细胞聚集活化,调控细胞免疫和体液免疫。分泌干扰素γ的细胞毒型CD8+Tc1细胞有助于控制Pj感染,特异性抗体有助于调理加强吞噬细胞清除Pj,而聚集的中性粒细胞和非Tc1CD8+T细胞与肺损伤有关。血浆BG水平可以辅助诊断PCP,而支气管肺泡灌洗液中白介素8的水平与肺损伤及死亡预后有关。  相似文献   

18.
19.
  1. Download : Download high-res image (128KB)
  2. Download : Download full-size image
  相似文献   

20.
Dendritic cells (DCs) act as a portal for virus invasion and as the most potent antigen-presenting cells in antiviral host defense. Human immunodeficiency virus (HIV)-1 has served as the paradigm for virus interaction with DCs. HIV-1 infection of DCs via its primary CD4 receptor and secondary chemokine receptors leads to full virus replication (cis infection), whereas binding to C-type lectin receptors results both in cis replication, as well as transfer and replication of virus in CD4(pos) T cells (trans infection). DCs respond to this invasion by processing viral proteins through MHC class I and II pathways and undergoing a maturation that enhances their presentation of antigen to T cells for induction of adaptive antiviral immunity. HIV-1 and other viruses have evolved mechanisms to subvert this immune function. Engineering of DCs with various forms of viral immunogens and co-treatment with cytokines and chemokines is being used as an immunotherapy for HIV-1 and other viral infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号