首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cardiac output by rebreathing in patients with cardiopulmonary diseases   总被引:2,自引:0,他引:2  
Noninvasive estimates of cardiac output by rebreathing soluble gases (Qc) can be unreliable in patients with cardiopulmonary diseases because of uneven distribution of ventilation to lung gas volume and pulmonary blood flow. To evaluate this source of error, we compared rebreathing Qc with invasive measurements of cardiac output performed by indicator-dilution methods (COID) in 39 patients with cardiac or pulmonary diseases. In 16 patients with normal lung volumes and 1-s forced expiratory volumes (FEV1), Qc measured with acetylene [Qc(C2H2)] overestimated COID insignificantly by 2 +/- 9% (SD). In subjects with mild to moderate obstructive lung disease, Qc(C2H2) slightly overestimated COID by 6 +/- 15% (P = 0.11). In patients with restrictive disease or combined obstructive and restrictive disease, Qc(C2H2) underestimated COID significantly by 9 +/- 14% (P less than 0.04). The magnitude of the discrepancy between Qc and COID correlated with size of the volume rebreathed and an index of uneven ventilation calculated from helium mixing during rebreathing that determined a dead space to inspired volume ratio (VRD/VI). Rebreathing volumes less than 40% of the predicted FEV or VRD/VI of 0.4 or greater identified all subjects with a discrepancy between Qc(C2H2) and COID of 20% or greater.  相似文献   

2.
Stroke volume (SV) increases above the resting level during exercise and then declines at higher intensities of exercise in sedentary subjects. The purpose of this study was to determine whether an attenuation of the decline in SV at higher exercise intensities contributes to the increase in maximal cardiac output (Qmax) that occurs in response to endurance training. We studied six men and six women, 25 +/- 1 (SE) yr old, before and after 12 wk of endurance training (3 days/wk running for 40 min, 3 days/wk interval training). Cardiac output was measured at rest and during exercise at 50 and 100% of maximal O2 uptake (Vo2max) by the C2H2-rebreathing method. VO2max was increased by 19% (from 2.7 +/- 0.2 to 3.2 +/- 0.3 l/min, P less than 0.001) in response to the training program. Qmax was increased by 12% (from 18.1 +/- 1 to 20.2 +/- 1 l/min, P less than 0.01), SV at maximal exercise was increased by 16% (from 97 +/- 6 to 113 +/- 8 ml/beat, P less than 0.001) and maximal heart rate was decreased by 3% (from 185 +/- 2 to 180 +/- 2 beats/min, P less than 0.01) after training. The calculated arteriovenous O2 content difference at maximal exercise was increased by 7% (14.4 +/- 0.4 to 15.4 +/- 0.4 ml O2/100 ml blood) after training. Before training, SV at VO2max was 9% lower than during exercise at 50% VO2max (P less than 0.05). In contrast, after training, the decline in SV between 50 and 100% VO2max was only 2% (P = NS). Furthermore, SV was significantly higher (P less than 0.01) at 50% VO2max after training than it was before. Left ventricular hypertrophy was evident, as determined by two-dimensional echocardiography at the completion of training. The results indicate that in young healthy subjects the training-induced increase in Qmax is due in part to attenuation of the decrease in SV as exercise intensity is increased.  相似文献   

3.
The experimental objective was to determine whether moderate to severe hypoxemia increases skeletal muscle sympathetic nervous activity (MSNA) in resting humans without increasing venous plasma concentrations of norepinephrine (NE) and epinephrine (E). In nine healthy subjects (20-34 yr), we measured MSNA (peroneal nerve), venous plasma levels of NE and E, arterial blood pressure, heart rate, and end-tidal O2 and CO2 before (control) and during breathing of 1) 12% O2 for 20 min, 2) 10% O2 for 20 min, and 3) 8% O2 for 10 min--in random order. MSNA increased above control in five, six, and all nine subjects during 12, 10, and 8% O2, respectively (P less than 0.01), but only after delays of 12 (12% O2) and 4 min (8 and 10% O2). MSNA (total activity) rose 83 +/- 20, 260 +/- 146, and 298 +/- 109% (SE) above control by the final minute of breathing 12, 10, and 8% O2, respectively. NE did not rise above control at any level of hypoxemia; E rose slightly (P less than 0.05) at one time only with both 10 and 8% O2. Individual changes in MSNA during hypoxemia were unrelated to elevations in heart rate or decrements in blood pressure and end-tidal CO2--neither of which always fell. We conclude that in contrast to some other sympathoexcitatory stimuli such as exercise or cold stress, moderate to severe hypoxemia increases leg MSNA without raising plasma NE in resting humans.  相似文献   

4.
We examined the hemodynamic factors associated with the lower maximal O2 consumption (VO2max) in older formerly elite distance runners. Heart rate and VO2 were measured during submaximal and maximal treadmill exercise in 11 master [66 +/- 8 (SD) yr] and 11 young (32 +/- 5 yr) male runners. Cardiac output was determined using acetylene rebreathing at 30, 50, 70, and 85% VO2max. Maximal cardiac output was estimated using submaximal stroke volume and maximal heart rate. VO2max was 36% lower in master runners (45.0 +/- 6.9 vs. 70.4 +/- 8.0 ml.kg-1.min-1, P less than or equal to 0.05), because of both a lower maximal cardiac output (18.2 +/- 3.5 vs. 25.4 +/- 1.7 l.min-1) and arteriovenous O2 difference (16.6 +/- 1.6 vs. 18.7 +/- 1.4 ml O2.100 ml blood-1, P less than or equal to 0.05). Reduced maximal heart rate (154.4 +/- 17.4 vs. 185 +/- 5.8 beats.min-1) and stroke volume (117.1 +/- 16.1 vs. 137.2 +/- 8.7 ml.beat-1) contributed to the lower cardiac output in the older athletes (P less than or equal 0.05). These data indicate that VO2max is lower in master runners because of a diminished capacity to deliver and extract O2 during exercise.  相似文献   

5.
Gastrointestinal transit during mild exercise   总被引:1,自引:0,他引:1  
Although exercise is often recommended as therapy for constipation, almost nothing is known of the effects of exercise on rates of movement of material in the gastrointestinal tract. In this study we investigated the influence of mild exercise on transit of a liquid meal from the mouth to the large intestine. Orocecal transit time was determined by a consistent elevation of H2 concentration in a rebreathing apparatus after ingestion of 30 g lactulose; the lactulose was part of a 360-kcal, 350-ml liquid meal. Comparison of transit time was made, in 12 young healthy subjects, between seated rest and a treadmill walk at 5.6 km/h up a 2% grade. The walk elevated heart rate from 64 +/- 4 to 109 +/- 5 beats/min, O2 uptake (VO2) from 0.29 +/- 0.02 to 1.20 +/- 0.07 l/min STPD, and final rectal temperature from 37.0 +/- 0.1 to 38.3 +/- 0.1 degrees C (all P less than 0.01). Exercise speeded transit of the liquid meal, with mean rises in H2 concentration taking place 66 +/- 10 min after ingestion at rest, compared with 44 +/- 6 min after food intake during exercise (P less than 0.02). H2 concentrations in the rebreathing apparatus showed similar base lines in the two experiments, and quantitative increases in H2 concentration, although shifted in time by exercise, were otherwise identical. Subjects with the slowest resting transit rates showed the largest exercise effects (r = 0.79, P less than 0.05). These results indicate that mouth-to-cecum transit of at least the first portion of a liquid meal-based nonabsorbable carbohydrate marker is significantly accelerated during mild exercise.  相似文献   

6.
Allergic bronchoconstriction may be associated with hemodynamic alterations due to changes in respiratory mechanics (or the associated changes in arterial blood gas composition) or the cardiovascular effects of chemical mediators. In an attempt to differentiate between these two possible mechanisms, we obtained measurements of hemodynamics, respiratory mechanics, and O2 consumption (VO2) in nine asymptomatic adult ragweed asthmatics before and after inhalation challenge with either ragweed extract or methacholine. We measured specific airway conductance (sGaw) by body plethysmography, pleural pressure with an esophageal balloon catheter, pulmonary blood flow (Q) and VO2 by a rebreathing technique, and heart rate. For a similar degree of bronchoconstriction after the two types of challenge (mean +/- SD sGaw 0.06 +/- 0.03 and 0.05 +/- 0.02 cmH2O-1 . s-1, P = NS), mean Q increased by 29 and 29%, and mean VO2 by 33 and 37% 15-20 min after ragweed and methacholine, respectively. Since heart rate did not change, there was a concomitant increase in mean stroke volume by 25 and 35%, respectively (P less than 0.05). The respiratory pleural pressure swings during quiet breathing and the rebreathing maneuver and the work of breathing during rebreathing also increased to a similar degree after the two types of challenge. These observations suggest that, if chemical mediators are released into the circulation during antigen-induced bronchoconstriction, their blood concentrations are too low for appreciable cardiovascular effects. The increase in rebreathing cardiac output during allergic and nonallergic bronchoconstriction is probably due to increases in intrathoracic pressure swings and in the work of breathing.  相似文献   

7.
Cardiac output (Q) was estimated in supine rest and in upright cycling at several work rates up to 200 W in five male and one female subjects. At least four repetitions of both the CO2-rebreathing plateau method (Collier, J. Appl. Physiol. 9:25-29, 1956) and the Kim et al. (J. Appl. Physiol. 21: 1338-1344, 1966) single-breath method were performed at each work rate, in a steady state of O2 consumption and heart rate. At supine rest and low work rates, estimates of Q were similar by the two methods. However, at higher work rates, the single-breath method significantly (P less than 0.05) underestimated the value obtained by CO2 rebreathing. The reason for the difference in estimates of Q by the two methods was traced to the determination of arterial partial pressure of CO2 (PaCO2) and mixed venous partial pressure of CO2 (PvCO2). The estimate of PaCO2 from the single-breath method was approximately 88.5% of the estimate from end-tidal PCO2 used with the rebreathing method (P less than 0.001). The oxygenated PvCO2 calculated from the single-breath Q averaged approximately 92.5% of the PvCO2 from CO2 rebreathing (P less than 0.0001). The difference in estimates of Q was not eliminated by using a logarithmic form of the CO2 dissociation curve with the single-breath method.  相似文献   

8.
The effects of hypercapnia produced by CO2 rebreathing on total pulmonary, supraglottic, and lower airway (larynx and lungs) resistance were determined in eight premature infants [gestational age at birth 32 +/- 3 (SE) wk, weight at study 1,950 +/- 150 g]. Nasal airflow was measured with a mask pneumotachograph, and pressures in the esophagus and oropharynx were measured with a fluid-filled or 5-Fr Millar pressure catheter. Trials of hyperoxic (40% inspired O2 fraction) CO2 rebreathing were performed during quiet sleep. Total pulmonary resistance decreased progressively as end-tidal PCO2 (PETCO2) increased from 63 +/- 23 to 23 +/- 15 cmH2O.l-1.s in inspiration and from 115 +/- 82 to 42 +/- 27 cmH2O.l-1.s in expiration between room air (PETCO2 37 Torr) and PETCO2 of 55 Torr (P less than 0.05). Lower airway resistance (larynx and lungs) also decreased from 52 +/- 22 to 18 +/- 14 cmH2O.l-1.s in inspiration and from 88 +/- 45 to 30 +/- 22 cmH2O.l-1.s in expiration between PETCO2 of 37 and 55 Torr, respectively (P less than 0.05). Resistance of the supraglottic airway also decreased during inspiration from 7.2 +/- 2.5 to 3.6 +/- 2.5 cmH2O.l-1.s and in expiration from 7.6 +/- 3.3 to 5.3 +/- 4.7 cmH2O.l-1.s at PETCO2 of 37 and 55 Torr (P less than 0.05). The decrease in resistance that occurs within the airway in response to inhaled CO2 may permit greater airflow at any level of respiratory drive, thereby improving the infant's response to CO2.  相似文献   

9.
To reinvestigate the blood-gas CO2 equilibrium in lungs, rebreathing experiments were performed in five unanesthetized dogs prepared with a chronic tracheostomy and an exteriorized carotid loop. The rebreathing bag was initially filled with a gas mixture containing 6-8% CO2, 12, 21, or 39% O2, and 1% He in N2. During 4-6 min of rebreathing PO2 in the bag was kept constant by a controlled supply of O2 while PCO2 rose steadily from approximately 40 to 75 Torr. Spot samples of arterial blood were taken from the carotid loop; their PCO2 and PO2 were measured by electrodes and compared with the simultaneous values of end-tidal gas read from a mass spectrometer record. The mean end-tidal-to-arterial PO2 differences averaging 16, 4, and 0 Torr with bag PO2 about 260, 130, and 75 Torr, respectively, were in accordance with a venous admixture of about 1%. No substantial PCO2 differences between arterial blood and end-tidal gas (PaCO2 - PE'CO2) were found. The mean PaCO2 - PE'CO2 of 266 measurements in 70 rebreathing periods was -0.4 +/- 1.4 (SD) Torr. There was no correlation between PaCO2 - PE'CO2 and the level of arterial PCO2 or PO2. The mean PaCO2 - PE'CO2 became +0.1 Torr when the blood transit time from lungs to carotid artery (estimated at 6 s) and the rate of rise of bag PCO2 (4.5 Torr/min) were taken into account. These experimental results do not confirm the presence of significant PCO2 differences between arterial blood and alveolar gas in rebreathing equilibrium.  相似文献   

10.
Cardiovascular response to cycle exercise during and after pregnancy   总被引:1,自引:0,他引:1  
Our purpose was to determine if pregnancy alters the cardiovascular response to exercise. Thirty-nine women [29 +/- 4 (SD) yr], performed submaximal and maximal exercise cycle ergometry during pregnancy (antepartum, AP, 26 +/- 3 wk of gestation) and postpartum (PP, 8 +/- 2 wk). Neither maximal O2 uptake (VO2max) nor maximal heart rate (HR) was different AP and PP (VO2 = 1.91 +/- 0.32 and 1.83 +/- 0.31 l/min; HR = 182 +/- 8 and 184 +/- 7 beats/min, P greater than 0.05 for both). Cardiac output (Q, acetylene rebreathing technique) averaged 2.2 to 2.8 l/min higher AP (P less than 0.01) at rest and at each exercise work load. Increases in both HR and stroke volume (SV) contributed to the elevated Q at the lower exercise work loads, whereas an increased SV was primarily responsible for the higher Q at higher levels. The slope of the Q vs. VO2 relationship was not different AP and PP (6.15 +/- 1.32 and 6.18 +/- 1.34 l/min Q/l/min VO2, P greater than 0.05). In contrast, the arteriovenous O2 difference (a-vO2 difference) was lower at each exercise work load AP, suggesting that the higher Q AP was distributed to nonexercising vascular beds. We conclude that Q is greater and a-vO2 difference is less at all levels of exercise in pregnant subjects than in the same women postpartum but that the coupling of the increase in Q to the increase in systemic O2 demand (VO2) is not different.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
We measured maximal O2 uptake (VO2max) during stationary cycling in 40 pregnant women [aged 29.2 +/- 3.9 (SD) yr, gestational age 25.9 +/- 3.3 wk]. Data from 30 of these women were used to develop an equation to predict the percent VO2max from submaximal heart rates. This equation and the submaximal VO2 were used to predict VO2max in the remaining 10 women. The accuracy of VO2max values estimated by this procedure was compared with values predicted by two popular methods: the Astrand nomogram and the VO2 vs. heart rate (VO2-HR) curve. VO2max values estimated by the derived equation method in the 10 validation subjects were only 3.7 +/- 12.2% higher than actual values (P greater than 0.05). The Astrand method overestimated VO2max by 9.0 +/- 19.4% (P greater than 0.05), whereas the VO2-HR curve method underestimated VO2max by only 1.6 +/- 10.3% in the same 10 subjects (P greater than 0.05). Both the Astrand and the VO2-HR curve methods correlated well with the actual values when all 40 subjects were considered (r = 0.77 and 0.85, respectively), but the VO2-HR curve method had a lower SE of prediction than the Astrand method (8.7 vs. 10.4%). In a comparison group of 10 nonpregnant sedentary women (29.9 +/- 4.5 yr), an equation relating %VO2max to HR nearly identical to that obtained in the pregnant women was found, suggesting that pregnancy does not alter this relationship. We conclude that extrapolating the VO2-HR curve to an estimated maximal HR is the most accurate method of predicting VO2max in pregnant women.  相似文献   

12.
Eight healthy volunteers performed gradational tests to exhaustion on a mechanically braked cycle ergometer, with and without the addition of an inspiratory resistive load. Mean slopes for linear ventilatory responses during loaded and unloaded exercise [change in minute ventilation per change in CO2 output (delta VE/delta VCO2)] measured below the anaerobic threshold were 24.1 +/- 1.3 (SE) = l/l of CO2 and 26.2 +/- 1.0 l/l of CO2, respectively (P greater than 0.10). During loaded exercise, decrements in VE, tidal volume, respiratory frequency, arterial O2 saturation, and increases in end-tidal CO2 tension were observed only when work loads exceeded 65% of the unloaded maximum. There was a significant correlation between the resting ventilatory response to hypercapnia delta VE/delta PCO2 and the ventilatory response to VCO2 during exercise (delta VE/delta VCO2; r = 0.88; P less than 0.05). The maximal inspiratory pressure generated during loading correlated with CO2 sensitivity at rest (r = 0.91; P less than 0.05) and with exercise ventilation (delta VE/delta VCO2; r = 0.83; P less than 0.05). Although resistive loading did not alter O2 uptake (VO2) or heart rate (HR) as a function of work load, maximal VO2, HR, and exercise tolerance were decreased to 90% of control values. We conclude that a modest inspiratory resistive load reduces maximum exercise capacity and that CO2 responsiveness may play a role in the control of breathing during exercise when airway resistance is artificially increased.  相似文献   

13.
Despite many reports of long-lasting elevation of metabolism after exercise, little is known regarding the effects of exercise intensity and duration on this phenomenon. This study examined the effect of a constant duration (30 min) of cycle ergometer exercise at varied intensity levels [50 and 70% of maximal O2 consumption (VO2max)] on 3-h recovery of oxygen uptake (VO2). VO2 and respiratory exchange ratios were measured by open-circuit spirometry in five trained female cyclists (age 25 +/- 1.7 yr) and five untrained females (age 27 +/- 0.8 yr). Postexercise VO2 measured at intervals for 3 h after exercise was greater (P less than 0.01) after exercise at 50% VO2max in trained (0.40 +/- 0.01 l/min) and untrained subjects (0.39 +/- 0.01 l/min) than after 70% VO2max in (0.31 +/- 0.02 l/min) and untrained subjects (0.29 +/- 0.02 l/min). The lower respiratory exchange ratio values (P less than 0.01) after 50% VO2max in trained (0.78 +/- 0.01) and untrained subjects (0.80 +/- 0.01) compared with 70% VO2max in trained (0.81 +/- 0.01) and untrained subjects (0.83 +/- 0.01) suggest that an increase in fat metabolism may be implicated in the long-term elevation of metabolism after exercise. This was supported by the greater estimated fatty acid oxidation (P less than 0.05) after 50% VO2max in trained (147 +/- 4 mg/min) and untrained subjects (133 +/- 9 mg/min) compared with 70% VO2max in trained (101 +/- 6 mg/min) and untrained subjects (85 +/- 7 mg/min).  相似文献   

14.
The exercise responses to two different progressive, upright cycle ergometer tests were studied in nine healthy, young subjects either with no drug (ND) or following 48 h or oral propranolol (P) (40 mg q.i.d.). The ergometer tests increased work rate by 30 W either every 30 s or every 4 min. Propranolol caused a significant (p less than 0.05) reduction in peak oxygen uptake (VO2) during both the 30-s and 4-min tests (30-s ND, 3949 +/- 718 mL X min-1 (means +/- SD); 30-s P, 3408 +/- 778 mL X min-1; 4-min ND, 4058 +/- 409 mL X min-1; 4-min P, 3725 +/- 573 mL X min-1). There was no difference between 30-s ND and 4-min ND for peak VO2. The ventilatory anaerobic threshold was not significantly different between any test (30-s ND, 2337 +/- 434 mL O2 X min-1; 30-s P, 2174 +/- 406 mL O2 X min-1; ND, 2433 +/- 685 mL O2 X min-1; 4-min P, 2296 +/- 604 mL O2 X min-1). The VO2 at which blood lactate had increased by 0.5 mM above resting levels was significantly lower than the ventilatory anaerobic threshold for the 4-min ND (1917 +/- 489) and the 4-min P (1978 +/- 412) tests, but was not different for the 30-s ND and 30-s P tests. At exhaustion in the progressive tests, the blood PCO2 was higher (p less than 0.05) in both 30-s tests than 4-min tests.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
We compared the changes in nasal and pharyngeal resistance induced by modifications in the central respiratory drive in 8 patients with sleep apnea syndrome (SAS) with the results of 10 normal men. Upper airway pressures were measured with two low-bias flow catheters; one was placed at the tip of the epiglottis and the other above the uvula. Nasal and pharyngeal resistances were calculated at isoflow. During CO2 rebreathing and during the 2 min after maximal voluntary hyperventilation, we continuously recorded upper airway pressures, airflow, end-tidal CO2, and the mean inspiratory flow (VT/TI); inspiratory pressure generated at 0.1 s after the onset of inspiration (P0.1) was measured every 15-20 s. In both groups upper airway resistance decreased as P0.1 increased during CO2 rebreathing. When P0.1 increased by 500%, pharyngeal resistance decreased to 17.8 +/- 3.1% of base-line values in SAS patients and to 34.9 +/- 3.4% in normal subjects (mean +/- SE). During the posthyperventilation period the VT/TI fell below the base-line level in seven SAS patients and in seven normal subjects. The decrease in VT/TI was accompanied by an increase in upper airway resistance. When the VT/TI decreased by 30% of its base-line level, pharyngeal resistance increased to 319.1 +/- 50.9% in SAS and 138.5 +/- 4.7% in normal subjects (P less than 0.05). We conclude that 1) in SAS patients, as in normal subjects, the activation of upper airway dilators is reflected by indexes that quantify the central inspiratory drive and 2) the pharyngeal patency is more sensitive to the decrease of the central respiratory drive in SAS patients than in normal subjects.  相似文献   

16.
We hypothesized that the acute ventilatory response to carbon dioxide in the presence of low and high levels of oxygen would increase to a greater extent in men compared with women after exposure to episodic hypoxia. Eleven healthy men and women of similar race, age, and body mass index completed a series of rebreathing trials before and after exposure to eight 4-min episodes of hypoxia. During the rebreathing trials, subjects initially hyperventilated to reduce the end-tidal partial pressure of carbon dioxide (PetCO2) below 25 Torr. Subjects then rebreathed from a bag containing a normocapnic (42 Torr), low (50 Torr), or high oxygen gas mixture (150 Torr). During the trials, PetCO2 increased while the selected level of oxygen was maintained. The point at which minute ventilation began to rise in a linear fashion as PetCO2 increased was considered to be the carbon dioxide set point. The ventilatory response below and above this point was determined. The results showed that the ventilatory response to carbon dioxide above the set point was increased in men compared with women before exposure to episodic hypoxia, independent of the oxygen level that was maintained during the rebreathing trials (50 Torr: men, 5.19 +/- 0.82 vs. women, 4.70 +/- 0.77 l x min(-1) x Torr(-1); 150 Torr: men, 4.33 +/- 1.15 vs. women, 3.21 +/- 0.58 l x min(-1) x Torr(-1)). Moreover, relative to baseline measures, the ventilatory response to carbon dioxide in the presence of low and high oxygen levels increased to a greater extent in men compared with women after exposure to episodic hypoxia (50 Torr: men, 9.52 +/- 1.40 vs. women, 5.97 +/- 0.71 l x min(-1) x Torr(-1); 150 Torr: men, 5.73 +/- 0.81 vs. women, 3.83 +/- 0.56 l x min(-1) x Torr(-1)). Thus we conclude that enhancement of the acute ventilatory response to carbon dioxide after episodic hypoxia is sex dependent.  相似文献   

17.
Decline in VO2max with aging in master athletes and sedentary men   总被引:1,自引:0,他引:1  
Fifteen well-trained master endurance athletes [62.0 +/- 2.3 (SE) yr] and 14 sedentary control subjects (61.4 +/- 1.4 yr) were reevaluated after an average follow-up period of approximately 8 yr to obtain information regarding the effects of physical activity on the age-related decline in maximal O2 uptake capacity (VO2max). The master athletes had been training for 10.2 +/- 2.9 yr before initial testing and continued to train during the follow-up period. The sedentary subjects' VO2max declined by an average of 3.3 ml.kg-1.min-1 (33.9 +/- 1.7 vs. 30.6 +/- 1.6, P less than 0.001) over the course of the study, a decline of 12% per decade. In these subjects maximal heart rate declined 8 beats/min (171 vs. 163) and maximal O2 pulse decreased from 0.20 to 0.18 ml.kg-1.beat (P less than 0.05). The master athletes' VO2 max decreased by an average of 2.2 ml.kg-1.min-1 (54.0 +/- 1.7 vs. 51.8 +/- 1.8, P less than 0.05), a 5.5% decline per decade. The master athletes' maximal heart rate was unchanged (171 +/- 3 beats/min) and their maximal O2 pulse decreased from 0.32 to 0.30 ml.kg-1.beat (P less than 0.05). These findings provide evidence that the age-related decrease in VO2max of master athletes who continue to engage in regular vigorous endurance exercise training is approximately one-half the rate of decline seen in age-matched sedentary subjects. Furthermore our results suggest that endurance exercise training may reduce the rate of decline in maximal heart rate that typically occurs as an individual ages.  相似文献   

18.
Ventilatory responses to isocapnic hypoxia, with and without an inspiratory elastic load (12.1 cmH2O/l), were measured in seven healthy subjects using a rebreathing technique. During each experiment, the end-tidal PCO2 was held constant using a variable-speed pump to draw gas from the rebreathing bag through a CO2 absorbing bypass. Studies with and without the load were performed in a formally randomized order for each subject. Linear regressions for rise in ventilation against fall in SaO2 were calculated. The range of unloaded responses was 0.74-1.38 1/min per 1% fall in SaO2 and loaded responses 0.71-1.56 1/min per 1% fall in SaO2. Elastic loading did not significantly alter the ventilatory response to progressive hypoxia (P greater than 0.2). In all subjects there was, however, a change in breathing pattern during loading, whereby increments in ventilation were attained by smaller tidal volumes and higher frequencies than in the control experiments. These results support the hypothesis previously proposed in our studies of resistive loading during progressive hypoxia, that a similar control pathway appears to be involved in response to the application of loads to breathing, whether ventilation is stimulated by hypoxia or hypercapnia.  相似文献   

19.
Five healthy males took part in two separate studies. In one study subjects breathed air (control, C) and in the other 5% CO2 in 21% O2 (respiratory acidosis, RA). Measurements were made at rest, during exercise at 30 and 60% maximal O2 uptake (VO2 max), (20 min each) and in recovery. RA was associated with higher arterial CO2 partial pressure (PCO2) and bicarbonate and lower pH than C. The increase with exercise in plasma lactate (mmol . l-1) was less in RA than C from 1.0 +/- 0.15 (SE) (C = 1.1 +/- 0.17) at rest to 5.3 +/- 1.25 (C = 6.8 +/- 0.98) at 60% VO2 max (P less than 0.10). Plasma pyruvate, alanine, and glycerol concentrations increased with exercise; free fatty acids did not change. There were no significant differences between RA and C in any of these metabolites. Norepinephrine concentrations were similar at rest but increased to a greater extent during exercise in RA than C (P less than 0.02). Epinephrine levels were also higher in RA than C at 60% VO2 max (NS); the two subjects in whom lactate was not lower with RA showed the greatest increase in epinephrine. Exercise in RA was associated with higher heart rates (P less than 0.05), blood pressures (NS), and ventilation (P less than 0.01). In hypercapnia the metabolic effects of acidosis are modified by increased levels of circulating catecholamines.  相似文献   

20.
Previously, by measuring myoglobin-associated PO(2) (P(Mb)O(2)) during maximal exercise, we have demonstrated that 1) intracellular PO(2) is 10-fold less than calculated mean capillary PO(2) and 2) intracellular PO(2) and maximum O(2) uptake (VO(2 max)) fall proportionately in hypoxia. To further elucidate this relationship, five trained subjects performed maximum knee-extensor exercise under conditions of normoxia (21% O(2)), hypoxia (12% O(2)), and hyperoxia (100% O(2)) in balanced order. Quadriceps O(2) uptake (VO(2)) was calculated from arterial and venous blood O(2) concentrations and thermodilution blood flow measurements. Magnetic resonance spectroscopy was used to determine myoglobin desaturation, and an O(2) half-saturation pressure of 3.2 Torr was used to calculate P(Mb)O(2) from saturation. Skeletal muscle VO(2 max) at 12, 21, and 100% O(2) was 0.86 +/- 0.1, 1.08 +/- 0.2, and 1.28 +/- 0.2 ml. min(-1). ml(-1), respectively. The 100% O(2) values approached twice that previously reported in human skeletal muscle. P(Mb)O(2) values were 2.3 +/- 0.5, 3.0 +/- 0.7, and 4.1 +/- 0.7 Torr while the subjects breathed 12, 21, and 100% O(2), respectively. From 12 to 21% O(2), VO(2) and P(Mb)O(2) were again proportionately related. However, 100% O(2) increased VO(2 max) relatively less than P(Mb)O(2), suggesting an approach to maximal mitochondrial capacity with 100% O(2). These data 1) again demonstrate very low cytoplasmic PO(2) at VO(2 max), 2) are consistent with supply limitation of VO(2 max) of trained skeletal muscle, even in hyperoxia, and 3) reveal a disproportionate increase in intracellular PO(2) in hyperoxia, which may be interpreted as evidence that, in trained skeletal muscle, very high mitochondrial metabolic limits to muscle VO(2) are being approached.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号