首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The potential for humic substances to stimulate the reduction of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) was investigated. This study describes a novel approach for the remediation of RDX-contaminated environments using microbially mediated electron shuttling. Incubations without cells demonstrated that reduced AQDS transfers electrons directly to RDX, which was reduced without significant accumulation of the nitroso intermediates. Three times as much reduced AQDS (molar basis) was needed to completely reduce RDX. The rate and extent of RDX reduction differed greatly among electron shuttle/acceptor amendments for resting cell suspensions of Geobacter metallireducens and G. sulfurreducens with acetate as the sole electron donor. AQDS and purified humic substances stimulated the fastest rate of RDX reduction. The nitroso metabolites did not significantly accumulate in the presence of AQDS or humic substances. RDX reduction in the presence of poorly crystalline Fe(III) was relatively slow and metabolites transiently accumulated. However, adding humic substances or AQDS to Fe(III)-containing incubations increased the reduction rates. Cells of G. metallireducens alone reduced RDX; however, the rate of RDX reduction was slow relative to AQDS-amended incubations. These data suggest that extracellular electron shuttle-mediated RDX transformation is not organism specific but rather is catalyzed by multiple Fe(III)- and humic-reducing species. Electron shuttle-mediated RDX reduction may eventually become a rapid and effective cleanup strategy in both Fe(III)-rich and Fe(III)-poor environments.  相似文献   

2.
The potential for humic substances to stimulate the reduction of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) was investigated. This study describes a novel approach for the remediation of RDX-contaminated environments using microbially mediated electron shuttling. Incubations without cells demonstrated that reduced AQDS transfers electrons directly to RDX, which was reduced without significant accumulation of the nitroso intermediates. Three times as much reduced AQDS (molar basis) was needed to completely reduce RDX. The rate and extent of RDX reduction differed greatly among electron shuttle/acceptor amendments for resting cell suspensions of Geobacter metallireducens and G. sulfurreducens with acetate as the sole electron donor. AQDS and purified humic substances stimulated the fastest rate of RDX reduction. The nitroso metabolites did not significantly accumulate in the presence of AQDS or humic substances. RDX reduction in the presence of poorly crystalline Fe(III) was relatively slow and metabolites transiently accumulated. However, adding humic substances or AQDS to Fe(III)-containing incubations increased the reduction rates. Cells of G. metallireducens alone reduced RDX; however, the rate of RDX reduction was slow relative to AQDS-amended incubations. These data suggest that extracellular electron shuttle-mediated RDX transformation is not organism specific but rather is catalyzed by multiple Fe(III)- and humic-reducing species. Electron shuttle-mediated RDX reduction may eventually become a rapid and effective cleanup strategy in both Fe(III)-rich and Fe(III)-poor environments.  相似文献   

3.
Anaerobic benzene degradation   总被引:1,自引:0,他引:1  
Although many studies have indicated that benzene persists under anaerobic conditions in petroleum-contaminated environments, it has recently been documented that benzene can be anaerobically oxidized with most commonlyconsidered electron acceptors for anaerobic respiration. These include: Fe(III),sulfate, nitrate, and possibly humic substances. Benzene can also be convertedto methane and carbon dioxide under methanogenic conditions. There is evidencethat benzene can be degraded under in situ conditions in petroleum-contaminatedaquifers in which either Fe(III) reduction or methane production is the predominant terminal electron-accepting process. Furthermore, evidence from laboratory studies suggests that benzene may be anaerobically degraded in petroleum-contaminated marine sediments under sulfate-reducing conditions. Laboratory studies have suggested that within the Fe(III) reduction zone of petroleum-contaminated aquifers, benzene degradation can be stimulated with the addition of synthetic chelators which make Fe(III) more available for microbial reduction. The addition of humic substances and other compounds that contain quinone moieties can also stimulate anaerobic benzene degradation in laboratory incubations of Fe(III)-reducing aquifer sediments by providing an electron shuttle between Fe(III)-reducing microorganisms and insoluble Fe(III) oxides. Anaerobic benzene degradation in aquifer sediments can be stimulated with the addition of sulfate, but in some instances an inoculum of benzene-oxidizing,sulfate-reducing microorganisms must also be added. In a field trial, sulfate addition to the methanogenic zone of a petroleum-contaminated aquifer stimulated the growth and activity of sulfate-reducing microorganisms and enhanced benzene removal. Molecular phylogenetic studies have provided indications of what microorganisms might be involved in anaerobic benzene degradation in aquifers. The major factor limiting further understanding of anaerobic benzene degradation is the lack of a pure culture of an organism capable of anaerobic benzene degradation.  相似文献   

4.
Humus-feeding macroinvertebrates play an important role in the transformation of soil organic matter. Their diet contains significant amounts of redox-active components such as iron minerals and humic substances. In soil-feeding termites, acid-soluble Fe(III) and humic acids are almost completely reduced during gut passage. Here, we show that the reduction of Fe(III) and humic acids takes place also in the alkaline guts of scarab beetle larvae. Sterilized gut homogenates of Pachnoda ephippiata no longer converted Fe(III) to Fe(II), indicating an essential role of the gut microbiota in the process. From Fe(III)-reducing enrichment cultures inoculated with highly diluted gut homogenates, we isolated several facultatively anaerobic, alkali-tolerant bacteria that were closely related to metal-reducing isolates in the Bacillus thioparans group. Strain PeC11 showed a remarkable capacity for dissimilatory Fe(III) reduction, both at pH 7 and 10. Rates were strongly stimulated by the addition of the redox mediator 2,6-antraquinone disulfonate and by redox-active components in the fulvic-acid fraction of humus. Although the contribution of strain PeC11 to intestinal Fe(III) reduction in P. ephippiata remains to be further elucidated, our results corroborate the hypothesis that the lack of oxygen and the solubilization of humic substances in the extremely alkaline guts of humivorous soil fauna provide favorable conditions for the efficient reduction of Fe(III) and humic substances by a primarily fermentative microbiota.  相似文献   

5.
An enrichment culture capable of naphthalene mineralization reduced Fe(III) oxides without direct contact in anaerobic soil microcosms when the Fe(III) was placed in dialysis membranes or entrapped within alginate beads. Both techniques demonstrated that a component in soil, possibly humic materials, facilitated Fe(III) reduction when direct contact between cells and Fe(III) was not possible. The addition of the synthetic Fe(III) chelator, nitrilotriacetic acid (NTA), to soil enhanced Fe(III) reduction across the dialysis membrane and alginate beads, with the medium changing from clear to a dark brown color. An NTA-soil extract was more effective in Fe(III) reduction than the extracted soil itself. Characteristics of the NTA extract were consistent with that of humic substances. The results indicate that NTA improved Fe(III) reduction not by Fe(III) solubilization but by extraction of humic substances from soil into the aqueous medium. This is the first study in which stimulation of Fe(III) reduction through the addition of chemical chelators is shown to be due to the extraction of electron-shuttling compounds from the soil and not to solubilization of the Fe(III) and indicates that mobilization of humic materials could be an important component of anaerobic biostimulation.  相似文献   

6.
An enrichment culture capable of naphthalene mineralization reduced Fe(III) oxides without direct contact in anaerobic soil microcosms when the Fe(III) was placed in dialysis membranes or entrapped within alginate beads. Both techniques demonstrated that a component in soil, possibly humic materials, facilitated Fe(III) reduction when direct contact between cells and Fe(III) was not possible. The addition of the synthetic Fe(III) chelator, nitrilotriacetic acid (NTA), to soil enhanced Fe(III) reduction across the dialysis membrane and alginate beads, with the medium changing from clear to a dark brown color. An NTA-soil extract was more effective in Fe(III) reduction than the extracted soil itself. Characteristics of the NTA extract were consistent with that of humic substances. The results indicate that NTA improved Fe(III) reduction not by Fe(III) solubilization but by extraction of humic substances from soil into the aqueous medium. This is the first study in which stimulation of Fe(III) reduction through the addition of chemical chelators is shown to be due to the extraction of electron-shuttling compounds from the soil and not to solubilization of the Fe(III) and indicates that mobilization of humic materials could be an important component of anaerobic biostimulation.  相似文献   

7.
Of all the terminal electron acceptors, Fe(III) is the most naturally abundant in many subsurface environments. Fe(III)-reducing microorganisms are phylogenetically diverse and have been isolated from a variety of sources. Unlike most electron acceptors, Fe(III) has a very low solubility and is usually present as insoluble oxides at neutral pH. The mechanisms by which microorganisms access and reduce insoluble Fe(III) are poorly understood. Initially, it was considered that microorganisms could only reduce insoluble Fe(III) through direct contact with the oxide. However, recent studies indicate that extracellular electron shuttling or Fe(III)-chelating compounds may alleviate the need for cell–oxide contact. These include microbially secreted compounds or exogenous electron shuttling agents, mainly from humic substances. Electron shuttling via humic substances is likely a significant process for Fe(III) reduction in subsurface environments. This paper reviews the various mechanisms by which Fe(III) reduction may be occurring in pure culture and in soils and sediments.  相似文献   

8.
Deinococcus radiodurans is an exceptionally radiation-resistant microorganism capable of surviving acute exposures to ionizing radiation doses of 15,000 Gy and previously described as having a strictly aerobic respiratory metabolism. Under strict anaerobic conditions, D. radiodurans R1 reduced Fe(III)-nitrilotriacetic acid coupled to the oxidation of lactate to CO2 and acetate but was unable to link this process to growth. D. radiodurans reduced the humic acid analog anthraquinone-2,6-disulfonate (AQDS) to its dihydroquinone form, AH2DS, which subsequently transferred electrons to the Fe(III) oxides hydrous ferric oxide and goethite via a previously described electron shuttle mechanism. D. radiodurans reduced the solid-phase Fe(III) oxides in the presence of either 0.1 mM AQDS or leonardite humic acids (2 mg ml−1) but not in their absence. D. radiodurans also reduced U(VI) and Tc(VII) in the presence of AQDS. In contrast, Cr(VI) was directly reduced in anaerobic cultures with lactate although the rate of reduction was higher in the presence of AQDS. The results are the first evidence that D. radiodurans can reduce Fe(III) coupled to the oxidation of lactate or other organic compounds. Also, D. radiodurans, in combination with humic acids or synthetic electron shuttle agents, can reduce U and Tc and thus has potential applications for remediation of metal- and radionuclide-contaminated sites where ionizing radiation or other DNA-damaging agents may restrict the activity of more sensitive organisms.  相似文献   

9.
The bacterium Geobacter sulfurreducens can transfer electrons to quinone moieties of humic substances or to anthraquinone-2,6-disulfonate (AQDS), a model for the humic acids. The reduced form of AQDS (AH2QDS) can also be used as energy source by G. sulfurreducens. Such bidirectional utilization of humic substances confers competitive advantages to these bacteria in Fe(III) enriched environments. Previous studies have shown that the triheme cytochrome PpcA from G. sulfurreducens has a bifunctional behavior toward the humic substance analogue. It can reduce AQDS but the protein can also be reduced by AH2QDS. Using stopped-flow kinetic measurements we were able to demonstrate that other periplasmic members of the PpcA-family in G. sulfurreducens (PpcB, PpcD and PpcE) also showed the same behavior. The extent of the electron transfer is thermodynamically controlled favoring the reduction of the cytochromes. NMR spectra recorded for 13C,15N-enriched samples in the presence increasing amounts of AQDS showed perturbations in the chemical shift signals of the cytochromes. The chemical shift perturbations on cytochromes backbone NH and 1H heme methyl signals were used to map their interaction regions with AQDS, showing that each protein forms a low-affinity binding complex through well-defined positive surface regions in the vicinity of heme IV (PpcB, PpcD and PpcE) and I (PpcE). Docking calculations performed using NMR chemical shift perturbations allowed modeling the interactions between AQDS and each cytochrome at a molecular level. Overall, the results obtained provided important structural-functional relationships to rationalize the microbial respiration of humic substances in G. sulfurreducens.  相似文献   

10.
Recovery of Humic-Reducing Bacteria from a Diversity of Environments   总被引:17,自引:6,他引:11       下载免费PDF全文
To evaluate which microorganisms might be responsible for microbial reduction of humic substances in sedimentary environments, humic-reducing bacteria were isolated from a variety of sediment types. These included lake sediments, pristine and contaminated wetland sediments, and marine sediments. In each of the sediment types, all of the humic reducers recovered with acetate as the electron donor and the humic substance analog, 2,6-anthraquinone disulfonate (AQDS), as the electron acceptor were members of the family Geobacteraceae. This was true whether the AQDS-reducing bacteria were enriched prior to isolation on solid media or were recovered from the highest positive dilutions of sediments in liquid media. All of the isolates tested not only conserved energy to support growth from acetate oxidation coupled to AQDS reduction but also could oxidize acetate with highly purified soil humic acids as the sole electron acceptor. All of the isolates tested were also able to grow with Fe(III) serving as the sole electron acceptor. This is consistent with previous studies that have suggested that the capacity for Fe(III) reduction is a common feature of all members of the Geobacteraceae. These studies demonstrate that the potential for microbial humic substance reduction can be found in a wide variety of sediment types and suggest that Geobacteraceae species might be important humic-reducing organisms in sediments.  相似文献   

11.
With the use of an alkaliphilic bacterium, Corynebacterium humireducens MFC-5, this study investigated the reduction of goethite (α-FeOOH) and degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) mediated by different humic substances (humics) and quinones in alkaline conditions (pH of 9.0). The results indicated that (i) using sucrose as the electron donor, the strain MFC-5 was capable of reducing anthraquinone-2,6-disulfonic acid (AQDS), anthraquinone-2-disulfonic acid (AQS), anthraquinone-2-carboxylic acid (AQC), humic acid (HA) and fulvic acid (FA), and its reducing capability ranked as AQC > AQS > AQDS > FA > HA; (ii) the anaerobic reduction of α-FeOOH and 2,4-D by the strain was insignificant, while the reductions were greatly enhanced by the addition of quinones/humics serving as redox mediators; (iii) the Fe(III) reduction rate was positively related to the content of quinone functional groups and the electron-accepting capacities (EAC) of quinones/humics based on fourier-transform infrared spectroscopy (FT-IR) and electrochemical analyses; however, such a relationship was not found in 2,4-D degradation probably because quinone reduction was not the rate-limiting step of quinone-mediated reduction of 2,4-D. Using the example of α-FeOOH and 2,4-D, this study well demonstrated the important role of humics reduction on the Fe(III)/Fe(II) biogeochemical cycle and chlorinated organic compounds degradation in alkaline reducing environments.Funding Information This study was supported by the National Natural Science Foundation of China (Nos 41101211, 31070460, 41101477), and The Project Sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry.  相似文献   

12.
He Q  Yao K 《Bioresource technology》2011,102(3):3578-3580
The capability of Anaeromyxobacter dehalogenans to reduce Se(IV) to Se(0) as a detoxification mechanism suggests a potential role of these ecologically important microorganisms in the biogeochemical cycling of selenium and the control of selenium contamination. However, the reduction of Se(IV) by the energetically versatile A. dehalogenans could be hindered by its ability to use alternative electron acceptors, particularly Fe(III) and humic substances which are ubiquitous in the environment. Indeed, the presence of Fe(III) partially inhibited Se(IV)-reducing activity. Nonetheless, reduction of both Se(IV) and Fe(III) proceeded simultaneously, a characteristic desirable for bioremediation efforts in many environments abundant with Fe(III). The enhancement of Se(IV) reduction by anthraquinone-2,6-disulfonate, a humic substance analog, is advantageous for microbial selenium biotransformation given the broad distribution of humic substances in natural environments, which could be exploited for the design of improved control strategies for selenium pollution.  相似文献   

13.
A vast amount of volatile organohalogens (VOX) has natural origins. Both soils and sediments have been shown to release VOX, which are most likely produced via redox reactions between Fe(III) and quinones in the presence of halide anions, particularly at acidic pH. We tested whether acidophilic Fe(III)-reducers might indirectly stimulate natural VOX formation at acidic pH by providing reactive Fe and quinone species. However, it is unknown whether acidophilic Fe(III)-reducers can reduce humic acids (HA) or fulvic acids (FA). We therefore tested the ability of the acidophilic Fe(III)-reducer Acidiphilium SJH to reduce macromolecular, suspended HA and dissolved FA at pH 3.1–3.3. We found that (i) SJH can neither reduce HA/FA nor the humic model quinone anthraquinone-2,6-disulfonic-acid (AQDS) nor stimulate the formation of FA radicals, (ii) at acidic pH, significantly more electrons are transferred abiotically both from native and reduced FA to dissolved Fe(III) than from native or reduced HA, and (iii) the presence of strain SJH does not stimulate VOX formation. Our results imply that the acidophilic Fe(III)-reducer SJH either uses an enzyme for Fe(III) reduction that can neither be used for HA/FA nor for AQDS reduction or that the location of Fe(III) reduction is inaccessible for these compounds. We further conclude that microorganisms such as strain SJH probably do not indirectly stimulate natural VOX formation at acidic pH via the formation of reactive quinone species.  相似文献   

14.
Deleting individual genes for outer surface c-type cytochromes in Geobacter sulfurreducens partially inhibited the reduction of humic substances and anthraquinone-2,6,-disulfonate. Complete inhibition was obtained only when five of these genes were simultaneously deleted, suggesting that diverse outer surface cytochromes can contribute to the reduction of humic substances and other extracellular quinones.Humic substances can play an important role in the reduction of Fe(III), and possibly other metals, in sedimentary environments (6, 34). Diverse dissimilatory Fe(III)-reducing microorganisms (3, 5, 7, 9, 11, 19-22, 25) can transfer electrons onto the quinone moieties of humic substances (38) or the model compound anthraquinone-2,6-disulfonate (AQDS). Reduced humic substances or AQDS abiotically reduces Fe(III) to Fe(II), regenerating the quinone. Electron shuttling in this manner can greatly increase the rate of electron transfer to insoluble Fe(III) oxides, presumably because soluble quinone-containing molecules are more accessible for microbial reduction than insoluble Fe(III) oxides (19, 22). Thus, catalytic amounts of humic substances have the potential to dramatically influence rates of Fe(III) reduction in soils and sediments and can promote more rapid degradation of organic contaminants coupled to Fe(III) reduction (1, 2, 4, 10, 24).To our knowledge, the mechanisms by which Fe(III)-reducing microorganisms transfer electrons to humic substances have not been investigated previously for any microorganism. However, reduction of AQDS has been studied using Shewanella oneidensis (17, 40). Disruption of the gene for MtrB, an outer membrane protein required for proper localization of outer membrane cytochromes (31), inhibited reduction of AQDS, as did disruption of the gene for the outer membrane c-type cytochrome, MtrC (17). However, in each case inhibition was incomplete, and it was suggested that there was a possibility of some periplasmic reduction (17), which would be consistent with the ability of AQDS to enter the cell (40).The mechanisms for electron transfer to humic substances in Geobacter species are of interest because molecular studies have frequently demonstrated that Geobacter species are the predominant Fe(III)-reducing microorganisms in sedimentary environments in which Fe(III) reduction is an important process (references 20, 32, and 42 and references therein). Geobacter sulfurreducens has routinely been used for investigations of the physiology of Geobacter species because of the availability of its genome sequence (29), a genetic system (8), and a genome-scale metabolic model (26) has made it possible to take a systems biology approach to understanding the growth of this organism in sedimentary environments (23).  相似文献   

15.
Pinton  R.  Cesco  S.  Santi  S.  Agnolon  F.  Varanini  Z. 《Plant and Soil》1999,210(2):145-157
The ability of Fe-deficient cucumber plants to use iron complexed to a water-extractable humic substances fraction (WEHS), was investigated. Seven-day-old Fe-deficient plants were transferred to a nutrient solution supplemented daily for 5 days with 0.2 μM Fe as Fe-WEHS (5 μg org. C mL-1), Fe-EDTA, Fe-citrate or FeCl3. These treatments all allowed re-greening of the leaf tissue, and partial recovery of dry matter accumulation, chlorophyll and iron contents. However, the recovery was faster in plants supplied with Fe-WEHS and was already evident 48 h after Fe supply. The addition of 0.2 μM Fe to the nutrient solution caused also a partial recovery of the dry matter and iron accumulation in roots of Fe-deficient cucumber plants, particularly in those supplied with Fe-WEHS. The addition of WEHS alone (5 μg org. C mL-1, 0.04 μM Fe) to the nutrient solution slightly but significantly increased iron and chlorophyll contents in leaves of Fe-deficient plants; in these plants, dry matter accumulation in leaves and roots was comparable or even higher than that measured in plants treated with Fe-citrate or FeCl3. After addition of the different iron sources for 5 days to Fe-deficient roots, morphological modifications (proliferation of lateral roots, increase in the diameter of the sub-apical zones and amplified root-hair formation) and physiological responses (enhanced Fe(III)-chelate reductase and acidification of the nutrient solution) induced by Fe deficiency, were still evident, particularly in plants treated with the humic molecules. The presence of WEHS caused also a further acidification of the nutrient medium by Fe-deficient plants. The Fe-WEHS complex (1 μM Fe) could be reduced by intact cucumber roots, at rates of reduction higher than those measured for Fe-EDTA at equimolar iron concentration. Plasma membrane vesicles, purified by two-phase partition from root microsomes of Fe-deficient plants, were also able to reduce Fe-WEHS. Results show that Fe-deficient cucumber plants can use iron complexed to water soluble humic substances, at least in part via reduction of complexed Fe(III) by the plasma membrane Fe(III)-chelate reductase of root cells. In addition, the stimulating effect of humic substances on H+ release might be of relevance for the overall response of the plants to iron shortage. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
Five methanogens (Methanosarcina barkeri MS, Methanosphaera cuniculi 1R7, Methanobacterium palustre F, Methanococcus voltaei A3 and Methanolobus vulcani PL-12/M) were investigated for their ability to reduce Fe(III) oxide and the soluble quinone anthraquinone-2,6-disulphonate (AQDS). Two species (M. barkeri and M. voltaei) reduced significant amounts of Fe(III) oxide using hydrogen as the electron donor, and 0.1 mM AQDS greatly accelerated Fe(III) reduction by these organisms. Although Fe(III) appeared to inhibit growth and methanogenesis of some strains, hydrogen partial pressures under donor-limited conditions were much lower (<0.5 Pa) in the presence of Fe(III) than in normal media (1-10 Pa) for all species except for M. vulcani. These results demonstrate that electrons were transferred to Fe(III) by hydrogen-utilizing methanogens even when growth and methanogenesis were inhibited. All species except the obligate methylotroph M. vulcani were able to reduce AQDS when their growth substrates were present as electron donors, and rates were highest when organisms used hydrogen as the electron donor. Purified soil humic acids could also be reduced by the AQDS-reducing methanogens. The ability of methanogens to interact with extracellular quinones, humic acids and Fe(III) oxides raises the possibility that this functional group of organ-isms contributes to Fe(III) and humic acid reduction under certain conditions in the environment and provides an alternative explanation for the inhibition of methanogenesis in some Fe(III)-containing ecosystems.  相似文献   

17.
The dissimilatory Fe(III)-reducing bacterium Geobacter sulfurreducens reduced and precipitated Tc(VII) by two mechanisms. Washed cell suspensions coupled the oxidation of hydrogen to enzymatic reduction of Tc(VII) to Tc(IV), leading to the precipitation of TcO2 at the periphery of the cell. An indirect, Fe(II)-mediated mechanism was also identified. Acetate, although not utilized efficiently as an electron donor for direct cell-mediated reduction of technetium, supported the reduction of Fe(III), and the Fe(II) formed was able to transfer electrons abiotically to Tc(VII). Tc(VII) reduction was comparatively inefficient via this indirect mechanism when soluble Fe(III) citrate was supplied to the cultures but was enhanced in the presence of solid Fe(III) oxide. The rate of Tc(VII) reduction was optimal, however, when Fe(III) oxide reduction was stimulated by the addition of the humic analog and electron shuttle anthaquinone-2,6-disulfonate, leading to the rapid formation of the Fe(II)-bearing mineral magnetite. Under these conditions, Tc(VII) was reduced and precipitated abiotically on the nanocrystals of biogenic magnetite as TcO2 and was removed from solution to concentrations below the limit of detection by scintillation counting. Cultures of Fe(III)-reducing bacteria enriched from radionuclide-contaminated sediment using Fe(III) oxide as an electron acceptor in the presence of 25 μM Tc(VII) contained a single Geobacter sp. detected by 16S ribosomal DNA analysis and were also able to reduce and precipitate the radionuclide via biogenic magnetite. Fe(III) reduction was stimulated in aquifer material, resulting in the formation of Fe(II)-containing minerals that were able to reduce and precipitate Tc(VII). These results suggest that Fe(III)-reducing bacteria may play an important role in immobilizing technetium in sediments via direct and indirect mechanisms.  相似文献   

18.
A synthetic water-soluble meso-tetra(2,6-dichloro-3-sulfonatophenyl)porphyrinate of iron(III) chloride, Fe(TDCPPS)Cl, was employed as a biomimetic catalyst in the oxidative coupling of terrestrial humic materials. High-performance size-exclusion chromatography (HPSEC), solid-state nuclear magnetic resonance (CPMAS-(13)C NMR), electron paramagnetic resonance (EPR), and diffuse reflectance infrared spectroscopy (DRIFT) were used to follow conformational and structural changes brought about in different humic materials by the oxidative coupling. Increase in apparent weight-average molecular weight (Mw(a)) occurred invariably for all humic substances with the oxidative polymerization catalyzed by Fe(TDCPPS)Cl. HPSEC further showed that the polymerization reaction turned the loosely bound humic supramolecular structures into more stable conformations which could no longer be disrupted by the disaggregating effect of acetic acid. DRIFT spectroscopy suggested the formation of new alkyl and aromatic ethers following the oxidative coupling with the biomimetic catalyst. CPMAS-(13)C NMR and EPR spectra suggested a reduced molecular mobility of humic components and enhanced stabilization of free radicals in larger oxidized fragments. All findings concur in indicating that the biomimetic catalysis by Fe(TDCPPS)Cl increased the molecular mass and chemical rigidity of humic materials by formation of intermolecular covalent bonds via a free-radical mechanism. The development of a technology based on oxidative polymerization by biomimetic catalysis may be of importance in controlling the properties and reactivity of humic matter for industrial and environmental applications.  相似文献   

19.
Mechanisms for inhibition of sulfate reduction and methane production in the zone of Fe(III) reduction in sediments were investigated. Addition of amorphic iron(III) oxyhydroxide to sediments in which sulfate reduction was the predominant terminal electron-accepting process inhibited sulfate reduction 86 to 100%. The decrease in electron flow to sulfate reduction was accompanied by a corresponding increase in electron flow to Fe(III) reduction. In a similar manner, Fe(III) additions also inhibited methane production in sulfate-depleted sediments. The inhibition of sulfate reduction and methane production was the result of substrate limitation, because the sediments retained the potential for sulfate reduction and methane production in the presence of excess hydrogen and acetate. Sediments in which Fe(III) reduction was the predominant terminal electron-accepting process had much lower concentrations of hydrogen and acetate than sediments in which sulfate reduction or methane production was the predominant terminal process. The low concentrations of hydrogen and acetate in the Fe(III)-reducing sediments were the result of metabolism by Fe(III)-reducing organisms of hydrogen and acetate at concentrations lower than sulfate reducers or methanogens could metabolize them. The results indicate that when Fe(III) is in a form that Fe(III)-reducing organisms can readily reduce, Fe(III)-reducing organisms can inhibit sulfate reduction and methane production by outcompeting sulfate reducers and methanogens for electron donors.  相似文献   

20.
Desulfobulbus propionicus was able to grow with Fe(III), the humic acids analog anthraquinone-2,6-disulfonate (AQDS), or a graphite electrode as an electron acceptor. These results provide an explanation for the enrichment of Desulfobulbaceae species on the surface of electrodes harvesting electricity from anaerobic marine sediments and further expand the diversity of microorganisms known to have the ability to use both sulfate and Fe(III) as an electron acceptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号