首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To determine whether magnesium (Mg) can cross the blood brain barrier in developing swine, simultaneous measurements of [Mg] in plasma and cerebrospinal fluid (CSF) were made during experimental elevation of plasma [Mg] in 12 swine of differing postnatal age. All were anesthetized with Saffan and maintained at normal arterial blood gas composition. Aortic pressure and heart rate were monitored. Plasma and CSF samples, drawn at the beginning and end of a 60-min intravenous infusion of MgCl2 in all animals and every 10 min during the infusion in three, were analyzed for [Mg] and osmolality. CSF [Mg] increased in all animals as plasma [Mg] increased. There were no changes in CSF osmolality. The differences between plasma and CSF [Mg] was smallest in the youngest animals. These results indicate that Mg crosses the blood brain barrier in neonatal swine and suggest that the blood brain barrier is still maturing within the first postnatal month.  相似文献   

2.
Hypothalamic regulation of luteinizing hormone (LH) secretion and ovarian function were investigated in beef heifers by infusing LH-releasing hormone (LHRH) in a pulsatile manner (1 microgram/ml; 1 ml during 1 min every h) into the external jugular vein of 10 hypophysial stalk-transected (HST) animals. The heifers were HST approximately 30 mo earlier. All heifers had increased ovarian size during the LHRH infusion. The maximum ovarian size (16 +/- 2.7 cm3) was greater (P less than 0.01) than the initial ovarian size (8 +/- 1.4 cm3). Ovarian follicular growth occurred in 4 of 10 HST heifers in response to pulsatile LHRH infusion. In 2 heifers, an ovarian follicle developed to preovulatory size, but ovulation occurred in only 1 animal after the frequency of LHRH was increased (1 microgram every 20 min during 8 h). In blood samples obtained at 20-min intervals every 5th day, LH concentrations in peripheral serum remained consistently low (0.9 ng/ml) and nonepisodic in the 10 HST heifers during infusion of vehicle on the day before beginning LHRH. In 7 of 10 HST animals, episodic LH secretion occurred in response to pulsatile infusion of LHRH. In 3 of these long-term HST heifers, however, serum LH remained at basal levels and the isolated pituitary seemingly was unresponsive to pulsatile infusion of LHRH as indicated by sequential patterns of gonadotropin secretion obtained at 5-day intervals. These results indicate that pulsatile infusion of LHRH induces LH release in HST beef heifers.  相似文献   

3.
Three experiments were conducted to determine the effect of sampling interval on serum concentrations of LH, FSH, and prolactin (PRL) in prepubertal, ovariectomized, and cycling gilts. In all experiments, blood samples were drawn at 2-min intervals for 4 h from indwelling jugular catheters. Mean serum hormone concentrations, mean number of peaks, and mean and maximum peak heights of LH, FSH, and PRL were calculated using values reflecting 2-, 6-, 10-, 20-, 30-, and 60-min sampling intervals. For LH, FSH, and PRL, mean serum concentrations can be obtained through blood samples drawn at hourly intervals. Since LH peaks are very distinct in pigs, the number of secretory peaks and mean peak height can be obtained via samples drawn at 20-min intervals. Since FSH and PRL peaks are less well defined, a more frequent sampling interval (10 min) is needed to determine number of peaks and mean peak height. To obtain the maximum peak height or the number of minutes for LH, FSH, or PRL to rise from its nadir to zenith, blood samples need to be drawn at 2-min intervals. Regardless of reproductive state, these data indicate that the sampling interval needed to characterize serum concentrations of LH, FSH, and PRL in the gilt is dependent upon the parameter in question.  相似文献   

4.
This study tested the hypothesis that central mechanisms regulating luteinizing hormone (LH) secretion are responsive to insulin. Our approach was to infuse insulin into the lateral ventricle of six streptozotocin-induced diabetic sheep in an amount that is normally present in the CSF when LH secretion is maintained by peripheral insulin administration. In the first experiment, we monitored cerebrospinal fluid (CSF) insulin concentrations every 3-5 h in four diabetic sheep given insulin by peripheral injection (30 IU). The insulin concentration in the CSF was increased after insulin injection, and there was a positive relationship between CSF and plasma concentrations of insulin (r = 0.80, P < 0.01). In the second experiment, peripheral insulin administration was discontinued, and the sheep received either an intracerebroventricular (i.c.v.) infusion of insulin (12 mU/day in 2.4 ml saline) or saline (2.4 ml/day) for 5 days (n = 6) in a crossover design. The dose of insulin (i.c.v.) was calculated to approximate the increase in CSF insulin concentration found after peripheral insulin treatment. To monitor LH secretory patterns, blood samples were collected by jugular venipuncture at 10-min intervals for 4 h on the day before and 5 days after the start of i.c.v. insulin infusion. To monitor the increase in CSF insulin concentrations, a single CSF sample was collected one and four days after the start of the central infusion. The i.c.v. insulin infusion increased CSF insulin concentrations above those in saline-treated animals (P < 0.05) and maintained them at or above the peak levels achieved after peripheral insulin treatment. Central insulin infusion did not affect peripheral (plasma) insulin or glucose concentrations. LH pulse frequency in insulin-treated animals was greater than that in saline-treated animals (3.5 +/- 0.2 vs. 2.3 +/- 0.3 pulses/4 h, P < 0.01), but it was less than that during peripheral insulin treatment (4.8 +/- 0.2 pulses/4 h, P < 0.01). Our findings suggest that physiologic levels of central insulin supplementation are able to increase pulsatile LH secretion in diabetic sheep with low peripheral insulin. These results are consistent with the notion that central insulin plays a role in regulating pulsatile GnRH secretion.  相似文献   

5.
Food intake enhances the release of intestinal cholecystokinin (CCK) in the pig but the contribution of individual nutrients to the CCK response has not yet been established in this species. Six hogs (mean weight 50 kg) were fitted with a duodenal fistula for instillation of nutrients and with portal (PV) and carotid (CA) catheters for blood sampling. After a 24-h fast, the animals received 1,000 ml of isotonic solution containing 440 kcal of carbohydrate (starch hydrolysate), or of protein (casein hydrolysate) or fat (Intralipid) or a control saline solution by 60-min intraduodenal perfusion after a 60-min control period during which the animals received saline. Portal and peripheral blood samples were collected at 15-min intervals for CCK radioimmunoassay. Intraduodenal perfusion of fat provoked a sharp increase in CCK-Like immunoreactivity (CCK-LI) in PV (peak 76.6 +/- 12.2 pM from basal 10.8 +/- 1.2 pM) and in peripheral blood (peak 46.7 +/- 8.4 pM from basal 9.1 +/- 1.0 pM). The protein hydrolysate induced a transient increase in plasma CCK-LI during the first 30 min of intestinal perfusion (PV: peak 40.1 +/- 5.0 pM from basal 11.9 +/- 1.4 pM; CA: 31.8 +/- 4.0 pM from basal 8.5 +/- 0.8 pM). The transient effect of proteins on CCK release might reflect the consequence of somatostatin release from intestinal stores. Starch hydrolysate promptly raised plasma CCK-LI level to a plateau value (PV: 52.5 +/- 13.1 pM from basal 11.9 +/- 1.4 pM; CA: 35.4 +/- 8.0 from basal 8.5 +/- 0.8 pM).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
To identify possible age-dependent changes in the feedback relationship between the brain-pituitary and testes, we examined the minute-to-minute patterns of plasma luteinizing hormone (LH) and testosterone (T) in intact, young male rats and compared these profiles to those of old animals. Young (3 mo; n = 11) and old (22 mo; n = 12) Sprague-Dawley rats were fitted with indwelling venous catheters and between 24 and 48 h later, were bled without anesthesia, by remote sampling, at 10-min intervals for 8 h. Blood samples of 400 microliter were withdrawn, and an equivalent volume of a blood replacement mixture was infused after each sample. Plasma LH and T levels in each sample were measured by radioimmunoassay (RIA). Plasma T levels in old animals failed to show the transient oscillations observed in young animals. Mean plasma T levels were 50% lower in old compared to young animals (P less than 0.001). Plasma patterns of LH in old animals, like their younger counterparts, showed statistically significant episodic increases, whose apparent pulse frequency was inappropriately low for their circulating T level (although not statistically different from the young group). Pulse amplitude in the old animals was 66% lower in the old compared to the young group (P less than 0.015). We conclude that age-associated alterations in brain mechanisms governing LH secretion underline these endocrine changes.  相似文献   

7.
The main prerequisite for organism’s viability is the maintenance of the internal environment despite changes in the external environment, which is provided by the neuroendocrine control system. The key unit in this system is hypothalamus exerting endocrine effects on certain peripheral organs and anterior pituitary. Physiologically active substances of neuronal origin enter blood vessels in the neurohemal parts of hypothalamus where no blood-brain barrier exists. In other parts of the adult brain, the arrival of physiologically active substances is blocked by the blood-brain barrier. According to the generally accepted concept, the neuroendocrine system formation in ontogeny starts with the maturation of peripheral endocrine glands, which initially function autonomously and then are controlled by the anterior pituitary. The brain is engaged in neuroendocrine control after its maturation completes, which results in a closed control system typical of adult mammals. Since neurons start to secrete physiologically active substances soon after their formation and long before interneuronal connections are formed, these cells are thought to have an effect on brain development as inducers. Considering that there is no blood-brain barrier during this period, we proposed the hypothesis that the developing brain functions as a multipotent endocrine organ. This means that tens of physiologically active substances arrive from the brain to the systemic circulation and have an endocrine effect on the whole body development. Dopamine, serotonin, and gonadotropin-releasing hormone were selected as marker physiologically active substances of cerebral origin to test this hypothesis. In adult animals, they act as neurotransmitters or neuromodulators transmitting information from neuron to neuron as well as neurohormones arriving from the hypothalamus with portal blood to the anterior pituitary. Perinatal rats—before the blood-brain barrier is formed—proved to have equally high concentration of dopamine, serotonin, and gonadotropin-releasing hormone in the systemic circulation as in the adult portal system. After the brain-blood barrier is formed, the blood concentration of dopamine and gonadotropin-releasing hormone drops to zero, which indirectly confirms their cerebral origin. Moreover, the decrease in the blood concentration of dopamine, serotonin, and gonadotropin-releasing hormone before the brain-blood barrier formation after the microsurgical disruption of neurons that synthesize them or inhibition of dopamine and serotonin synthesis in the brain directly confirm their cerebral origin. Before the blood-brain barrier formation, dopamine, serotonin, gonadotropin-releasing hormone, and likely many other physiologically active substances of cerebral origin can have endocrine effects on peripheral target organs—anterior pituitary, gonads, kidney, heart, blood vessels, and the proper brain. Although the period of brain functioning as an endocrine organ is not long, it is crucial for the body development since physiologically active substances exert irreversible effects on the targets as morphogenetic factors during this period. Thus, the developing brain from the neuron formation to the establishment of the blood-brain barrier functions as a multipotent endocrine organ participating in endocrine control of the whole body development.  相似文献   

8.
Sequential bleeding and push-pull perfusion of the hypothalamus were used to characterize luteinizing hormone (LH) and LH-releasing hormone (LHRH) release in ovariectomized (OVX) ewes after injection of corn oil or estradiol benzoate (EB). Push-pull cannulae were surgically implanted into the stalk median eminences of 24 OVX ewes. Seven to 14 days later each of 20 animals was given an i.m. injection of 50 micrograms EB. Blood samples and push-pull perfusate were collected at 10-min intervals for 6-12 h beginning 12-15 h after EB injection. Four OVX ewes were given i.m. injections of corn oil 7 days after implantation of push-pull cannulae. Blood samples and push-pull perfusate were collected at 10-min intervals for 4 h between 18 and 22 h after injection of corn oil. Luteinizing hormone remained below 2 ng/ml throughout most of the sampling periods in 9 of 20 EB-treated ewes. In 5 of these 9 LHRH also was undetectable, whereas in 4 LHRH was detectable (1.84 +/- 0.29 pg/10 min), but did not increase with time. Preovulatory-like surges of LH occurred in 11 EB-treated ewes, but LHRH was undetectable in 5. In 4 of 6 ewes showing LH surges and detectable LHRH, sampling occurred during the onset of the LH surge.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The effect of pulmonary blood flow on leukocyte uptake and release by the lung was examined in 10 anesthetized spontaneously breathing dogs. Pulmonary arterial and pulmonary venous blood was sampled with catheters placed into the right ventricle and aorta, respectively. Pulmonary blood flow was lowered by inflating a balloon catheter located in the inferior vena cava. In five experiments simultaneous blood samples were drawn from the right ventricle and aorta at 10-s intervals during a control period, a 2- to 3-min period of low flow, and a recovery period. In five additional experiments, less frequent samples were taken over periods of 15-60 min. Total leukocyte concentrations and differential counts were determined for each blood sample. The study shows that large numbers of leukocytes become sequestered within the lung when pulmonary blood flow is low and that an equivalent number of cells are released from the lung after deflation of the balloon catheter. Both the polymorphonuclear leukocytes and the lymphocytes were taken up by the lung when pulmonary blood flow was reduced. We conclude that pulmonary blood flow has a marked effect on the uptake and release of leukocytes by the dog lung.  相似文献   

10.
Effect of time after castration on secretion of LHRH and LH in the ram   总被引:3,自引:0,他引:3  
Hypophysial portal blood and peripheral blood were obtained from conscious, unrestrained rams to measure simultaneously the secretion of LHRH and LH in entire rams and rams which had been castrated for 2-15 days (short-term castration) and for 1-6 months (long-term castration). The apparatus for portal blood collection was surgically implanted using a transnasal trans-sphenoidal approach and, 4-5 days later, portal blood and peripheral blood were collected simultaneously at 10-min intervals for 8-9 h from 15 sheep. LHRH was clearly secreted in pulses in all three physiological conditions, but there were marked differences in pulse frequencies, which averaged 1 pulse/2-4 h in entire rams, 1 pulse/70 min in short-term castrated rams and 1 pulse/36 min in long-term castrated rams. In entire and short-term castrated animals, LH profiles were also clearly pulsatile and each LHRH pulse in hypophysial portal blood was associated with an LH pulse in the peripheral blood. In long-term castrated animals, LH pulses were not as well defined, because of the high basal levels and small pulse amplitudes, and the temporal relationship between LHRH and LH pulses was not always clear. These results demonstrate the pulsatile nature of LHRH secretion under the three physiological conditions and suggest that the irregular LH profiles characteristic of long-term castrates are due to an inability of the pituitary gland to transduce accurately the hypothalamic signal. The very high frequency of the LHRH pulses may be one of the major reasons for this, and is probably also responsible for the high rate of LH secretion in the long-term castrated animal.  相似文献   

11.
The frequency of spontaneous luteinizing hormone (LH) pulses is thought to be a direct result of the frequency of luteinizing hormone-releasing hormone (LHRH) pulses from the hypothalamus. By contrast, the amplitude of spontaneous LH pulses may be controlled by several factors other than the amplitude of LHRH pulses. We tested two hypotheses: 1) that LH pulse amplitude is determined in part by the frequency of LHRH pulses of constant magnitude, and 2) that testosterone (T) exerts a direct feedback effect on the pituitary gland to regulate LH pulse amplitude. Gonadal feedback was eliminated by castrating adult male rats (n = 20). Endogenous LHRH secretion was eliminated by lesioning the medial basal hypothalamus. Serum LH levels (0.19 +/- 0.04 ng/ml RP-2, mean +/- SEM) and T levels (0.15 +/- 0.02 ng/ml), measured several weeks after hypothalamic lesioning, confirmed the hypogonadotropic hypogonadal state of the animals. During a 8-h period, unanesthetized, unrestrained animals were injected with 40-ng pulses of LHRH via catheters into the jugular vein, and blood samples for LH measurement were drawn at 10-min intervals. The LHRH pulse interval was 20 min during the first 4 h in all animals. The pulse interval was doubled to 40 min in half of the animals (n = 10) during the next 4 hours; in the other 10 animals, the pulse interval was maintained constant at 20 min throughout the study. Within both of these groups, one-half of the animals (n = 5) were infused with T to achieve a physiological level of T in serum (2.46 +/- 0.36 ng/ml at 4 h), while the other half received vehicle.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The effects of acute asphyxia on both the time course of blood flow changes in central and peripheral organs, including the skin, and the time course of changes in oxygen consumption were studied in 9 unanaesthetized fetal sheep in utero at 130 +/- 2 days of gestation during 4-min arrest of uterine blood flow. Blood flow distribution and total oxygen consumption were determined at 1-min intervals during asphyxia using isotope-labelled microspheres (15 micrograms diameter) and by calculating the decline of the arterial O2 content, respectively. During asphyxia peripheral blood flow including that to the skin, scalp, and choroid plexus decreased rapidly, whereas blood flow to the heart, brain stem and (in surviving fetuses only) adrenals increased slowly. Total oxygen consumption fell exponentially with time and was closely correlated with the fall in both arterial oxygen content and peripheral blood flow; the time courses of these changes were very similar to those of the decreasing blood flows to the skin and scalp. Blood flow within the brain was redistributed at the expense of the cerebrum and the choroid plexus; the total blood flow to the brain did not change. In the 5 fetuses that died during the recovery period adrenal blood flow failed to increase and, at the nadir of asphyxia, peripheral vessels dilated and central vessels constricted. We conclude that in fetal sheep near term during acute asphyxia the time course of changes in blood flow to central and peripheral organs is different; total oxygen consumption depends on arterial O2 content and peripheral blood flow; total blood flow to the brain does not change, but is redistributed towards the brain stem at the expense of the cerebrum and choroid plexus; fetal death is preceded by a failure of adrenal blood flow to increase, by peripheral vasodilatation, and by central vasoconstriction and skin blood flow validly indicates rapid changes in the distribution of blood flow and the changes in oxygen consumption that accompany it.  相似文献   

13.
The uptake of intraperitoneally injected 125I-labeled rat growth hormone into brain and peripheral tissues was measured in normal and hypophysectomized adult rats. A significant level of radioactivity was observed in the seven brain regions examined -- the telencephalon, diencephalon, midbrain, pons-medulla, cerebellum, pineal and pituitary glands. The pineal and pituitary glands, which are outside the blood-brain barrier, contained three to four times the concentration of radioactivity of the other brain regions. Compared to brain, the level of radioactivity was much higher in peripheral tissues (the diaphragm, kidney, serum and liver). For example, the serum contained ten times the level of radioactivity of most brain regions. For a given tissue, however, the normal and hypophysectomized rats showed a comparable amount of 125I-growth hormone. Trichloroacetic acid precipitates from each tissue sample showed that peripheral tissues had a higher proportion of radioactivity (35-48% of total tissue radioactivity) than the brain samples (13-26%). The data support the view that growth hormone, or a metabolite can enter the central nervous system and may directly affect on-going metabolic processes.  相似文献   

14.
The purpose of this study was to examine the pituitary-ovarian relationship of both estrous and anestrous female ferrets. The endocrine status of the animals was induced by manipulating photoperiod: females in estrus were housed in long days (16L:8D); females in anestrus were housed in short days (8L:16D). For studies of intact animals in both photoperiods, plasma luteinizing hormone (LH) levels were quantified in blood samples collected from adult ferrets at 5-min intervals over a 24-h period. Similar groups of females (estrous and anestrous) were ovariectomized (while remaining in their assigned photoperiods) and blood samples were collected at 5-min intervals for 4-h periods on Days 1, 2, 4, 10, 17, and 35 after ovariectomy. Intact, estrous females exhibited continuously low or undetectable levels of LH with no evidence of episodic secretion. Ovariectomy of these estrous animals resulted in rapid onset (within 24 h) of episodic LH secretion, with pulses occurring in excess of 1 pulse/h. No substantial further change in frequency or amplitude of pulses occurred in these females from 1 to 35 days postovariectomy. In contrast, intact anestrous ferrets exhibited clear episodic LH secretion at a frequency of about 0.4 pulses/h. Removal of ovaries from these females caused no change in LH secretion for 24-48 h, after which LH pulses gradually increased in frequency. By 18 days after ovariectomy, LH patterns were indistinguishable among ovariectomized females in long and short days. These studies suggest a major site of ovarian negative feedback on LH secretion during anestrus is the hypothalamus, whereas the site of the ovarian feedback in estrous females is not yet evident.  相似文献   

15.
Catheters were implanted in 6 anaesthetized gilts (3 animals in the follicular phase, 3 in the luteal phase) into a carotid artery and into the utero-ovarian vein and uterine artery on both sides. The uterine lumina were closed by a suture. Further, a catheter was inserted into the vagina after which the animals were allowed to recover. Tritiated progesterone was infused into vagina the following day during a 2 min period and simultaneous blood samples collected from the 5 catheters every 10 min for 2 h after which the animals were sacrificed. Tissue samples were obtained from the genital organs. The results showed a rapid absorption of progesterone from the vaginal lumen and a marked redistribution to the genital organs. The increased level of radioactivity in the plasma samples collected from the uterine arteries compared to the simultaneous samples from the carotid artery in 2 of the 3 animals in the luteal phase indicates the existence of a local redistribution system.  相似文献   

16.
The long-term negative feedback effects of sustained elevations in circulating estradiol and progesterone on the pulsatile secretion of gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) were evaluated in the ewe following ovariectomy during the mid-late anestrous and early breeding seasons. GnRH secretion was monitored in serial samples of hypophyseal portal blood. Steroids were administered from the time of ovariectomy by s.c. Silastic implants, which maintained plasma concentrations of estradiol and progesterone at levels resembling those that circulate during the mid-luteal phase of the estrous cycle; control ewes did not receive steroidal replacement. Analysis of hormonal pulse patterns in serial samples during 6-h periods on Days 8-10 after ovariectomy disclosed discrete, concurrent pulses of GnRH in hypothalamo-hypophyseal portal blood and LH in peripheral blood of untreated ovariectomized ewes. These pulses occurred every 97 min on the average. Treatment with either estradiol or progesterone greatly diminished or abolished detectable pulsatile secretion of GnRH and LH, infrequent pulses being evident in only 3 of 19 steroid-treated ewes. No major seasonal difference was observed in GnRH or LH pulse patterns in any group of ewes. Our findings in the ovariectomized ewe provide direct support for the conclusion that the negative-feedback effects of estradiol and progesterone on gonadotropin secretion in the ewe include an action on the brain and a consequent inhibition of pulsatile GnRH secretion.  相似文献   

17.
Administration of the pituitary hormone alpha-melanocyte-stimulating hormone (alpha-MSH) to mice was found to inhibit a number of IL-1 and TNF-inducible biologic responses in situ. The ability of either IL-1 or TNF to cause fever, enhance plasma levels of acute phase proteins, and increase the numbers of peripheral blood neutrophils was inhibited by the simultaneous peripheral administration of this neuropeptide. In addition, alpha-MSH reversed the depressive influences of IL-1 or TNF on the effector phase of contact hypersensitivity (CH) responses in animals given an adoptive transfer of primed lymphocytes from hapten-sensitized donors. Intracerebral injection of nanogram quantities of alpha-MSH inhibited the ability of peripherally administered IL-1 or TNF to induce both fever and neutrophilia without affecting the increase in plasma levels of serum amyloid P and fibrinogen. Also, nanogram quantities of alpha-MSH given intracerebrally to normal mice did not reverse the depressed CH responses observed after peripheral IL-1 or TNF administration. These findings suggest that both fever and neutrophilia are linked to the direct action of IL-1 or TNF on the brain. This was supported by the observation that an intracerebral injection of IL-1 or TNF in low doses increased core body temperature and circulating neutrophil numbers without affecting plasma levels of acute phase proteins or CH responsiveness. Our results provide additional support for the hypothesis that bidirectional control exists between elements of the neuroendocrine and immune systems.  相似文献   

18.
The effects of hormone action and disturbance in catecholamine synthesis in the early postnatal ontogenesis on the circadian rhythm in the hypothalamic-hypophysial-adrenocortical system function were compared in the adult albino rat males. Injection of prednisolone on the 17-19th days of life blocked completely the diurnal rhythm of the corticosterone basal level in blood, the rhythm of adrenocortical response to an emotional stressor and to injection of noradrenaline into the brain lateral ventricle in 3-4 month old animals. Injection of an inhibitor of tyrosine hydroxylase, alpha-methyl-p-tyrosine, at the same period resulted in disappearance of the diurnal rhythm of the corticosterone basal level in adult animals, although the rhythm of response to an emotional stressor or injection of noradrenaline into the brain remained unchanged. A conclusion has been reached that disturbances in catecholamine synthesis in the early postnatal period induces long-term changes of predominantly tonic corticosterone secretion, while the hormone action on the circadian rhythm of the corticosterone basal level and stress response is only partly due to changes in noradrenergic regulation of the hypothalamic-hypophysial-adrenocortical system.  相似文献   

19.
By cooling the hypothalamus during hyperthermia, selective brain cooling reduces the drive on evaporative heat loss effectors, in so doing saving body water. To investigate whether selective brain cooling was increased in dehydrated sheep, we measured brain and carotid arterial blood temperatures at 5-min intervals in nine female Dorper sheep (41 +/- 3 kg, means +/- SD). The animals, housed in a climatic chamber at 23 degrees C, were exposed for nine days to a cyclic protocol with daytime heat (40 degrees C for 6 h). Drinking water was removed on the 3rd day and returned 5 days later. After 4 days of water deprivation, sheep had lost 16 +/- 4% of body mass, and plasma osmolality had increased from 290 +/- 8 to 323 +/- 9 mmol/kg (P < 0.0001). Although carotid blood temperature increased during heat exposure to similar levels during euhydration and dehydration, selective brain cooling was significantly greater in dehydration (0.38 +/- 0.18 degrees C) than in euhydration (-0.05 +/- 0.14 degrees C, P = 0.0008). The threshold temperature for selective brain cooling was not significantly different during euhydration (39.27 degrees C) and dehydration (39.14 degrees C, P = 0.62). However, the mean slope of lines of regression of brain temperature on carotid blood temperature above the threshold was significantly lower in dehydrated animals (0.40 +/- 0.31) than in euhydrated animals (0.87 +/- 0.11, P = 0.003). Return of drinking water at 39 degrees C led to rapid cessation of selective brain cooling, and brain temperature exceeded carotid blood temperature throughout heat exposure on the following day. We conclude that for any given carotid blood temperature, dehydrated sheep exposed to heat exhibit selective brain cooling up to threefold greater than that when euhydrated.  相似文献   

20.
Nitric oxide (NO) synthase (NOS) has been found in the gonadotrophs and folliculo-stellate cells of the anterior pituitary. Previous observations from our laboratory suggest that NO may play a role in regulating gonadotropin secretion. Because estrogen secretion by the ovary can influence gonadotropin secretion, we investigated the hypothesis that chronic in vivo NO deficiency has a direct estrogen-independent effect on luteinizing hormone (LH) and follicle-stimulating hormone (FSH) secretion. Chronic NO deficiency was induced by adding an NOS inhibitor, N-nitro-L-arginine (L-NNA, 0.6 g/l) to the drinking water of ovariectomized (OVX) rats. The control OVX rats were untreated. After 6-8 weeks, the animals were sacrificed, and the pituitaries were removed and perfused continuously for 4 hr in the presence of pulsatile gonadotropin-releasing hormone (GnRH, 500 ng/pulse) every 30 min. S-Nitroso-L-acetyl penicillamine (SNAP, an NO donor, 0.1 mM) or L-nitro-arginine methyl ester (L-NAME, an NOS inhibitor, 0.1 mM) was added to the media and perfusate samples were collected at 10-min intervals. GnRH-stimulated LH and FSH levels were significantly lower in pituitaries from OVX/NO-deficient pituitaries compared with pituitaries from the OVX control group. The addition of SNAP significantly decreased LH and FSH secretion by pituitaries from OVX control animals, but significantly increased their secretion by pituitaries from the OVX/NO-deficient animals. L-NAME also suppressed LH and FSH secretion by pituitaries from the OVX control animals and stimulated their release by pituitaries from the NO-deficient/OVX animals. Immunohistochemistry of frontal sections through the hypothalamus demonstrated that OVX/NO deficiency is associated with increased GnRH in the median eminence. We conclude that NO has a chronic stimulatory effect on LH and FSH release and the subsequent altered secretory responsiveness to NO agonist or antagonist is the result of chronic NO suppression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号