首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
B Lemieux  M Turmel  C Lemieux 《Bio Systems》1985,18(3-4):293-298
We have estimated the extent of chloroplast DNA (cpDNA) variation in three species of green algae belonging to the genus Chlamydomonas to determine if this variation could be used for taxonomic studies. The overall arrangement of sequences in the chloroplast genome of Chlamydomonas eugametos was compared with that of the closely related C. moewusii and that of the more distantly related C. reinhardtii. The results show that the chloroplast genomes of C. eugametos and C. moewusii are essentially co-linear and are highly homologous in sequence while those of C. eugametos and C. reinhardtii have been extensively rearranged and share a relatively low overall sequence homology. This wide range of chloroplast genome organization suggests that the analysis of cp-DNA variation will be useful for the classification of algae belonging to the Chlamydomonas genus.  相似文献   

2.
3.
To gain insight into the mutational events responsible for the extensive variation of chloroplast DNA (cpDNA) within the green algal genus Chlamydomonas, we have investigated the chloroplast gene organization of Chlamydomonas pitschmannii, a close relative of the interfertile species C. eugametos and C. moewusii whose cpDNAs have been well characterized. At 187 kb, the circular cpDNA of C. pitschmannii is the smallest Chlamydomonas cpDNA yet reported; it is 56 and 105 kb smaller than those of its C. eugametos and C. moewusii counterparts, respectively. Despite this substantial size difference, the arrangement of 77 genes on the C. pitschmannii cpDNA displays only three noticeable differences from the organization of the corresponding genes on the collinear C. eugametos and C. moewusii cpDNAs. These changes in gene order are accounted for by the expansion/contraction of the inverted repeat and one or two inversions in a single-copy region. In land plant cpDNAs, these kinds of events are also responsible for gene rearrangements. The large size difference between the C. pitschmannii and C. eugametos/C. moewusii cpDNAs is mainly attributed to multiple events of deletions/additions as opposed to the usually observed expansion/contraction of the inverted repeat in land plant cpDNAs. We also found that the mitochondrial genome of C. pitschmannii is a circular DNA molecule of 16.5 kb which is 5.5 and 7.5 kb smaller than its C. moewusii and C. eugametos counterparts, respectively.  相似文献   

4.
E R Jupe  R L Chapman  E A Zimmer 《Bio Systems》1988,21(3-4):223-230
The nuclear ribosomal RNA genes (rDNA) of Chlamydomonas reinhardtii, C. moewusii and C. eugametos were examined with restriction endonuclease fragment and direct rRNA sequencing analyses. These comparative molecular data confirm similarity between C. moewusii and C. eugametos, and dissimilarity between the strains and C. reinhardtii. For C. moewusii and C. eugametos, the fragment analysis of digests with 16 (six base pair recognition site) restriction endonucleases revealed either no or minor differences. These minor differences appear to be confined to length and site variation in the rapidly evolving intergenic spacer region of the algal rDNA repeat unit. In contrast, patterns of digests for C. reinhardtii were completely different from those of C. moewusii and C. eugametos for all enzymes tested. Over two regions of the 18S ribosomal RNA (spanning approx. 300 bases) in C. moewusii and C. eugametos, we observed three possible base substitutions and no insertion/deletion events. The same comparison between C. reinhardtii and C. moewusii (or C. eugametos) revealed 31 base substitutions and eight insertion/deletion events. Overall, the rDNA comparisons support the proposed conspecificity of C. moewusii and C. eugametos, as well as the hypothesis that intraspecific variation in the algal ribosomal RNA coding region is minimal and that comparisons of rDNA sequences at higher taxonomic levels can be useful indicators of algal phylogeny. The degree of difference in the sequences of the 18S coding region between C. reinhardtii and C. moewusii or C. eugametos is comparable to that between an angiosperm and Equisetum and may reflect an ancient divergence between two species in one algal genus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Although conifers are of immense ecological and economic value, bioengineering of their chloroplasts remains undeveloped. Understanding the chloroplast genomic organization of conifers can facilitate their bioengineering. Members of the conifer II clade (or cupressophytes) are highly diverse in both morphologic features and chloroplast genomic organization. We compared six cupressophyte chloroplast genomes (cpDNAs) that represent four of the five cupressophyte families, including three genomes that are first reported here (Agathis dammara, Calocedrus formosana and Nageia nagi). The six cupressophyte cpDNAs have lost a pair of large inverted repeats (IRs) and vary greatly in size, organization and tRNA copies. We demonstrate that cupressophyte cpDNAs have evolved towards reduced size, largely due to shrunken intergenic spacers. In cupressophytes, cpDNA rearrangements are capable of extending intergenic spacers, and synonymous mutations are negatively associated with the size and frequency of rearrangements. The variable cpDNA sizes of cupressophytes may have been shaped by mutational burden and genomic rearrangements. On the basis of cpDNA organization, our analyses revealed that in gymnosperms, cpDNA rearrangements are phylogenetically informative, which supports the ‘gnepines’ clade. In addition, removal of a specific IR influences the minimal rearrangements required for the gnepines and cupressophyte clades, whereby Pinaceae favours the removal of IRB but cupressophytes exclusion of IRA. This result strongly suggests that different IR copies have been lost from conifers I and II. Our data help understand the complexity and evolution of cupressophyte cpDNAs.  相似文献   

6.
The polymerase chain reaction was used to identify novel IAI subgroup introns in cpDNA-enriched preparations from the interfertile green algae Chlamydomonas eugametos and Chlamydomonas moewusii. These experiments along with sequence analysis disclosed the presence, in both green algae, of a single IA1 intron in the psaB gene and of two group I introns (IA2 and IA1) in the psbC gene. In addition, two group I introns (IA1 and IB4) were found in the peptidyltransferase region of the mitochondrial large subunit rRNA gene at the same positions as previously reported Chlamydomonas chloroplast introns. The 188 bp segment preceding the first mitochondrial intron revealed extensive sequence similarity to the distantly spaced rRNA-coding modules L7 and L8 in the Chlamydomonas reinhardtii mitochondrial DNA, indicating that these two modules have undergone rearrangements in Chlamydomonas. The IA1 introns in psaB and psbC were found to be related in sequence to the first intron in the C. moewusii chloroplast psbA gene. The similarity between the former introns extends to the immediate 5' flanking exon sequence, suggesting that group I intron transposition occurred from one of the two genes to the other through reverse splicing.  相似文献   

7.

Background  

The phylum Chlorophyta contains the majority of the green algae and is divided into four classes. While the basal position of the Prasinophyceae is well established, the divergence order of the Ulvophyceae, Trebouxiophyceae and Chlorophyceae (UTC) remains uncertain. The five complete chloroplast DNA (cpDNA) sequences currently available for representatives of these classes display considerable variability in overall structure, gene content, gene density, intron content and gene order. Among these genomes, that of the chlorophycean green alga Chlamydomonas reinhardtii has retained the least ancestral features. The two single-copy regions, which are separated from one another by the large inverted repeat (IR), have similar sizes, rather than unequal sizes, and differ radically in both gene contents and gene organizations relative to the single-copy regions of prasinophyte and ulvophyte cpDNAs. To gain insights into the various changes that underwent the chloroplast genome during the evolution of chlorophycean green algae, we have sequenced the cpDNA of Scenedesmus obliquus, a member of a distinct chlorophycean lineage.  相似文献   

8.
We report the nucleotide sequence of the chloroplast psbA gene encoding the 32 kilodalton protein of photosystem II from Chlamydomonas moewusii. Like its land plant homologues, this green algal protein consists of 353 amino acids. The C. moewusii psbA gene is composed of three exons containing 252, 11 and 90 codons and of two group I introns containing 2363 and 1807 nucleotides. Each of the introns features an internal open reading frame (ORF) that potentially encodes a basic protein of more than 300 residues. The primary sequences of the putative intron-encoded proteins are unrelated and none of them shares conserved elements with any of the proteins predicted from the group I intron sequences published so far. The first C. moewusii intron is inserted at the same position as the fourth intron of the psbA gene from Chlamydomonas reinhardtii; the second intron lies at a novel site downstream of this position. On the basis of their RNA secondary structures, the C. moewusii introns 1 and 2 can be assigned to subgroups IA and IB, respectively. However, intron 1 is not typical of subgroup IA introns, its most unusual feature being the location of the ORF in the "loop L5" region. To our knowledge, this is the first time that an ORF is located in this region of the group I intron structure.  相似文献   

9.
杜氏盐藻psaB基因cDNA的克隆与序列分析   总被引:3,自引:0,他引:3  
根据真核生物莱茵衣藻(Chlamydornonas reinhardtii)、Chlamydomonas moewusii、Chlorella vulgaris以及Mesostigma viride的psaB基因的氨基酸高度保守序列,设计一对简并引物,利用TRIzol试剂提取杜氏盐藻(Dunaliella salina)细胞的总RNA,通过RTPCR,得到的一段长为1.8kb左右的cDNA片段。PCR产物经T-A克隆并测序分析以及测序结果推导成氨基酸序列进行同源性比较.表明所克隆的1815bp序列为杜氏盐藻psaB cDNA片段,GenBank收录号为AY820754。根据已经得到的psaB序列推导成氨基酸序列与一些已知物种的psaB基因相比较,同源性分别为Chlamydomonas reinhardtii 92%,Chlamydornonas moewusii 91%,Chlorella vulgaris 86%,Mesostigma viride 85%,Physcomitrella patens subsp.Patens 85%,Nephroselmis olivacea 84%。据此可推断本实验中所克隆的序列为杜氏盐藻psaB cDNA序列.  相似文献   

10.
鲁照明  刘红涛  臧卫东  薛乐勋   《广西植物》2007,27(2):224-230,235
根据真核生物莱茵衣藻(Chlamydomonas reinhardtii)、Chlamydomonas moewusii及Chlorella vulgaris等光系统Ⅰ反应中心蛋白psaB基因的氨基酸高度保守序列,设计一对简并引物,利用TRIzol试剂提取杜氏盐藻(Dunaliella salina)细胞的总RNA,通过RT-PCR,得到的一段长为1.8kb左右的cDNA片段。PCR产物经T-A克隆并测序以及测序结果推导成氨基酸序列进行同源性比较,表明所克隆的1815bp序列为杜氏盐藻光系统Ⅰ反应中心psaB基因的cDNA片段,GenBank收录号为AY820754。根据已经得到的psaB的核苷酸序列推导成氨基酸序列与一些已知物种的psaB氨基酸序列相比较,同源性分别为Chlamydomonas reinhardtii 92%,Chlamydomonas moewusii 91%,Chlorella vulgaris 86%,Mesostigma viride 85%,Phy -scomitrella patenssubsp.Patens 85%,Nephroselmis olivacea 84%。此外,psaB密码子偏爱性分析表明:杜氏盐藻psaB基因第三位密码子A和T的组成分别为35.7%和39.17%,而G和C分别为7.27%和17.85%,即杜氏盐藻psaB基因密码子的组成大多为NNA和NNT。根据psaB基因的特征,作者对绿藻门的50个物种的psaB基因作了进化分析,结果表明:杜氏盐藻与Haematococcaceae中的大多数种类进化地位最为接近,这为更进一步弄清杜氏盐藻的遗传背景提供了理论依据。  相似文献   

11.
We have extended to about 75 the number of genes mapped on the Chlamydomonas moewusii and Chlamydomonas reinhardtii chloroplast DNAs (cpDNAs) by partial sequencing of the very closely related C. eugametos and C. moewusii cpDNAs and by hybridizations with Chlamydomonas chloroplast gene-specific sequences. Only four of these genes (tscA and three reading frames) have not been identified in any other algal cpDNAs and thus may be specific to Chlamydomonas. Although the C. moewusii and C. reinhardtii cpDNAs differ by complex sequence rearrangements, 38 genes scattered throughout the genome define 12 conserved clusters of closely linked loci. Aside from the rRNA operon, four of these gene clusters share similarity to evolutionarily primitive operons found in other cpDNAs, representing in fact remnants of these operons. Our results thus indicate that most of the ancestral bacterial operons that characterize the chloroplast genome organization of land plants and early-diverging photosynthetic eukaryotes have been disrupted before the emergence of the polyphyletic genus Chlamydomonas. All gene rearrangements between the C. moewusii and C. reinhardtii cpDNAs, with the exception of those accounting for the relocations of atpA, psbI and rbcL, occurred within corresponding regions of the genome. One of these rearrangements seems to have led to disruption of the ancestral region containing rpl23, rpl2, rps19, rpl16, rpl14, rpl5, rps8 and the psaA exon 1. This gene cluster, which bears striking similarity to the Escherichia coli S10 and spc operons, spans a continuous DNA segment in C. reinhardtii, while it maps to two separate fragments in C. moewusii.  相似文献   

12.
Heterogeneous expression of multiple genes in the nucleus of transgenic plants requires theintroduction of an individual gene and the subsequent backcross to reconstitute multi-subunit proteins ormetabolic pathways.In order to accomplish the expression of multiple genes in a single transformationevent,we inserted both large and small subunits of allophycocyanin gene (apcA and apcB) into Chlamydomonasreinhardtii chloroplast expression vector,resulting in papc-S.The constructed vector was then introducedinto the chloroplast of C.reinhardtii by micro-particle bombardment.Polymerase chain reaction and Southernblot analysis revealed that the two genes had integrated into the chloroplast genome.Western blot andenzyme-linked immunosorbent assay showed that the two genes from the prokaryotic cyanobacteria couldbe correctly expressed in the chloroplasts of C.reinhardtii.The expressed foreign protein in transformantsaccounted for about 2%-3% of total soluble proteins.These findings pave the way to the reconstitution ofmulti-subunit proteins or metabolic pathways in transgenic C.reinhardtii chloroplasts in a single transformationevent.  相似文献   

13.
Most of the well-characterized mitochondrial genomes from diverse green algal lineages are circular mapping DNA molecules; however, Chlamydomonas reinhardtii has a linear 15.8 kb unit mitochondrial genome with 580 or 581 bp inverted repeat ends. In mitochondrial-enriched fractions prepared from Polytomella parva (=P. agilis), a colorless, naturally wall-less relative of C. reinhardtii, we have detected two linear mitochondrial DNA (mtDNA) components with sizes of 13.5 and 3.5 kb. Sequences spanning 97% and 86% of the 13.5- and 3.5-kb mtDNAs, respectively, reveal that these molecules contain long, at least 1.3 kb, homologous inverted repeat sequences at their termini. The 3.5-kb mtDNA has only one coding region (nad6), the functionality of which is supported by both the relative rate at which it has accumulated nonsynonymous nucleotide substitutions and its absence from the 13.5-kb mtDNA which encodes nine genes (i.e., large and small subunit rRNA [LSU and SSU rRNA] genes, one tRNA gene, and six protein-coding genes). On the basis of DNA sequence data, we propose that a variant start codon, GTG, is utilized by the P. parva 13.5-kb mtDNA-encoded gene, nad5. Using the relative rate test with Chlamydomonas moewusii (=C. eugametos) as the outgroup, we conclude that the nonsynonymous nucleotide substitution rate in the mitochondrial protein-coding genes of P. parva is on an average about 3.3 times that of the C. reinhardtii counterparts.  相似文献   

14.

Background  

The Streptophyta comprise all land plants and six monophyletic groups of charophycean green algae. Phylogenetic analyses of four genes from three cellular compartments support the following branching order for these algal lineages: Mesostigmatales, Chlorokybales, Klebsormidiales, Zygnematales, Coleochaetales and Charales, with the last lineage being sister to land plants. Comparative analyses of the Mesostigma viride (Mesostigmatales) and land plant chloroplast genome sequences revealed that this genome experienced many gene losses, intron insertions and gene rearrangements during the evolution of charophyceans. On the other hand, the chloroplast genome of Chaetosphaeridium globosum (Coleochaetales) is highly similar to its land plant counterparts in terms of gene content, intron composition and gene order, indicating that most of the features characteristic of land plant chloroplast DNA (cpDNA) were acquired from charophycean green algae. To gain further insight into when the highly conservative pattern displayed by land plant cpDNAs originated in the Streptophyta, we have determined the cpDNA sequences of the distantly related zygnematalean algae Staurastrum punctulatum and Zygnema circumcarinatum.  相似文献   

15.
One major lineage of green plants, the Chlorophyta, is represented by the green algal classes Prasinophyceae, Ulvophyceae, Trebouxiophyceae, and Chlorophyceae. The Prasinophyceae occupies the most basal position in the Chlorophyta, but the branching order of the Ulvophyceae, Trebouxiophyceae, and Chlorophyceae remains unresolved. The chloroplast genome sequences currently available for representatives of three chlorophyte classes have revealed that this genome is highly plastic, with Chlamydomonas (Chlorophyceae) and Chlorella (Trebouxiophyceae) showing fewer ancestral features than Nephroselmis (Prasinophyceae). We report the 195,867-bp chloroplast DNA (cpDNA) sequence of Pseudendoclonium akinetum (Ulvophyceae), a member of the class that has not been previously examined for detailed cpDNA analysis. This genome shares common evolutionary trends with its Chlorella and Chlamydomonas homologs. The gene content, number of ancestral gene clusters, and abundance of short dispersed repeats in Pseudendoclonium cpDNA are intermediate between those observed for Chlorella and Chlamydomonas cpDNAs. Although Pseudendoclonium cpDNA features a large inverted repeat, its quadripartite structure is unusual in displaying an rRNA operon transcribed toward the large single-copy (LSC) region and a small single-copy region containing 14 genes that are normally found in the LSC region. Twenty-seven group I introns lie in nine genes and fall within four subgroups (IA1, IA2, IA3, and IB); 19 encode putative homing endonucleases, and 7 have homologs at identical insertion sites in other chlorophyte or streptophyte organelle genomes. The high similarity observed among the 14 IA1 and 7 IA2 introns and their encoded endonucleases suggests that many introns arose from intragenomic proliferation of a few founding introns in the lineage leading to Pseudendoclonium. Interestingly, one intron (in atpA) and some of the dispersed repeats also reside in Pseudendoclonium mitochondria, providing strong evidence for interorganellar lateral transfer of these genetic elements. Phylogenetic analyses of 58 cpDNA-encoded proteins and genes support the hypothesis that the Ulvophyceae is sister to the Trebouxiophyceae but cannot eliminate the hypothesis that the Ulvophyceae is sister to the Chlorophyceae. We favor the latter hypothesis because it is strongly supported by phylogenetic analyses of gene order data and by independent structural evidence based on shared gene losses and rearrangement break points within ancestrally conserved gene clusters.  相似文献   

16.
Intermolecular recombination of Chlamydomonas chloroplast genes has been analyzed in sexual crosses and following biolistic transformation. The pattern and position of specific exchange events within 15 kb of the 22-kb inverted repeat have been mapped with respect to known restriction fragment length polymorphism markers that distinguish the chloroplast genomes of the interfertile species Chlamydomonas reinhardtii and Chlamydomonas smithii. Recombinant progeny were selected from two- and three-factor crosses involving point mutations conferring herbicide (dr) and antibiotic resistance (er and spr) in the psbA, 23S and 16S ribosomal RNA genes, respectively. Exchange events were not randomly distributed over the 15-kb region, but were found to occur preferentially in a 0.7-kb sequence spanning the 3' end of the psbA gene and were much less common in an adjacent region of ca. 2.0 kb. These findings are corroborated by data showing that the dr mutation is unlinked genetically (3% recombination/kb) to the er and spr rRNA mutations, which are themselves linked and show ca. 1% recombination/kb. This discrepancy is significant since the dr-er and er-spr intervals are about the same length (ca. 7 kb). During chloroplast transformation, the 0.7-kb recombination hotspot also functions as a preferential site for exchange events leading to the integration of donor psbA gene sequences. The 0.7-kb hotspot region contains four classes of 18-37-bp direct repeats also found in other intergenic regions, but no open reading frame. Using deletion constructs in a chloroplast transformation assay, the hotspot was localized to a 500-bp region that lacks most of these repeats, which suggests that the repeats themselves are not responsible for the increased recombination frequency. Within this region, a 400-bp sequence is highly conserved between the chloroplast genomes of C. reinhardtii and C. smithii and includes several structural motifs characteristic of recombination hotspots in other systems.  相似文献   

17.
Restriction site variation in chloroplast DNAs (cpDNAs) of Coreopsis section Coreopsis was employed to assess divergence and phylogenetic relationships among the nine species of the section. A total of fourteen restriction site mutations and one length mutation was detected. Cladistic analysis of the cpDNA data produced a phylogeny that is different in several respects from previous hypotheses. CpDNA mutations divide the section into two groups, with the two perennial species C. auriculata and C. pubescens lacking any derived restriction site changes. The other seven species are united by five synapomorphic restriction site mutations and the one length mutation. These seven species fall into three unresolved clades consisting of 1) the remaining three perennial species, C. grandiflora, C. intermedia, and C. lanceolata; 2) three annual species, C. basalis, C. nuecensoides, and C. nuecensis; and 3) the remaining annual, C. wrightii. The cpDNA data suggest that, although the perennial habit is primitive within the section, the annual species of section Coreopsis have likely not originated from an extant perennial species. The estimated proportion of nucleotide differences per site (given as 100p) for the cpDNAs of species in the section ranges from 0.00 to 0.20, which is comparable to or lower than values reported for other congeneric species. The low level of cpDNA divergence is concordant with other data, including cross compatibility, interfertility and allozymes, in suggesting that species of the section are not highly divergent genetically.  相似文献   

18.
Chilling injury in cucumber (Cucumis sativus L.) is conditioned by maternal factors, and the sequencing of its chloroplast genome could lead to the identification of economically important candidate genes. Complete sequencing of cucumber chloroplast (cp)DNA was facilitated by the development of 414 consensus chloroplast sequencing primers (CCSPs) from conserved cpDNA sequences of Arabidopsis (Arabidopsis thaliana L.), spinach (Spinacia oleracea L.), and tobacco (Nicotiana tabacum L.) cpDNAs, using degenerative primer technologies. Genomic sequence analysis led to the construction of 301 CCSPs and 72 cucumber chloroplast-specific sequencing primers (CSSPs), which were used for the complete sequencing of cpDNA of Gy14 (155 525 bp) and 'Chipper' (155 524 bp) cucumber lines, which are, respectively, susceptible and tolerant to chilling injury (4 degrees C for 5.5 h) in the first leaf stage. Comparative cpDNA sequence analyses revealed that 1 sequence span (located between genes trnK and rps16) and 2 nucleotides (located in genes atpB and ycf1) differed between chilling-susceptible and -tolerant lines. These sequence differences correspond to previously reported maternally inherited differences in chilling response between reciprocal F1 progeny derived from these lines. Sequence differences at these 3 cpDNA sites were also detected in a genetically diverse array of cucumber germplasm with different chilling responses. These and previously reported results suggest that 1 or several of these sequences could be responsible for the observed response to chilling injury in cucumber. The comprehensive sequencing of cpDNA of cucumber by CCSPs and CSSPs indicates that these primers have immediate applications in the analysis of cpDNAs from other dicotyledonous species and the investigation of evolutionary relationships.  相似文献   

19.
Summary To investigate the evolution of conifer species, we constructed a physical map of the chloroplast DNA of sugi, Cryptomeria japonica, with four restriction endonucleases, PstI, SalI, SacI and XhoI. The chloroplast genome of C. japonica was found to be a circular molecule with a total size of approximately 133 kb. This molecule lacked an inverted repeat. Twenty genes were localized on the physical map of C. japonica cpDNA by Southern hybridization. The chloroplast genome structure of C. japonica showed considerable rearrangements of the standard genome type found in vascular plants and differed markedly from that of tobacco. The difference was explicable by one deletion and five inversions. The chloroplast genome of C. japonica differed too from that of the genus Pinus which also lacks one of the inverted repeats. The results indicate that the conifer group originated monophyletically from an ancient lineage, and diverged independently after loss of an inverted repeat structure.  相似文献   

20.
Wild-type strains of the interfertile species Chlamydomonas eugametos (UTEX 9 and 10) and Chlamydomonas moewusii (UTEX 96 and 97) male readily and reciprocally; however, considerable lethality occurs among F1 hybrid meiotic products. We prepared two hybrid backcross lineages using C. eugametos and C. moewusii. One lineage began with the cross C. eugametos mating-type-plus (mt+) × C. moewusii mating-type-minus (mt?). An F1 mt+ hybrid from this cross was back-crossed to C. moewusii mt?, and a B1 mt+ hybrid was recovered. The B1 hybrid was again backcrossed to C. moewusii mt?, and this process was repeated through the fifth backcross. The other backcross lineage began with the reciprocal cross C. moewusii mt+× C. eugametos mt? and employed C. eugametos as the recurring mt? parent. This lineage also was continued through the fifth backcross. Meiotic product survival in the reciprocal interspecific crosses was less than 10%. In successive back-cross generations associated with both lineages, this value increased progressively to a maximum of 85–90%, the level observed for the intraspecific crosses. These results are consistent with the hypothesis that multiple genetic differences exist between C. eugametos and C. moewusii and that these are the major source of meiotic product lethality associated with the interspecific crosses. The inheritance of chloroplast genetic markers for resistance to streptomycin (sr-2) and for resistance to erythromycin (er-nM1) was also scored w the interspecific crosses and in the backcrosses. Most hybrid zygospores transmitted the resistance markers of the mt+ parent only, or of both parents, with the former zygospore type being more common. Although the intraspecific C. eugametos and C. moewusii crosses differ conspicuously with respect to the fraction of zygospores which transmit chloroplast genetic markers of both parents, the inheritance of chloroplast genetic markers in the interspecific crosses and backcrosses at' scribed here failed to clarify the genetic basis for this difference.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号