首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transformation of pre-B cells by Abelson murine leukemia virus (Ab-MLV) involves a balance between positive, growth-stimulatory signals from the v-Abl oncoprotein and negative regulatory cues from cellular genes. This phenomenon is reflected by the clonal selection that occurs during Ab-MLV-mediated transformation in vivo and in vitro. About 50% of all Ab-MLV-transformed pre-B cells express mutant forms of p53 as they emerge from this process, suggesting that this protein may play an important role in the transformation process. Consistent with this idea, expression of p19(Arf), a protein whose function depends on the presence of a functional p53, is required for the apoptotic crisis that characterizes primary Ab-MLV transformants. To test the role of p53 in pre-B-cell transformation directly, we examined the response of Trp53(-/-) mice to Ab-MLV. The absence of p53 shortens the latency of Abelson disease induction but does not affect the frequency of cells susceptible to Ab-MLV-induced transformation. However, primary transformants derived from the null animals bypass the apoptotic crisis that characterizes the transition from primary transformant to fully malignant cell line. These effects do not require p21(Cip-1), a major downstream target of p53; however, consistent with a role of p19(Arf), transformants expressing mutant p53 and abundant p19 retain wild-type p19 sequences.  相似文献   

2.
Pre-B-cell transformation by Abelson virus (Ab-MLV) is a multistep process in which primary transformants are stimulated to proliferate but subsequently undergo crisis, a period of erratic growth marked by high levels of apoptosis. Inactivation of the p53 tumor suppressor pathway is an important step in this process and can be accomplished by mutation of p53 or down-modulation of p19(Arf), a p53 regulatory protein. Consistent with these data, pre-B cells from either p53 or Ink4a/Arf null mice bypass crisis. However, the Ink4a/Arf locus encodes both p19(Arf) and a second tumor suppressor, p16(Ink4a), that blocks cell cycle progression by inhibiting Cdk4/6. To determine if p16(Ink4a) plays a role in Ab-MLV transformation, primary transformants derived from Arf(-/-) and p16(Ink4a(-/-)) mice were compared. A fraction of those derived from Arf(-/-) animals underwent crisis, and even though all p16(Ink4a(-/-)) primary transformants experienced crisis, these cells became established more readily than cells derived from +/+ mice. Analyses of Ink4a/Arf(-/-) cells infected with a virus that expresses both v-Abl and p16(Ink4a) revealed that p16(Ink4a) expression does not alter cell cycle profiles but does increase the level of apoptosis in primary transformants. These results indicate that both products of the Ink4a/Arf locus influence Ab-MLV transformation and reveal that in addition to its well-recognized effects on the cell cycle, p16(Ink4a) can suppress transformation by inducing apoptosis.  相似文献   

3.
The v-Abl protein encoded by Abelson murine leukemia virus (Ab-MLV) induces transformation of pre-B cells via a two-stage process. An initial proliferative phase during which cells with limited tumorigenic potential expand is followed by a crisis period marked by high levels of apoptosis and erratic growth. Transformants that survive this phase emerge as fully malignant cells and usually contain mutations that disable the p53 tumor suppressor pathway. Consistent with the importance of p53 in this process, pre-B cells from p53 null animals bypass crisis. Thus, the transformation process reflects a balance between signals from the v-Abl protein that drive transformation and those coming from the cellular response to inappropriate growth. One prediction of this hypothesis is that Ab-MLV mutants that are compromised in their ability to transform cells may be less equipped to overcome the effects of p53. To test this idea, we examined the ability of the P120/R273K mutant to transform pre-B cells from wild-type, p53 null, and Ink4a/Arf null mice. The SH2 domain of the v-Abl protein encoded by this mutant contains a substitution that affects the phosphotyrosine-binding pocket, and this mutant is compromised in its ability to transform NIH 3T3 and pre-B cells, especially at 39.5 degrees C. Our data reveal that loss of p53 or Ink4a/Arf locus products complements the transforming defect of the P120/R273K mutant, but it does not completely restore wild-type function. These results indicate that one important transforming function of v-Abl proteins is overcoming the effects of a functional p53 pathway.  相似文献   

4.
Suppression of apoptosis is an important feature of the Abelson murine leukemia virus (Ab-MLV) transformation process. During multistep transformation, Ab-MLV-infected pre-B cells undergo p53-dependent apoptosis during the crisis phase of transformation. Even once cells are fully transformed, an active v-Abl protein tyrosine kinase is required to suppress apoptosis because cells transformed by temperature-sensitive (ts) kinase mutants undergo rapid apoptosis after a shift to the nonpermissive temperature. However, inactivation of the v-Abl protein by a temperature shift interrupts signals transmitted via multiple pathways, making it difficult to identify those that are critically important for the suppression of apoptosis. To begin to dissect these pathways, we tested the ability of an SH2 domain Ab-MLV mutant, P120/R273K, to rescue aspects of the ts phenotype of pre-B cells transformed by the conditional kinase domain mutant. The P120/R273K mutant suppressed apoptosis at the nonpermissive temperature, a phenotype correlated with its ability to activate Akt. Apoptosis also was suppressed at the nonpermissive temperature by constitutively active Akt and in p53-null pre-B cells transformed with the ts kinase domain mutant. These data indicate that an intact Src homology 2 (SH2) domain is not critical for apoptosis suppression and suggest that signals transmitted through Akt and p53 play an important role in the response.  相似文献   

5.
In many tumor systems, analysis of cells for loss of heterozygosity (LOH) has helped to clarify the role of tumor suppressor genes in oncogenesis. Two important tumor suppressor genes, p53 and the Ink4a/Arf locus, play central roles in the multistep process of Abelson murine leukemia virus (Ab-MLV) transformation. p53 and the p53 regulatory protein, p19Arf, are required for the apoptotic crisis that characterizes the progression of primary transformed pre-B cells to fully malignant cell lines. To search for other tumor suppressor genes which may be involved in the Ab-MLV transformation process, we used endogenous proviral markers and simple-sequence length polymorphism analysis to screen Abelson virus-transformed pre-B cells for evidence of LOH. Our survey reinforces the role of the p53-p19 regulatory pathway in transformation; 6 of 58 cell lines tested had lost sequences on mouse chromosome 4, including the Ink4a/Arf locus. Consistent with this pattern, a high frequency of primary pre-B-cell transformants derived from Ink4a/Arf +/- mice became established cell lines. In addition, half of them retained the single copy of the locus when the transformation process was complete. These data demonstrate that a single copy of the Ink4a/Arf locus is not sufficient to fully mediate the effects of these genes on transformation.  相似文献   

6.
v-Abl protein tyrosine kinase encoded by Abelson murine leukemia virus (Ab-MLV) transforms pre-B cells. Transformation requires the phosphatidylinositol 3-kinase (PI3K) pathway. This pathway is antagonized by SH2-containing inositol 5'-phosphatase (SHIP), raising the possibility that v-Abl modulates PI3K signaling through SHIP. Consistent with this, we show that v-Abl expression reduces levels of full-length p145 SHIP in a v-Abl kinase activity-dependent fashion. This event requires signals from the Abl SH2 domain but not the carboxyl terminus. Forced expression of full-length SHIP significantly reduces Ab-MLV pre-B-cell transformation. Therefore, reduction of SHIP protein by v-Abl is a critical component in Ab-MLV transformation.  相似文献   

7.
Yi CR  Rosenberg N 《Journal of virology》2008,82(11):5307-5315
Abelson murine leukemia virus (Ab-MLV) arose from a recombination between gag sequences in Moloney MLV (Mo-MLV) and the c-abl proto-oncogene. The v-Abl oncoprotein encoded by Ab-MLV contains MA, p12, and a portion of CA sequences derived from the gag gene of Mo-MLV. Previous studies indicated that alteration of MA sequences affects the biology of Mo-MLV and Ab-MLV. To understand the role of these sequences in Ab-MLV transformation more fully, alanine substitution mutants that affect Mo-MLV replication were examined in the context of Ab-MLV. Mutations affecting Mo-MLV replication decreased transformation, while alanine mutations in residues dispensable for Mo-MLV replication did not. The altered v-Abl proteins displayed aberrant subcellular localization that correlated to transformation defects. Immunofluorescent analyses suggested that aberrant trafficking of the altered proteins and improper interaction with components of the cytoskeleton were involved in the phenotype. Similar defects in localization were observed when the Gag moiety containing these mutations was expressed in the absence of abl-derived sequences. These results indicate that MA sequences within the Gag moiety of the v-Abl protein contribute to proper localization by playing a dominant role in trafficking of the v-Abl molecule.  相似文献   

8.
The v-Abl protein tyrosine kinase encoded by Abelson murine leukemia virus (Ab-MLV) induces pre-B-cell transformation. Signals emanating from the SH2 domain of the protein are required for transformation, and several proteins bind this region of v-Abl. One such protein is the adaptor molecule Shc, a protein that complexes with Grb2/Sos and facilitates Ras activation, an event associated with Ab-MLV transformation. To test the role this interaction plays in growth and survival of infected pre-B cells, dominant-negative (DN) Shc proteins were coexpressed with v-Abl and transformation was examined. Expression of DN Shc reduced Ab-MLV pre-B-cell transformation and decreased the ability of v-Abl to stimulate Ras activation and Erk phosphorylation in a Raf-dependent but Rac-independent fashion. Further analysis revealed that Shc is required for v-Abl-mediated Raf tyrosine 340 and 341 phosphorylation, an event associated with Erk phosphorylation. In contrast to effects on proliferation, survival of the cells and activation of Akt were not affected by expression of DN Shc. Together, these data reveal that v-Abl-Shc interactions are a critical part of the growth stimulatory signals delivered during transformation but that they do not affect antiapoptotic pathways. Furthermore, these data highlight a novel role for Shc in signaling from v-Abl to Raf.  相似文献   

9.
Abelson murine leukemia virus (Ab-MLV) transforms NIH 3T3 and pre-B cells via expression of the v-Abl tyrosine kinase. Although the enzymatic activity of this molecule is absolutely required for transformation, other regions of the protein are also important for this response. Among these are the SH2 domain, involved in phosphotyrosine-dependent protein-protein interactions, and the long carboxyl terminus, which plays an important role in transformation of hematopoietic cells. Important signals are sent from each of these regions, and transformation is most likely orchestrated by the concerted action of these different parts of the protein. To explore this idea, we compared the ability of the v-Src SH2 domain to substitute for that of v-Abl in the full-length P120 v-Abl protein and in P70 v-Abl, a protein that lacks the carboxyl terminus characteristic of Abl family members. Ab-MLV strains expressing P70/S2 failed to transform NIH 3T3 cells and demonstrated a greatly reduced capacity to mediate signaling events associated with the Ras-dependent mitogen-activated protein (MAP) kinase pathway. In contrast, Ab-MLV strains expressing P120/S2 were indistinguishable from P120 with respect to these features. Analyses of additional mutants demonstrated that the last 162 amino acids of the carboxyl terminus were sufficient to restore transformation. These data demonstrate that an SH2 domain with v-Abl substrate specificity is required for NIH 3T3 transformation in the absence of the carboxyl terminus and suggest that cooperativity between the extreme carboxyl terminus and the SH2 domain facilitates the transmission of transforming signals via the MAP kinase pathway.  相似文献   

10.
Abelson murine leukemia virus (Ab-MLV) mutants expressing v-Abl proteins lacking the carboxyl terminus are compromised in the ability to transform lymphoid but not NIH 3T3 cells. This feature correlates with the presence of low levels of phosphotyrosine in lymphoid cells infected with carboxyl-terminal truncation mutants. In contrast, high levels of phosphotyrosine are observed in NIH 3T3 cells infected with wild-type and mutant Ab-MLV. Two downstream targets affected in lymphoid transformants are the GTPase-activating protein and GTPase-activating protein-associated protein p62, molecules which are heavily tyrosine phosphorylated in lymphoid cells transformed by wild-type Ab-MLV but not carboxyl-terminal truncation mutants of Ab-MLV. This difference suggested that signaling mediated via the Ras pathway may be compromised in lymphoid cells expressing the carboxyl-terminal truncation mutants. Consistent with this idea, expression of v-Ha-ras complemented these mutants in primary bone marrow transformation assays and increased transformation frequencies obtained with the Ab-MLV mutants 8- to 20-fold. These data suggest that a biologically important link exists between the carboxyl terminus of v-Abl protein and the Ras pathway. Signals transmitted via this connection may enhance those mediated via other regions of the v-Abl protein and facilitate transformation of primary, nonimmortalized cells such as pre-B lymphocytes.  相似文献   

11.
12.
Transformation mediated by the v-Abl oncoprotein, a tyrosine kinase encoded by the Abelson murine leukemia virus, is a multi-step process requiring genetic alterations in addition to expression of v-Abl. Loss of p53 or p19ARF was previously shown to be required for Abelson murine leukemia virus transformation of primary mouse embryonic fibroblasts (MEFs). By comparing gene expression patterns in primary p53-/- MEFs acutely infected with the v-Abl retrovirus, v-Abl-transformed MEF clones, and v-Abl-transformed MEF clones treated with Abl kinase inhibitor STI 571, we have identified additional genetic alterations associated with v-Abl transformation. Bcl-xL mRNA was elevated in three of five v-Abl-transformed MEF clones. In addition, elevated expression of c-Myc mRNA, caused either by c-myc gene amplification or by enhanced signaling via STAT3, was observed in five v-Abl-transformed MEF clones. The data suggest that increases in cell survival associated with Bcl-xL and increases in cell growth associated with c-Myc facilitate the transformation process dependent on constitutive mitogenic signaling by v-Abl.  相似文献   

13.
Nucleophosmin (NPM) is a nucleolar phosphoprotein that binds the tumor suppressors p53 and p19(Arf) and is thought to be indispensable for ribogenesis, cell proliferation, and survival after DNA damage. The NPM gene is the most frequent target of genetic alterations in leukemias and lymphomas, though its role in tumorigenesis is unknown. We report here the first characterization of a mouse NPM knockout strain. Lack of NPM expression results in accumulation of DNA damage, activation of p53, widespread apoptosis, and mid-stage embryonic lethality. Fibroblasts explanted from null embryos fail to grow and rapidly acquire a senescent phenotype. Transfer of the NPM mutation into a p53-null background rescued apoptosis in vivo and fibroblast proliferation in vitro. Cells null for both p53 and NPM grow faster than control cells and are more susceptible to transformation by activated oncogenes, such as mutated Ras or overexpressed Myc. In the absence of NPM, Arf protein is excluded from nucleoli and is markedly less stable. Our data demonstrate that NPM regulates DNA integrity and, through Arf, inhibits cell proliferation and are consistent with a putative tumor-suppressive function of NPM.  相似文献   

14.
The stabilization and subcellular localization of the p19Arf tumor suppressor protein and the SUMO-2/3 deconjugating protease Senp3 each depend upon their binding to the abundant nucleolar protein nucleophosmin (Npm/B23). Senp3 and p19Arf antagonize each otherâ€?s functions in regulating the SUMOylation of target proteins including Npm itself. The p19Arf protein triggers the sequential phosphorylation, polyubiquitination, and rapid proteasomal degradation of Senp3, and this ability of p19Arf to accelerate Senp3 turnover also depends on the presence of Npm. In turn, endogenous p19Arf and Senp3 are both destabilized in viable Npm-null mouse embryo fibroblasts (that also lack p53), and reintroduction of the human NPM protein into these cells reverses this phenotype. NPM mutants that retain their acidic and oligomerization domains can re-stabilize both p19Arf and Senp3 in this setting, but the nucleolar localization of NPM is not strictly required for these effects. Knockdown of Senp3 with shRNAs mimics the anti-proliferative functions of p19Arf in cells that lack p53 alone or in triple knock-out cells that lack the Arf, Mdm2 and p53 genes. These findings reinforce the hypothesis that the p53-independent tumor suppressive functions of p19Arf may be mediated by its ability to antagonize Senp3, thereby inducing cell cycle arrest by abnormally elevating the cellular levels of SUMOylated proteins.  相似文献   

15.
Ectopic expression of oncogenes such as Ras induces expression of p19(Arf), which, in turn, activates p53 and growth arrest. Here, we used a multistage model of squamous cell carcinoma development to investigate the functional interactions between Ras, p19(Arf), and p53 during tumor progression in the mouse. Skin tumors were induced in wild-type, p19(Arf)-deficient, and p53-deficient mice using the DMBA/TPA two-step protocol. Activating mutations in Hras were detected in all papillomas and carcinomas examined, regardless of genotype. Relative to wild-type mice, the growth rate of papillomas was greater in p19(Arf)-deficient mice, and reduced in p53-deficient mice. Malignant conversion of papillomas to squamous cell carcinomas, as well as metastasis to lymph nodes and lungs, was markedly accelerated in both p19 (Arf)- and p53-deficient mice. Thus, p19(Arf) inhibits the growth rate of tumors in a p53-independent manner. Through its regulation of p53, p19(Arf) also suppresses malignant conversion and metastasis. p53 expression was upregulated in papillomas from wild-type but not p19( Arf)-null mice, and p53 mutations were more frequently seen in wild-type than in p19( Arf)-null carcinomas. This indicates that selection for p53 mutations is a direct result of signaling from the initiating oncogenic lesion, Hras, acting through p19(Arf).  相似文献   

16.
Abelson murine leukemia virus (Ab-MLV) encodes the v-Abl protein tyrosine kinase and induces transformation of immortalized fibroblast lines and pre-B cells. Temperature-sensitive mutations affecting the kinase domain of the protein have demonstrated that the kinase activity is absolutely required for transformation. Despite this requirement, mutations affecting other regions of v-Abl modulate transformation activity. The SH2 domain and the highly conserved FLVRES motif within it form a phosphotyrosine-binding pocket that is required for interactions between the kinase and cellular substrates. To understand the impact of SH2 alterations on Ab-MLV-mediated transformation, we studied the Ab-MLV mutant P120/R273K. This mutant encodes a v-Abl protein in which the beta B5 arginine at the base of the phosphotyrosine-binding pocket has been replaced by a lysine. Unexpectedly, infection of NIH 3T3 or pre-B cells with P120/R273K revealed a temperature-dependent transformation phenotype. At 34 degrees C, P120/R273K transformed about 10-fold fewer cells than wild-type virus of equivalent titer; at 39.5 degrees C, 300-fold fewer NIH 3T3 cells were transformed and pre-B cells were refractory to transformation. Temperature-dependent transformation was accompanied by decreased phosphorylation of Shc, a protein that interacts with the v-Abl SH2 and links the protein to Ras, and decreased induction of c-Myc expression. These data suggest that alteration of the FLVRES pocket affects the ability of v-Abl to interact with at least some of its substrates in a temperature-dependent fashion and identify a novel type of temperature-sensitive Abelson virus.  相似文献   

17.
The Ink4/Arf locus encodes two tumour-suppressor proteins, p16Ink4a and p19Arf, that govern the antiproliferative functions of the retinoblastoma and p53 proteins, respectively. Here we show that Arf binds to the product of the Mdm2 gene and sequesters it into the nucleolus, thereby preventing negative-feedback regulation of p53 by Mdm2 and leading to the activation of p53 in the nucleoplasm. Arf and Mdm2 co-localize in the nucleolus in response to activation of the oncoprotein Myc and as mouse fibroblasts undergo replicative senescence. These topological interactions of Arf and Mdm2 point towards a new mechanism for p53 activation.  相似文献   

18.
Arf is a key mammalian tumor suppressor gene known to be activated in response to aberrant mitogenic signals leading to both p53-dependent and -independent effects. We recently uncovered a new and somewhat unexpected function for mouse Arf as a regulator of mural cell accumulation within an ocular vascular bed destined to regress in the postnatal period. We found that the Arf gene product, p19Arf, blocks mural cell proliferation driven by Platelet-derived growth factor receptor ? (Pdgfr?) in the developing vitreous. In vivo studies and analyses of cultured cells indicate that p19Arf dampens the expression of Pdgfr?. In cultured mouse embryo fibroblasts, p19Arf accomplishes this independently of two established effectors – Mdm2 and p53. Our findings indicating that p19Arf responds to specific developmental cues to disrupt Pdgfr? signaling in the developing eye extend existing paradigms for Arf tumor suppressor gene biology.  相似文献   

19.
Myc and E2f1 promote cell cycle progression, but overexpression of either can trigger p53-dependent apoptosis. Mice expressing an Emu-Myc transgene in B lymphocytes develop lymphomas, the majority of which sustain mutations of either the Arf or p53 tumor suppressors. Emu-Myc transgenic mice lacking one or both E2f1 alleles exhibited a slower onset of lymphoma development associated with increased expression of the cyclin-dependent kinase inhibitor p27(Kip1) and a reduced S phase fraction in precancerous B cells. In contrast, Myc-induced apoptosis and the frequency of Arf and p53 mutations in lymphomas were unaffected by E2f1 loss. Therefore, Myc does not require E2f1 to induce Arf, p53, or apoptosis in B cells, but depends upon E2f1 to accelerate cell cycle progression and downregulate p27(Kip1).  相似文献   

20.
We have established that the Arf tumor suppressor gene regulates mural cell biology in the hyaloid vascular system (HVS) of the developing eye. In the absence of Arf, perivascular cells accumulate within the HVS and prevent its involution. We now demonstrate that mural cell accumulation evident at embryonic day (E) 13.5 in Arf(-/-) mice was driven by excess proliferation at E12.5, when Arf expression was detectable in vitreous pericyte-like cells. Their expression of Arf overlapped with Pdgf receptor beta (Pdgfrbeta), which is essential for pericyte accumulation in the mouse. In cultured cells, p19Arf decreased Pdgfrbeta and blocked Pdgf-B-driven proliferation independently of Mdm2 and p53. The presence of a normal Arf allele correlated with decreased Pdgfrbeta in the embryonic vitreous. Pdgfrbeta was required for vitreous cell accumulation in the absence of Arf. Our findings demonstrate a novel, p53- and Mdm2-independent function for p19Arf. Instead of solely sensing excessive mitogenic stimuli, developmental cues induce Arf to block Pdgfrbeta-dependent signals and prevent the accumulation of perivascular cells selectively in a vascular bed destined to regress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号