首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neuroscientific research has identified two fundamental components of empathy: shared emotional representations between self and other, and self–other distinction. The concept of shared representations suggests that during empathy, we co-represent another person''s affect by engaging brain and bodily functions underpinning the first-hand experience of the emotion we are empathizing with. This possible grounding of empathy in our own emotional experiences explains the necessity for self–other distinction, which is the capacity to correctly distinguish between our own affective representations and those related to the other. In spite of the importance of these two components in empathy, several aspects still remain controversial. This paper addresses some of them and focuses on (i) the distinction between shared activations versus representations, raising the question what shared representations entail in terms of the underlying neural mechanisms, (ii) the possible mechanisms behind self–other distinction in the cognitive and the affective domains, and whether they have distinct neural underpinnings and (iii) the consequences associated with a selective impairment of one of the two components, thereby addressing their importance in mental disorders such as autism spectrum disorders, psychopathy and alexithymia.  相似文献   

2.
Both developmental and neurophysiological research suggest a common coding between perceived and generated actions. This shared representational network is innately wired in humans. We review psychological evidence concerning the imitative behaviour of newborn human infants. We suggest that the mechanisms involved in infant imitation provide the foundation for understanding that others are 'like me' and underlie the development of theory of mind and empathy for others. We also analyse functional neuroimaging studies that explore the neurophysiological substrate of imitation in adults. We marshal evidence that imitation recruits not only shared neural representations between the self and the other but also cortical regions in the parietal cortex that are crucial for distinguishing between the perspective of self and other. Imitation is doubly revealing: it is used by infants to learn about adults, and by scientists to understand the organization and functioning of the brain.  相似文献   

3.
Pinel P  Piazza M  Le Bihan D  Dehaene S 《Neuron》2004,41(6):983-993
How are comparative judgments performed in the human brain? We scanned subjects with fMRI while they compared stimuli for size, luminance, or number. Regions involved in comparative judgments were identified using three criteria: task-related activation, presence of a distance effect, and interference of one dimension onto the other. We observed considerable overlap in the neural substrates of the three comparison tasks. Interestingly, the amount of overlap predicted the amount of cross-dimensional interference: in both behavior and fMRI, number interfered with size, and size with luminance, but number did not interfere with luminance. The results suggest that during comparative judgments, the relevant continuous quantities are represented in distributed and overlapping neural populations, with number and size engaging a common parietal spatial code, while size and luminance engage shared occipito-temporal perceptual representations.  相似文献   

4.
Memory for events and their spatial context: models and experiments   总被引:6,自引:0,他引:6  
The computational role of the hippocampus in memory has been characterized as: (i) an index to disparate neocortical storage sites; (ii) a time-limited store supporting neocortical long-term memory; and (iii) a content-addressable associative memory. These ideas are reviewed and related to several general aspects of episodic memory, including the differences between episodic, recognition and semantic memory, and whether hippocampal lesions differentially affect recent or remote memories. Some outstanding questions remain, such as: what characterizes episodic retrieval as opposed to other forms of read-out from memory; what triggers the storage of an event memory; and what are the neural mechanisms involved? To address these questions a neural-level model of the medial temporal and parietal roles in retrieval of the spatial context of an event is presented. This model combines the idea that retrieval of the rich context of real-life events is a central characteristic of episodic memory, and the idea that medial temporal allocentric representations are used in long-term storage while parietal egocentric representations are used to imagine, manipulate and re-experience the products of retrieval. The model is consistent with the known neural representation of spatial information in the brain, and provides an explanation for the involvement of Papez''s circuit in both the representation of heading direction and in the recollection of episodic information. Two experiments relating to the model are briefly described. A functional neuroimaging study of memory for the spatial context of life-like events in virtual reality provides support for the model''s functional localization. A neuropsychological experiment suggests that the hippocampus does store an allocentric representation of spatial locations.  相似文献   

5.
Abnormalities in the awareness and control of action   总被引:19,自引:0,他引:19  
Much of the functioning of the motor system occurs without awareness. Nevertheless, we are aware of some aspects of the current state of the system and we can prepare and make movements in the imagination. These mental representations of the actual and possible states of the system are based on two sources: sensory signals from skin and muscles, and the stream of motor commands that have been issued to the system. Damage to the neural substrates of the motor system can lead to abnormalities in the awareness of action as well as defects in the control of action. We provide a framework for understanding how these various abnormalities of awareness can arise. Patients with phantom limbs or with anosognosia experience the illusion that they can move their limbs. We suggest that these representations of movement are based on streams of motor commands rather than sensory signals. Patients with utilization behaviour or with delusions of control can no longer properly link their intentions to their actions. In these cases the impairment lies in the representation of intended movements. The location of the neural damage associated with these disorders suggests that representations of the current and predicted state of the motor system are in parietal cortex, while representations of intended actions are found in prefrontal and premotor cortex.  相似文献   

6.
When sounds occur with temporally structured patterns, we can feel a rhythm. To memorize a rhythm, perception of its temporal patterns and organization of them into a hierarchically structured sequence are necessary. On the other hand, rhythm perception can often cause unintentional body movements. Thus, we hypothesized that rhythm information can be manifested in two different ways; temporal and motor representations. The motor representation depends on effectors, such as the finger or foot, whereas the temporal representation is effector-independent. We tested our hypothesis with a working memory paradigm to elucidate neuronal correlates of temporal or motor representation of rhythm and to reveal the neural networks associated with these representations. We measured brain activity by fMRI while participants memorized rhythms and reproduced them by tapping with the right finger, left finger, or foot, or by articulation. The right inferior frontal gyrus and the inferior parietal lobule exhibited significant effector-independent activations during encoding and retrieval of rhythm information, whereas the left inferior parietal lobule and supplementary motor area (SMA) showed effector-dependent activations during retrieval. These results suggest that temporal sequences of rhythm are probably represented in the right fronto-parietal network, whereas motor sequences of rhythm can be represented in the SMA-parietal network.  相似文献   

7.
The presumed role of the primate sensorimotor system is to transform reach targets from retinotopic to joint coordinates for producing motor output. However, the interpretation of neurophysiological data within this framework is ambiguous, and has led to the view that the underlying neural computation may lack a well-defined structure. Here, I consider a model of sensorimotor computation in which temporal as well as spatial transformations generate representations of desired limb trajectories, in visual coordinates. This computation is suggested by behavioral experiments, and its modular implementation makes predictions that are consistent with those observed in monkey posterior parietal cortex (PPC). In particular, the model provides a simple explanation for why PPC encodes reach targets in reference frames intermediate between the eye and hand, and further explains why these reference frames shift during movement. Representations in PPC are thus consistent with the orderly processing of information, provided we adopt the view that sensorimotor computation manipulates desired movement trajectories, and not desired movement endpoints.  相似文献   

8.
Visual perception is based on both incoming sensory signals and information about ongoing actions. Recordings from single neurons have shown that corollary discharge signals can influence visual representations in parietal, frontal and extrastriate visual cortex, as well as the superior colliculus (SC). In each of these areas, visual representations are remapped in conjunction with eye movements. Remapping provides a mechanism for creating a stable, eye-centred map of salient locations. Temporal and spatial aspects of remapping are highly variable from cell to cell and area to area. Most neurons in the lateral intraparietal area remap stimulus traces, as do many neurons in closely allied areas such as the frontal eye fields the SC and extrastriate area V3A. Remapping is not purely a cortical phenomenon. Stimulus traces are remapped from one hemifield to the other even when direct cortico-cortical connections are removed. The neural circuitry that produces remapping is distinguished by significant plasticity, suggesting that updating of salient stimuli is fundamental for spatial stability and visuospatial behaviour. These findings provide new evidence that a unified and stable representation of visual space is constructed by redundant circuitry, comprising cortical and subcortical pathways, with a remarkable capacity for reorganization.  相似文献   

9.
Dynamic neural processing unrelated to changes in sensory input or motor output is likely to be a hallmark of cognitive operations. Here we show that neural representations of space in parietal cortex are dynamic while monkeys perform a spatial cognitive operation on a static visual stimulus. We recorded neural activity in area 7a during a visual maze task in which monkeys mentally followed a path without moving their eyes. We found that the direction of the followed path could be recovered from neuronal population activity. When the monkeys covertly processed a path that turned, the population representation of path direction shifted in the direction of the turn. This neural population dynamic took place during a period of unchanging visual input and showed characteristics of both serial and parallel processing. The data suggest that the dynamic evolution of parietal neuronal activity is associated with the progression of spatial cognitive operations.  相似文献   

10.
The firing rate of neurons in parietal area 7a of the behaving Rhesus monkey with its head fixed incorporates both visual and eye position information. This neural tuning is not in an ego-centered coordinate space. This physiological result was unexpected as behavioral deficits following parietal damage in human and monkey subjects suggested the existence of egocentric representations. A formulation to extract a world-centered system from area 7a neurons is presented that depends on the linearity of the eye position signal and the similarity of the equation describing the tuning of these neurons to the center of mass equation. This formulation permits the computation of the location of objects in world coordinates using either serial analysis of a single neuron's activity or parallel processing of a collection of neurons. Experimental predictions are made for the relationship between different parameters of angle of gaze neurons.  相似文献   

11.
听觉皮层信号处理   总被引:1,自引:0,他引:1  
王晓勤 《生命科学》2009,(2):216-221
听觉系统和视觉系统的不同之处在于:听觉系统在外周感受器和听皮层间具有更长的皮层下通路和更多的突触联系。该特殊结构反应了听觉系统从复杂听觉环境中提取与行为相关信号的机制与其他感觉系统不同。听皮层神经信号处理包括两种重要的转换机制,声音信号的非同构转换以及从声音感受到知觉层面的转换。听觉皮层神经编码机制同时也受到听觉反馈和语言或发声过程中发声信号的调控。听觉神经科学家和生物医学工程师所面临的挑战便是如何去理解大脑中这些转换的编码机制。我将会用我实验室最近的一些发现来阐述听觉信号是如何在原听皮层中进行处理的,并讨论其对于言语和音乐在大脑中的处理机制以及设计神经替代装置诸如电子耳蜗的意义。我们使用了结合神经电生理技术和量化工程学的方法来研究这些问题。  相似文献   

12.
The posterior parietal cortex has long been considered an ''association'' area that combines information from different sensory modalities to form a cognitive representation of space. However, until recently little has been known about the neural mechanisms responsible for this important cognitive process. Recent experiments from the author''s laboratory indicate that visual, somatosensory, auditory and vestibular signals are combined in areas LIP and 7a of the posterior parietal cortex. The integration of these signals can represent the locations of stimuli with respect to the observer and within the environment. Area MSTd combines visual motion signals, similar to those generated during an observer''s movement through the environment, with eye-movement and vestibular signals. This integration appears to play a role in specifying the path on which the observer is moving. All three cortical areas combine different modalities into common spatial frames by using a gain-field mechanism. The spatial representations in areas LIP and 7a appear to be important for specifying the locations of targets for actions such as eye movements or reaching; the spatial representation within area MSTd appears to be important for navigation and the perceptual stability of motion signals.  相似文献   

13.
Fujii N  Hihara S  Iriki A 《PloS one》2007,2(4):e397
Social brain function, which allows us to adapt our behavior to social context, is poorly understood at the single-cell level due largely to technical limitations. But the questions involved are vital: How do neurons recognize and modulate their activity in response to social context? To probe the mechanisms involved, we developed a novel recording technique, called multi-dimensional recording, and applied it simultaneously in the left parietal cortices of two monkeys while they shared a common social space. When the monkeys sat near each other but did not interact, each monkey's parietal activity showed robust response preference to action by his own right arm and almost no response to action by the other's arm. But the preference was broken if social conflict emerged between the monkeys-specifically, if both were able to reach for the same food item placed on the table between them. Under these circumstances, parietal neurons started to show complex combinatorial responses to motion of self and other. Parietal cortex adapted its response properties in the social context by discarding and recruiting different neural populations. Our results suggest that parietal neurons can recognize social events in the environment linked with current social context and form part of a larger social brain network.  相似文献   

14.
We derived attention response functions for different cortical areas by plotting neural activity (measured by fMRI) as a function of attentional load in a visual tracking task. In many parietal and frontal cortical areas, activation increased with load over the entire range of loads tested, suggesting that these areas are directly involved in attentional processes. However, in other areas (FEF and parietal area 7), strong activation was observed even at the lowest attentional load (compared to a passive baseline using identical stimuli), but little or no additional activation was seen with increasing load. These latter areas appear to play a different role, perhaps supporting task-relevant functions that do not vary with load, such as the suppression of eye movements.  相似文献   

15.
Posterior parietal cortex (PPC) and medial entorhinal cortex (MEC) are important elements of the neural circuit for space, but whether representations in these areas are controlled by the same factors is unknown. We recorded single units simultaneously in PPC and MEC of freely foraging rats and found that a subset of PPC cells are tuned to specific modes of movement irrespective of the animals' location or heading, whereas grid cells in MEC expressed static spatial maps. The behavioral correlates of PPC cells switched completely when the same animals ran in a spatially structured maze or when they ran similar stereotypic sequences in an open arena. Representations in PPC were similar in identical mazes in different rooms where grid cells completely realigned their firing fields. The data suggest that representations in PPC are determined by the organization of actions while cells in MEC are driven by spatial inputs.  相似文献   

16.

Background

In synaesthesia, sensations in a particular modality cause additional experiences in a second, unstimulated modality (e.g., letters elicit colour). Understanding how synaesthesia is mediated in the brain can help to understand normal processes of perceptual awareness and multisensory integration. In several neuroimaging studies, enhanced brain activity for grapheme-colour synaesthesia has been found in ventral-occipital areas that are also involved in real colour processing. Our question was whether the neural correlates of synaesthetically induced colour and real colour experience are truly shared.

Methodology/Principal Findings

First, in a free viewing functional magnetic resonance imaging (fMRI) experiment, we located main effects of synaesthesia in left superior parietal lobule and in colour related areas. In the left superior parietal lobe, individual differences between synaesthetes (projector-associator distinction) also influenced brain activity, confirming the importance of the left superior parietal lobe for synaesthesia. Next, we applied a repetition suppression paradigm in fMRI, in which a decrease in the BOLD (blood-oxygenated-level-dependent) response is generally observed for repeated stimuli. We hypothesized that synaesthetically induced colours would lead to a reduction in BOLD response for subsequently presented real colours, if the neural correlates were overlapping. We did find BOLD suppression effects induced by synaesthesia, but not within the colour areas.

Conclusions/Significance

Because synaesthetically induced colours were not able to suppress BOLD effects for real colour, we conclude that the neural correlates of synaesthetic colour experience and real colour experience are not fully shared. We propose that synaesthetic colour experiences are mediated by higher-order visual pathways that lie beyond the scope of classical, ventral-occipital visual areas. Feedback from these areas, in which the left parietal cortex is likely to play an important role, may induce V4 activation and the percept of synaesthetic colour.  相似文献   

17.
This review deals with the analysis of the modern literature concerning molecular mechanisms of secretory activity of gastric mucosa cells and their importance during development of different pathologies. Gastric acid secretion is regulated by paracrine, endocrine and neural systems. The result of these systems functioning at the molecular level is signal transduction pathways activation by histamine, acetylcholine, gastrin and other mediators. Coupling of these agents with specific receptors located on the basolateral plasma membrane of parietal cells modulates acid secretion. It was shown that protein phosphorylation enzymes play the significant role in realization of functional and proliferative activity of the stomach secretory cells in physiological and pathological states. The key role of tyrosine protein kinases associated with growth factors is considered, which take part in regulation of acid secretion, have trophic influence on mucosa cells, protect it from acute injuries, stimulate cell proliferation and accelerate ulcer healing.  相似文献   

18.
Connell L  Lynott D  Dreyer F 《PloS one》2012,7(3):e33321
Theories of embodied cognition suggest that conceptual processing relies on the same neural resources that are utilized for perception and action. Evidence for these perceptual simulations comes from neuroimaging and behavioural research, such as demonstrations of somatotopic motor cortex activations following the presentation of action-related words, or facilitation of grasp responses following presentation of object names. However, the interpretation of such effects has been called into question by suggestions that neural activation in modality-specific sensorimotor regions may be epiphenomenal, and merely the result of spreading activations from "disembodied", abstracted, symbolic representations. Here, we present two studies that focus on the perceptual modalities of touch and proprioception. We show that in a timed object-comparison task, concurrent tactile or proprioceptive stimulation to the hands facilitates conceptual processing relative to control stimulation. This facilitation occurs only for small, manipulable objects, where tactile and proprioceptive information form part of the multimodal perceptual experience of interacting with such objects, but facilitation is not observed for large, nonmanipulable objects where such perceptual information is uninformative. Importantly, these facilitation effects are independent of motor and action planning, and indicate that modality-specific perceptual information plays a functionally constitutive role in our mental representations of objects, which supports embodied assumptions that concepts are grounded in the same neural systems that govern perception and action.  相似文献   

19.
Lee K  Portman DS 《Current biology : CB》2007,17(21):1858-1863
Though sex differences in animal behavior are ubiquitous, their neural and genetic underpinnings remain poorly understood. In particular, the role of functional differences in the neural circuitry that is shared by both sexes has not been extensively investigated. We have addressed these issues with C. elegans olfaction, a simple innate behavior mediated by sexually isomorphic neurons. Though males respond to the same olfactory attractants as do hermaphrodites, we find that each sex has a characteristic repertoire of olfactory preferences. These are not secondary to other sex-specific behaviors and do not require signaling from the gonad. Sex-specific olfactory preferences are controlled by tra-1, the master regulator of C. elegans sexual differentiation. Moreover, the genetic masculinization of neurons in an otherwise wild-type hermaphrodite is sufficient to switch the sexual phenotype of olfactory preference behavior. These studies reveal novel and unexpected sex differences in a C. elegans sensory behavior that is exhibited by both sexes. Our results indicate that these differences are a function of the chromosomally determined sexual identity of shared neural circuitry.  相似文献   

20.
To form a percept of the multisensory world, the brain needs to integrate signals from common sources weighted by their reliabilities and segregate those from independent sources. Previously, we have shown that anterior parietal cortices combine sensory signals into representations that take into account the signals’ causal structure (i.e., common versus independent sources) and their sensory reliabilities as predicted by Bayesian causal inference. The current study asks to what extent and how attentional mechanisms can actively control how sensory signals are combined for perceptual inference. In a pre- and postcueing paradigm, we presented observers with audiovisual signals at variable spatial disparities. Observers were precued to attend to auditory or visual modalities prior to stimulus presentation and postcued to report their perceived auditory or visual location. Combining psychophysics, functional magnetic resonance imaging (fMRI), and Bayesian modelling, we demonstrate that the brain moulds multisensory inference via two distinct mechanisms. Prestimulus attention to vision enhances the reliability and influence of visual inputs on spatial representations in visual and posterior parietal cortices. Poststimulus report determines how parietal cortices flexibly combine sensory estimates into spatial representations consistent with Bayesian causal inference. Our results show that distinct neural mechanisms control how signals are combined for perceptual inference at different levels of the cortical hierarchy.

A combination of psychophysics, computational modelling and fMRI reveals novel insights into how the brain controls the binding of information across the senses, such as the voice and lip movements of a speaker.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号