首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Venezuelan river tetra, Astyanax bimaculatus juveniles of 34.1–36.7mm standard length and 0.83–1.0g wet weight were acclimated for four weeks to 24–33°C, which are approximate average minimum and maximum river temperatures throughout the year. The fish acclimated to 24, 27, 30, and 33°C were exposed for 10000 minutes at 35, 36, 37, 38, and 39°C to determine individual heat resistance times. To determine acclimation rates, the juveniles acclimated to 24 and 30°C were tested for individual heat resistance times at 39°C by changing acclimation temperatures. The individual heat resistance times were increased in accordance with an increase in acclimation temperature and a decrease in test temperature, indicating that acclimation level has a great influence on thermal resistance of the fish tested. As the fish were transferred from 24 to 30°C (upward acclimation), they completed their acclimation level in a few days, while those transferred from 30 to 24°C (downward acclimation) required about 14 days. It has reaffirmed the following general behavior: the rate of gain in thermal resistance is fast and the loss in heat tolerance is very slow. This physiological phenomenon is very important for tropical fish, which acclimates rapidly in rising temperature during the hot day and does not lose this level in decreasing temperature during the cool night. Consequently, a tropical fish can maintain its maximum resistance level, adapt well in thermally fluctuating tropical waters, and survive in lethally high temperatures caused by a sudden increase in temperature during hot day.  相似文献   

2.
The effect of temperature and oxygen on diazotrophic growth of the thermophilic cyanobacterium HTF (High Temperature Form) Chlorogloeopsis was investigated using cells grown in light-limited continuous culture at a dilution rate of 0.02 h-1. Diazotrophy was more sensitive to elevated temperatures than growth with combined nitrogen. The maximum temperature for growth of cultures gassed with CO2-enriched air was more than 55 °C but less than 60 °C with N2 as the sole nitrogen source, but between 60°C and 65°C when nitrate was present in the medium. The effect of temperature on nitrogenase activity, photosynthesis and respiration in the dark was determined using cells grown at 55°C. Maximal rates of all three processes were observed at 55°C and rates at 60°C during shortterm incubations were not less than 75% of the maximum. However, nitrogenase activity at 60°C was unstable and decayed at a rate of 2.2 h-1 under air and at 0.3 h-1 under argon. Photosynthesis and respiration were more stable at 60°C than anoxic nitrogen fixation. The upper temperature limits for diazotrophic growth thus seem to be set by the stability of nitrogenase.Abbreviations chl chlorophyll a - DCMU N-(3,4-dichlorophenyl) N,N-dimethylurea - Taps N-tris(hydroxymethyl)methyl-3-aminopropanesulfonic acid  相似文献   

3.
This study reports on the dieback and recovery of red-osier dogwood, Cornus sericea L. plants from near-lethal (NL, sublethal) stress after varying lengths of post-stress environment (PSE). Intact dormant stems were subjected to 47° C for one hour during either October, November or December, and then placed into either constant 0° C or 23° C (dark condition) or kept under natural conditions at Corvallis, OR. Plants exposed to NL-heat stress in October died prior to 9 weeks of 0° C PSE, while none of the plants from other PSE treatments showed signs of injury. For plants exposed to NL-heat stress during November and December, stemdieback occurred at 0° C after 12 and 15 weeks, respectively. None of the plants from the other PSE treatments were injured. Post-stress temperatures of 0° or 5° C following NL-heat in October were lethal while temperatures above 10° C allowed recovery. Post-stress exposure to 0° C injured excised stems within 48 h, whereas irreversible damage to whole plants occurred by two weeks. Dormant plants exposed in October to other stresses, e.g., freezing temperature and hydrogen cyanamide, at NL dosages showed that these stresses also caused plant dieback at 0° C and little or no dieback at 23° C PSE.Abbreviations NL Near-Lethal - PSE Post-Stress Environment  相似文献   

4.
The zonation and structure of phototrophic microbial mats were studied along two thermal gradients in sulfide-rich hot springs of southwest Iceland. The green, filamentous bacteriumChloroflexus and the unicellular, high-temperature form (HTF) ofMastigocladus formed mats growing up to a temperature limit of 62–66°C. The dominant phototrophs wereChloroflexus sp.,Mastigocladus laminosus, andPhormidium laminosum, respectively, at the three temperature intervals: >60°C, 60°C to 55–50°C, and <55–50°C. AChloroflexus mat growing at 60°C under 60M H2S was anoxic in the light with the exception of a 0.5 mm thick band of HTFMastigocladus which produced oxygen. The oxygenic photosynthesis of these H2S-sensitive cyanobacteria was probably dependent on a preceding sulfide depletion by the anoxygenicChloroflexus. Measurements of spectral radiance gradients with a fiberoptic microprobe showed maximum light attenuation by carotenoids and bacteriochlorophyllC. AM. laminosus mat growing at 52°C was oxic throughout and showed maximum light attenuation by carotenoids, chlorophyllA, and phycocyanin, but no detectable phycoerythrocyanin absorption.  相似文献   

5.
The proliferation of tench lymphocytes induced by mitogens was studied during the four seasons of the year. Fish were maintained under natural conditions of photoperiod and temperature (mean ± SD: 12±2°C in winter, 22±3°C in spring, 30±3°C in summer and 21±3°C in autumn). Cultures were performed in vitro at 22°C in all seasons and the results were compared. Subsequently, in seasons with extreme water temperatures, cultures in vitro were performed at the same temperature as that of the water (12°C in winter and 30°C in summer) and the results were compared seasonally at the seasonal temperature, i.e. at 22°C in spring, 30°C in summer, 22°C in autumn and 12°C in winter. Phytohemagglutinin, concanavalin A, lipolisaccharide from E. coli and pokeweed mitogen were used as mitogens. Studies performed at 22°C as assay temperature in all seasons showed profound seasonal changes: while in spring, summer and autumn the mitogenic response of lymphocytes to phytohemagglutinin, concanavalin A, lipolisaccharide from E. coli and pokeweed mitogen was very low, during winter the results obtained were significantly higher. However, when the assays were performed at the corresponding seasonal temperature the differences were not as pronounced between the different seasons, and the mitogenic responses of lymphocytes were found to be the lowest during the winter and the highest during the summer with all mitogens used. This fact suggests that immunosuppression occurs in winter and an immunostimulation occurs in summer. However, the higher response found in winter when assaying at 22°C suggests that this property of lymphocytes needs an assay temperature higher than the in vivo temperature in order to observe accurate mitogenic responses.Abbreviations Con A concanavalin A - cpm counts per minute - LPS E. coli lipolisaccharide - MS222 tricainemethane sulphonate - PBS phosphate-buffered saline - PHA phytohemagglutinin - PWM pokeweed mitogen - SI stimulation index  相似文献   

6.
The role of bud competence in the determination of flowering seasonality was studied in three Citrus cultivars, Bearss lime (Citrus latifolia Tan.), Fino lemon (C. limon [L.] Burm. f.) and Owari satsuma (C. unshiu (Mak.) Marc.), which differ in their adaptation to hot climates and their propensity to produce off-season blooms. Potted plants were kept in a greenhouse under non-inductive conditions (minimum temperature higher than 20°C), and periodically the flowering response was determined of a group of trees exposed for 30 days to an inductive temperature regime (15/8°C). A seasonal change in bud competence was demonstrated, and both bud sprouting and flower formation were highest when the low temperature regime was imposed during February and March. During the summer months, the low temperature regime resulted in a small increase in bud sprouting as compared to non-chilled trees, but only vegetative buds developed and no flowers were formed. The influence of environmental factors on the determination of bud competence was further studied. No effect of photoperiod was found, but raising the minimum air temperature above 25°C during 60 days, eliminated bud competence in Owari satsuma. In Bearss lime trees, the buds reacquired the competence after 4 months at 25/20°C, a temperature regime that does not induce flower formation. The reacquisition of competence was much faster at a lower temperature (15/8°C). A consistent relationship between the flowering response and DNA methylation in buds could not be demonstrated in all cultivars.  相似文献   

7.
Females of Zeiraphera canadensis Mut. & Free., the spruce bud moth, were reared in the laboratory at constant and alternating temperatures, and in an outdoor insectary, to (1) determine the effects of temperature, age and size on several reproductive parameters and, (2) to test the hypothesis that body size-temperature interactions influence longevity and realized fecundity. Egg maturation was linearly related to age and large moths developed eggs at a higher rate than small ones. Mcan lifetime oviposition rate reached a maximum and remained stable at temperatures 20° C while the mean lifetime rate of egg maturation increased linearly with temperature, indicating that higher temperatures adversely affect oviposition. The production of nonviable eggs increased with age but also with temperature, suggesting high temperature (25° C) reduces egg quality and/or hinders fertilization. The realized fecundity and longevity of females reared under an alternating temperature regime (mean 20° C) was significantly less than that of females reared at constant 20° C. Similar realized fecundity, longevity and mean lifetime oviposition rates for females reared at temperatures alternating between 10 and 25° C (mean 20° C) and those at constant 25° C reflected the inability of females to recover from elevated diurnal temperatures. Longevity was positively related to female body size at constant 15 and 20° C but the relationships were negative for moths exposed to diurnal temperatures equal to or exceeding 25° C. Due to the reduced longevity of large moths at high temperatures, linear regressions between size and realized fecundity were only significant at constant temperatures 20° C. At higher temperatures, the size-fecundity relationship became curvilinear as a result of the diminished reproductive output of large individuals. Reduced fecundity and longevity of large females at high temperatures may have been due to elevated internal temperatures of large-bodied moths. Large females in a controlled-environment chamber maintained at 25° C developed an internal temperature excess (i.e. temperature above ambient) of nearly 2° C while small-bodied females exceeded ambient by only 0.3° C. However, when held at 20° C, the temperature excess of large-bodied moths was much less than 1° C and small-bodied females did not differ from ambient. Such interactions between temperature and body size suggest that there should be stabilizing selection toward moderate-sized individuals and may explain the absence of size-related effects on fecundity and longevity previously reported for several other lepidopterans.  相似文献   

8.
The Alkor-Deep (140 m), which forms part of a depression system in the northern Kattegat channel east of the island of Læsø (Denmark), is the location of a self sustaining population of Northern krill, Meganyctiphanes norvegica (Euphausiacea). This population is exposed to one of the most pronounced thermal gradients within the distributional range of this pelagic crustacean. During summer, the temperature of the water column ranges between 4 and 6 in the deep to 16 °C near the surface which results in the krill being exposed to temperature differences of 8–10 °C during diel vertical migration. Oxygen consumption rates were used to investigate the physiological adaptation of the animal to such gradients in temperature. The rates were found to increase exponentially from 31 mol O2 h-1 gdw -1 at 4 °C to 72 mol O2 h-1 gdw -1 at 16 °C, giving a Q 10-value of 2.0, and indicating that physiological adaptation to varying thermal conditions does not take place. Behavioural adaptations are discussed which may help the krill to cope with large temperature gradients in their environment.  相似文献   

9.
Summary The gas exchange characteristics of two C3 desert annuals with contrasting phenologies, Geraea canescens T. & G. (winter-active) and Dicoria canescens T. & G. (summer-active), both Asteraceae, were determined for plants grown under a moderate (25°/15° C, day/night temperature) and a high (40°/27° C) growth temperature regime. Both species had high photosynthetic capacities; maximum net photosynthetic rates were 38 and 48 mol CO2 m-2 s-1 for Geraea and Dicoria, respectively, and were not influenced by growth temperature regime. However, the temperature optima of net photosynthesis shifted from 26° C for Geraea and from 28° C for Dicoria when grown under the moderate temperature regime to 31° C for both species when grown under the high temperature regime. Although the shifts in temperature optima were smaller than those observed for many desert perennials, both species showed substantial increases in photosynthetic rates at high temperatures when grown at 40°/27° C. In general, the gas exchange characteristics of Geraea and Dicoria were very similar to each other and to those reported for other C3 desert annuals. Geraea and Dicoria experienced different seasonal patterns of change in several environmental variables. For Geraea, maximum daily air temperature (T a) increased from 24° to 41° C over its growing season while Dicoria experienced maximum T a at midseason (45° C). At points during their respective growing seasons when midday T a ranged between 35° and 40° C, leaf temperatures (T 1) of both species were below T a and, therefore, were closer to the photosynthetic temperature optima measured in the laboratory. Leaf conductances to water vapor (g 1) and water potentials () were high at these times, but later in their growing seasons Dicoria maintained high g 1 and while Geraea showed large decreases in these quantities. The ability of Dicoria to successfully growth through the hot, dry summers of the California deserts may be related to its ability to acquire the available water in locally mesic habitats.  相似文献   

10.
Blood flow to the testis, measured by the133-Xenon isotope clearance technique, initially increased after rams were exposed to elevated (32°C) temperature. However, after 5 and 7 days continuous exposure, blood flow decreased significantly. Similar changes in blood flow to the testis were found during whole body exposure to elevated temperature, or when the temperature of the testis was increased by scrotal heating. After one week of heating the wall of the spermatic artery in the middle region of the pampiniform plexus had thickened, and the arterial lumen had decreased significantly. The PGF 2 content in the testis of rams exposed to elevated temperature increased significantly. It is tentatively postulated that the higher levels of PGF 2 in the testis of rams exposed to elevated temperature may be responsible for impaired spermatogenic function by constricting the spermatic artery in the pampiniform plexus region and thereby reducing blood flow to the testis.Published with approval of the Director of Kentucky Agricultural Experiment Station as Journal Article 75-5-150.Presented at the Seventh International Biometeorological Congres, 17–23 August 1975. College Park, Maryland, U.S.A.  相似文献   

11.
Females of the migrant skipper, Parnara guttata guttata, that are reared under lower temperatures lay smaller eggs. The adaptive significance of egg size plasticity in response to temperature is unknown in this species. We suggest, based on the following experimental results, that P. g. guttata uses temperature as an indirect cue to predict the host condition (leaf toughness) of the next generation. First, larvae were reared under the typical conditions of temperature and photoperiod experienced during the immature stages in the first, second, and overwintering (third) generations (LD 16:8 at 25°C, LD 14:10 at 25°C and LD 14:10 at 20°C). Females reared under LD14:10 at 20°C produced more, smaller eggs than those reared under LD14:10 and LD16:8 at 25°C. Secondly, survival rates of first instar larvae derived from females reared under the three photoperiod/temperature treatments were measured on young soft rice leaves (soft), or tough, old rice leaves (tough). Survival rates of hatchlings reared on soft and tough leaves did not differ when females were reared under LD16:8 and LD14:10 at 25°C. However, hatchling survival was significantly higher on soft than on tough leaves when females were reared under LD14:10 at 20°C. Thirdly, we found that egg size plasticity in response to temperature in P. g. guttata may be a threshold response. Temperatures below 20°C experienced during the immature stages may be effective for production of smaller and more eggs in the overwintering generation of P. g. guttata.  相似文献   

12.
Hagiwara  Atsushi  Hino  Akinori 《Hydrobiologia》1989,186(1):415-421
The marine rotifer Brachionus plicatilis typicus (Clone 8105A, Univ. of Tokyo) was cultured in 500 ml beakers to form resting eggs. Tetraselmis tetrathele was used as a culture food. Just after formation, resting eggs were exposed to various temperature (5–25 °C) and light regimes (24L: OD and OL : 24D). When eggs were exposed to light just after formation, the eggs hatched sporadically over a month. No hatching was observed for six months when eggs were preserved under dark conditions regardless of the temperature. These eggs hatched simultaneously after being exposed to light and eggs preserved at 5 °C showed twice as high hatching rate (40%) as that of eggs preserved at 15–25 °C (24%). Clones from resting eggs that were kept under different temperature and light regimes were reared individually to the third generation. Incubation at 25 °C with lighting produced the highest (5.4% and 5.2 %) rate of mictic females during their 2nd and 3rd generations, respectively. The lowest rates (0 and 1.5%) were found when the eggs were kept at 5 °C in total darkness for six months. A lower rate of amictic female production was found in clones with higher rates of mixis.  相似文献   

13.
The European common lizard (Lacerta vivipara) is widely distributed throughout Eurasia and is one of the few Palaearctic reptiles occurring above the Arctic Circle. We investigated the cold-hardiness of L. vivipara from France which routinely encounter subzero temperatures within their shallow hibernation burrows. In the laboratory, cold-acclimated lizards exposed to subfreezing temperatures as low as -3.5°C could remain unfrozen (supercooled) for at least 3 weeks so long as their microenvironment was dry. In contrast, specimens cooled in contact with ambient ice crystals began to freeze within several hours. However, such susceptibility to inoculative freezing was not necessarily deleterious since L. vivipara readily tolerated the freezing of its tissues, with body surface temperatures as low as -3.0°C during trials lasting up to 3 days. Freezing survival was promoted by relatively low post-nucleation cooling rates (0.1°C·h-1) and apparently was associated with an accumulation of the putative cryoprotectant, glucose. The cold-hardiness strategy of L. vivipara may depend on both supercooling and freeze tolerance capacities, since this combination would afford the greatest likelihood of surviving winter in its dynamic thermal and hydric microenvironment.Abbreviations bm body mass - SVL snout-vent length - Tb body surface temperature - T c crystallization temperature  相似文献   

14.
The capacity of Argyroxiphium sandwicense (silverword) seedlings to acclimate photosynthetic processes to different growing temperatures, as well as the tolerance of A. sandwicense to temperatures ranging from –15 to 60° C, were analyzed in a combination of field and laboratory studies. Altitudinal changes in temperature were also analyzed in order to explain the observed spatial distribution of A. sandwicense. A. sandwicense (Asteraceae) is a giant rosette plant that grows at high elevation on two Hawaiian volcanoes, where nocturnal subzero temperatures frequently occur. In addition, the soil temperatures at midday in the open alpine vegetation can exceed 60° C. In marked contrast to this large diurnal temperature variation, the seasonal variation in temperature is very small due to the tropical maritime location of the Hawaiian archipelago. Diurnal changes of soil and air temperature as well as photosynthetic photon flux density were measured on Haleakala volcano during four months. Seedlings were grown in the laboratory, from seeds collected in ten different A. sandwicense populations on Haleakala volcano, and maintained in growth chambers at 15/5, 25/15, and 30/25° C day/night temperatures. Irreversible tissue damage was determined by measuring electrolyte leakage of leaf samples. For seedlings maintained at each of the three different day/night temperatures, tissue damage occurred at –10° C due to freezing and at about 50° C due to high temperatures. Tissue damage occurred immediately after ice nucleation suggesting that A. sandwicense seedlings tend to avoid ice formation by permanent supercooling. Seedlings maintained at different day/night temperatures had similar maximum photosynthetic rates (5 mol m–2 s–1) and similar optimum temperatures for photosynthesis (about 16° C). Leaf dark respiration rates compared at identical temperatures, however, were substantially higher for seedlings maintained at low temperatures, but almost perfect homeostasis is observed when compared at their respective growing conditions. The lack of acclimation in terms of frost resistance and tolerance to high temperatures, as well as in terms of the optimum temperature for photosynthesis, may contribute to the restricted altitudinal range of A. sandwicense. The small seasonal temperature variations in the tropical environment where this species grows may have prevented the development of mechanisms for acclimation to longterm temperature changes.  相似文献   

15.
This study reports on the effects of growth temperature on the secretion and some properties of the xylanase and -xylosidase activities produced by a thermotolerant Aspergillus phoenicis. Marked differences were observed when the organism was grown on xylan-supplemented medium at 25 °C or 42 °C. Production of xylanolytic enzymes reached maximum levels after 72 h of growth at 42 °C; and levels were three- to five-fold higher than at 25 °C. Secretion of xylanase and -xylosidase was also strongly stimulated at the higher temperature. The optimal temperature was 85 °C for extracellular and 90 °C for intracellular -xylosidase activity, independent of the growth temperature. The optimum temperature for extracellular xylanase increased from 50 °C to 55 °C when the fungus was cultivated at 42 °C. At the higher temperature, the xylanolytic enzymes produced by A. phoenicis showed increased thermostability, with changes in the profiles of pH optima. The chromatographic profiles were distinct when samples obtained from cultures grown at different temperatures were eluted from DEAE–cellulose and Biogel P-60 columns.  相似文献   

16.
Mature females of the copepodTemora longicornis from the Marsdiep tidal inlet were incubated at ambient water temperature during the winter of 1989/1990 to estimate their egg production during 24 hours. Throughout winter this production remained at a level of 0 to 10 eggs per female. In March a steep rise to 60 to 80 eggs coincided with an equally steep rise in chlorophyll-a from 4 to 20 g.l–1. Excess food given during incubation tended to increase the observed production rate only in October at relatively high temperature. Additive effects of rising food level and temperature on daily egg production were found in spring. In March and April 1988 and 1990 the observed maximum daily egg production per female increased from about 20 at 5°C and 5 g.l–1 chlorophyll to 70 at almost 10°C and 20 g.l–1. The egg production in winter gives a prebloom potential to maintain a stock of premature stages ready to utilize the algal spring bloom. Early spawning before April can also contribute to the development of the abundance peak of adults in May–June. Due to growth rates increasing with temperature in the months March and April, most of the adults at their peak density may have hatched from eggs before the period of maximum egg production rate at the end of April. The exceptionally high production rate observed at the end of March may be related to a developingPhaeocystis bloom.  相似文献   

17.
Bunce  J 《Journal of experimental botany》1998,49(326):1555-1561
The temperature dependencies of the solubility of carbon dioxide and oxygen in water and the temperature dependency of the kinetic characteristics of the ribulose-1,5 bisphosphate carboxylase/oxygenase (Rubisco) enzyme result in the short-term stimulation of photosynthesis with a doubling of carbon dioxide from 350 to 700 mol mol-1 usually decreasing from about 90% at 30C to about 25% at 10C at high photon flux. In field-grown wheat and barley, the expected values at 30°C were observed, but also values as high as 60% at 10°C. The much larger than expected stimulation at cool temperatures in these species also occurred in plants grown at 15°C, but not at 23°C in controlled environment chambers. Gas exchange analysis indicated that an unusually high diffusive limitation was not an explanation for the large response. Assessment of the apparent in vivo specificity of Rubisco by determining the carbon dioxide concentration at which carboxylation equalled carbon dioxide release from oxygenation, indicated that growth at low temperatures altered the apparent enzyme specificity in these species compared to these species grown at the warmer temperature. Inserting the observed specificities into a biochemical model of photosynthesis indicated that altered Rubisco specificity was consistent with the observed rates of assimilation. Whether altered apparent Rubisco specificity is caused by altered stoichiometry of photorespiration or an actual change in enzyme specificity, the results indicate that the temperature dependence of the stimulation of photosynthesis by elevated carbon dioxide may vary greatly with species and with prior exposure to low temperature.Keywords: Barley, carbon dioxide, photosynthesis, temperature, wheat.   相似文献   

18.
The ability of the sweet potato whitefly, Bemisia tabaci Gennad., to survive a range of environmental conditions was investigated in the laboratory. The range of temperature and humidity investigated corresponds to the normal climatic range during B. tabaci's summer migration in Israel. Adult whiteflies confined to small test cages were exposed to combinations of temperature (25, 30, 35, and 41 °C) and relative humidity (20, 50, 80, and 100%) for periods of 2, 4, or 6 h.A logistic regression model describing the four-dimensional surface defining percent survival as a function of time, temperature, and humidity was developed. Using stepwise regression to exclude non-significant terms, the linear predictor included temperature, and the products of temperature and time, and humidity and time. The model accounted for 75% of the variance. A reparameterization of the fitted regression model suggests that survival potential is conditioned by temperature conditions prevailing during the previous 10 h.Whitefly survival after 2 h exposure ranged from 90% survival at 20°C and 100% RH, to <2% survival at 41°C and 20% r.h.. No whiteflies survived more than 2 h exposure at these latter extremes of temperature and humidity. Survival rates decreased slightly after experimental whiteflies were kept in a cage with food a further 20 h at 25±2°C, 55±5% r.h. Investigations of the effects of hunger and virus infection, showed that both increased mortality.  相似文献   

19.
Grass pollen is an important risk factor for allergic rhinitis and asthma in Australia and is the most prevalent pollen component of the aerospora of Brisbane, accounting for 71.6% of the annual airborne pollen load. A 5-year (June 1994–May 1999) monitoring program shows the grass pollen season to occur during the summer and autumn months (December–April), however the timing of onset and intensity of the season vary from year to year. During the pollen season, Poaceae counts exceeding 30 grains m–3 were recorded on 244 days and coincided with maximum temperatures of 28.1 ± 2.0 °C. In this study, statistical associations between atmospheric grass pollen loads and several weather parameters, including maximum temperature, minimum temperature and precipitation, were investigated. Spearmans correlation analysis demonstrated that daily grass pollen counts were positively associated (P < 0.0001) with maximum and minimum temperature during each sampling year. Precipitation, although considered a less important daily factor (P < 0.05), was observed to remove pollen grains from the atmosphere during significant periods of rainfall. This study provides the first insight into the influence of meteorological variables, in particular temperature, on atmospheric Poaceae pollen counts in Brisbane. An awareness of these associations is critical for the prevention and management of allergy and asthma for atopic individuals within this region.  相似文献   

20.
Salmonella typhimurium is a major foodborne microbial pathogen which primarily contaminates poultry products causing salmonellosis in humans. S. typhimurium LT2 cultures, when transferred from 37 °C to 5 °C or 10 °C, showed an initial lag period in growth with an approximate generation time of 10–25 h. Western blot assay using E. coli CS7.4 antibody and analysis of radiolabeled total cellular proteins from S. typhimurium cultures after exposure to 10 °C or 5 °C showed elevated expression of a major cold shock protein, CS7.4. Identification of a decreased level of CS7.4 at 37 °C suggests that the expression of this protein may require a large temperature downshift. Putative regulatory protein binding segment on the 5-untranslated region referred as Fragment 7 in S. typhimurium exhibited a 90.6% and a 56.25% nucleotide sequence identity when compared with the Fragment 7 of E. coli and S. enteritidis, respectively. The differences in the nucleotide sequence within the Fragment 7 between S. typhimurium and S. enteritidis may explain the differential expression of CspA at 37 °C. The nucleotide sequence of the open reading frame of S. typhimurium cspA gene showed a single base difference at 816 bp position from a G to a C which altered the amino acid residue from a glycine to an alanine. In addition to CspA, an elevated expression of a 105 kDa, and decreased expression of 6 proteins were evidenced when cultures of S. typhimurium were exposed to 10 °C or 5 °C. Differential expression of the CspA and other proteins in S. typhimurium following exposure to cold temperatures suggest that adaptation and continued growth and survival at cold temperatures in this pathogen may be aided by these cold-responsive proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号