首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The structure of casein micelles has been studied by small-angle neutron scattering and static light scattering. Alterations in structure upon variation of pH and scattering contrast, as well as after addition of chymosin, were investigated. The experimental data were analyzed by a model in which the casein micelle consists of spherical submicelles. This model gave good agreement with the data and gave an average micellar radius of about 100–120 nm and a submicellar radius of about 7 nm both with a polydispersity of about 40–50%. The contrast variation indicated that the scattering length density of the submicelles was largest at the center of the submicelles. The submicelles were found to be closely packed, the volume fraction varying slightly with pH. Upon addition of chymosin the submicellar structure remained unchanged within the experimental accuracy. Correspondence to: S. Hansen  相似文献   

2.
The casein complexes of bovine milk consist of four major protein fractions, alpha s1, alpha s2, beta, and kappa. Colloidal particles of casein (termed micelles) contain inorganic calcium and phosphate; they are very roughly spherical with an average radius of 650 A. Removal of Ca2+ leads to the formation of smaller protein aggregates (submicelles) with an average radius of 94 A. Two genetic variants, A and B, of the predominant fraction, alpha s1-casein, result in milks with markedly different physical properties, such as solubility and heat stability. To investigate the molecular basis for these differences, small-angle X-ray scattering was performed on the respective colloidal micelles and submicelles. Scattering curves for submicelles of both variants showed multiple Gaussian character; data for the B variant were previously interpreted in terms of two concentric regions of different electron density, i.e., a "compact" core and a relatively "loose" shell. For the submicelle of A, there was a third Gaussian, reflecting a negative contribution due to interparticle interference. Molecular parameters for submicelles of both A and B are in agreement with hydrodynamic data in the literature. Data for the micelles, for which scattering yields cross-sectional information, were fitted by a sum of three Gaussians for both variants; for these, the corresponding two lower radii of gyration represent the two concentric regions of the submicelles, while the third reflects the average packing of submicelles within the micellar cross section. Most of the molecular parameters obtained showed small but consistent differences between A and B, but for submicelles within the micelle several differences were particularly notable: A has a greater molecular weight for the "compact" region of the constituent submicelle (82,000 vs 60,000) and a much greater submicellar packing number (6:1 vs 3:1). Reasons for these and other differences are to be sought in sequence differences and in differences in calcium-binding sites and charge distribution.  相似文献   

3.
High-resolution, natural abundance 13C[1H] (100.5 MHz), 31P[1H] (161.8 MHz) and 1H (400.0 MHz) NMR spectroscopy was used to identify the calcium-binding sites of bovine casein and to ascertain the dynamic state of amino acid residues within the casein submicelles (in 125 mM KCl, pD = 7.4) and micelles (in 15 mM CaCl2/80 mM KCl, pD = 7.2). The presence of numerous, well-resolved peaks in the tentatively assigned 13C-NMR spectra of submicelles (90 A radius) and micelles (500 A radius) suggests considerable segmental motion of both side chain and backbone carbons. The partly resolved 31P-NMR spectra concur with this. Upon Ca2+ addition, the phosphoserine beta CH2 resonance (65.8 ppm vs DSS) shifts upfield by 0.2 ppm and is broadened almost beyond detection; a general upfield shift (up to 0.3 ppm) is also observed for the 31P-NMR peaks. The T1 values of the alpha CH envelope for submicelles and micelles are essentially identical corresponding to a correlation time of 8 ns for isotropic rotation of the caseins. Significant changes in the 31P T1 values accompany micelle formation. Data are consistent with a loose and mobile casein structure, with phosphoserines being the predominant calcium-binding sites.  相似文献   

4.
Subunit structure of casein micelles from small-angle neutron-scattering   总被引:1,自引:0,他引:1  
Wet pellets of whole casein micelles of cows' milk have been studied by small-angle neutron-scattering. Contrast variation using 2H2O/H2O mixtures showed that the previously observed inflection in scattered intensity at Q[4 pi sin theta)/gamma) = 0.035 A-1 is due primarily to scattering from protein, and not from calcium phosphate. Agreement between measured scattering and that calculated for a simple model of packed protein subunits suggests that the whole micelle contains protein subunits of the approximate size of free casein submicelles, packed in a short-range ordered arrangement.  相似文献   

5.
6.
Multiscale Characterization of Casein Micelles Under NaCl Range Conditions   总被引:2,自引:0,他引:2  
Micellar casein (MC) dispersions were studied at a constant protein concentration of 5 wt % in high NaCl environment. The micellar edifices were characterized as to their morphology, size, and content of proteins in the supernatant after ultracentrifugation. Additionally, changes in secondary structures of the protein upon salt increase were followed by Fourier Transform Infrared Spectroscopy (FTIR). For the first time, the estimations of secondary structural elements (irregular, ß-sheet, ??-helix and turn) from Amide III assignments were correlated with results from Amide I. Casein micelles dispersions in water were characterized by Transmission Electron Microscopy (TEM) by a spherical shape and a size between 100 and 200 nm. A salt increase resulted to a destabilization of the micelle and the formation of mini-micelles more or less aggregated. The size of the new edifice was almost similar to the native micelle. These TEM observations were confirmed by a constant casein micelle hydrodynamic diameter determined by Dynamic Light Scattering (DLS) and ranging between 150 and 180 nm. Upon salt increase, FTIR revealed an increase in irregular structures and a concurrent decrease in ß-sheet structures. Secondary structural elements percentages were almost similar from Amide I and Amide III. The use of these multiscale techniques led to a better understanding of the micellar edifice under high salt environment. Around 3% NaCl addition, a good correlation was observed between destabilization of the micellar edifice, modifications of the caseins secondary structure and repartition of caseins between supernatant and pellet after ultracentrifugation.  相似文献   

7.
An intrinsically unstructured human myelin basic protein (hMBP) was expressed in the milk of transgenic cows (TGmilk) and found exclusively associated with the casein micellar phase. The interaction between the recombinant protein and milk caseins was investigated using surface plasmon resonance (SPR). An anti‐human myelin basic protein antibody was covalently immobilized to the surface of the sensor chip. Subsequently the interaction between the recombinant protein (captured by this antibody) and caseins was studied in comparison to that noted with its human counterpart. Results showed a calcium‐mediated interaction between the recombinant protein and caseins. The order of magnitude of this interaction was in agreement with the number of phosphorylated residues carried by each type of casein (αs‐ > β‐ > κ‐casein). This selective interaction was not noted between the human protein and milk caseins indicating that the recombinant protein was phosphorylated to a higher extent than the human protein. The obtained results indicated that the co‐expression of the recombinant protein and caseins by the mammary gland along with the recombinant protein's ability to form calcium bridges played a key role in the association of the recombinant human myelin basic protein (rhMBP) with the casein micelles of milk. Despite this association between the recombinant protein and milk caseins, light scattering investigations using diffusing wave spectroscopy (DWS) showed no significant differences between the milks of the transgenic and the non‐transgenic control cows, with respect to both the average micelle size and surface charges. This was attributed to the low expression levels of the recombinant protein in milk. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
17O NMR and (1)H NMRD studies have been performed on a series of Gd(III) 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) derivatives as potential liver-specific magnetic resonance imaging (MRI) contrast agents. They bear aliphatic side chains which make them capable of micellar self-organization. The compounds differ in the length (C10-C18) and in the chemical nature (alkyl or monoamide-alkyl) of their lipophilic chain. We have established a convenient method to determine the critical micellar concentration (cmc) of paramagnetic surfactants by (1)H relaxivity measurements. This technique can be easily used over a large temperature range; thus, it can find wide application outside the field of MRI contrast agents. The knowledge of the cmc allowed us to determine the parameters governing the water proton relaxivity of the Gd(III) chelates in both nonaggregated and aggregated micellar forms. The relaxation data of the micellar complexes have been interpreted with the Lipari-Szabo approach. This model allows a local motion to be separated from the global tumbling of the whole micelle (modulated by a local, tau(l), and a global, tau(g), rotational correlation time, respectively). The aggregation substantially affects the rotational dynamics and thus increases the proton relaxivity of the Gd(III) chelates. The global rotational correlation times increase with increasing length of the side chain (500-2800 ps for C10-C18). Local motions are also influenced by the length and by the hydrophobicity of the side chain. The analysis of the relaxation data reveals considerable flexibility for these micellar aggregates. The rate of water exchange obtained for these chelates is identical to that for [Gd(DOTA)(H(2)O)](-) (k(ex)(298)= 4.8 x 10(6)s(-1))and is not sensitive either to micellization or to differences in the aliphatic chain. A relaxivity gain in such systems could be attained by simultaneously optimizing the water exchange by modifications of the chelate and increasing the micelle rigidity by using water-soluble surfactants with more hydrophobic side chains.  相似文献   

9.
Casein micelles have been separated from skim milk by chromatography on CPG-10 3000 glass beads. Fractionation of the micelles according to size has been demonstrated. Polyacrylamide gel electrophoresis of urea treated micelles reveals that different relative amounts of the major casein components occur in the various micelle fractions. No discernible dissociation of the micelles into monomeric caseins has been observed.  相似文献   

10.
Infrared spectra of as-, beta- and micellar casein were studied at relative water vapor pressures (p/po) ranging from 0 to 0.98. The samples were prepared as self-supporting films by evaporating concentrated aqueous suspensions of the caseins under study. An infrared cell and a vacuum apparatus were constructed which allowed exposure of the casein films either to vacuum or to sorbate vapor. Following the increase in intensities of the OH and O2H absorption bands during hydration, a sigmoid-shaped curve was observed, similar to the type II isotherm usually obtained by gravimetric sorption measurements. The pronounced frequency and intensity changes in the amide I, II and III bands in the p/po range from 0 to about 0.10 lead to the conclusion that water molecules are already attached to the peptide repeat unit at very low humidities. Based on calculations of the amount of polar groups per casein molecule it was shown that much less than one water molecule per polar group is needed to cause these significant spectral changes.  相似文献   

11.

Background  

Caseins, the main milk proteins, aggregate in the secretory pathway of mammary epithelial cells into large supramolecular structures, casein micelles. The role of individual caseins in this process and the mesostructure of the casein micelle are poorly known.  相似文献   

12.
Downstream purification of a model recombinant protein (human myelin basic protein) from milk of transgenic cows is described. The recombinant protein was expressed as a His tagged fusion protein in the milk of transgenic cows and was found associated with the casein micellar phase. While difficulties in obtaining good recoveries were found when employing conventional micelle disruption procedures, direct capture using the cation exchanger SP Sepharose Big Beads? was found successful in the extraction of the recombinant protein. Early breakthrough suggested a slow release of the recombinant protein from the micelles and dictated micelle disruption in order to obtain good yields. A new approach for deconstruction of the calcium core of the casein micelles, employing the interaction between the micellar calcium and the active sites of the cation exchanger resin was developed. Milk samples were loaded to the column in aliquots with a column washing step after each aliquot. This sequential loading approach successfully liberated the recombinant protein from the micelles and was found superior to the conventional sample loading approach. It increased the recovery by more than 25%, reduced fouling due to milk components and improved the column hydrodynamic properties as compared to the conventional sample loading approach. Hardware and software modifications to the chromatography system were necessary in order to keep the whole process automated. A second purification step using a Ni2+ affinity column was used to isolate the recombinant protein at purity more than 90% and a recovery percentage of 78%.  相似文献   

13.
Previous work from this laboratory demonstrated that the environment-sensitive lysolipid N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)- monomyristoylphosphatidylethanolamine (N-NBD-MPE), at concentrations below its critical micelle concentration (CMCN-NBD-MPE = 4 microM), reached maximum fluorescence yield upon the addition of taurodeoxycholate (TDC) at concentrations well below its CMC (CMCTDC = 2.5 mM). These data indicated the formation of micellar aggregates of the two amphiphiles at concentrations below both of their CMCs. In the present study, fluorescence lifetime and differential polarization measurements were made to determine the size of these aggregates. In the absence of TDC and at 0.5 mM TDC a single lifetime (tau) and rotational correlation time (phi) were measured for N-NBD-MPE at the submicellar concentration of 2 microM, indicating a lack of interaction between the two molecules at this concentration. Above 0.5 mM TDC, two discrete lifetimes were resolved. Based on these lifetimes, two distinct rotational correlation times were established through polarization measurements. The shorter phi(0.19-0.73 ns) was ascribed to local probe motions, whereas the longer phi was in a time range expected for global rotation of aggregates the size of simple bile salt micelles (3-6.5 ns). From the longer phi, molecular volume and hydrodynamic radii were calculated, ranging from approximately 15 A at 1 mM to approximately 18 A at 5 mM TDC. These data support the conclusion that monomeric lysolipids in solution seed the aggregation of numerous TDC molecules (aggregation number = 16 at 1 mM TDC) to form a TDC micelle with a lysolipid core at concentrations below which they both self-aggregate.  相似文献   

14.
The effect of depletion of Ca2+ on the composition and size distribution of casein micelles in milk has been examined using chemical analysis, size exclusion chromatography, fast protein liquid chromatography, turbidimetry and photon correlation spectroscopy. Partial removal of Ca2+ by EDTA and subsequent dialysis resulted in disaggregation of some of the casein micelles; as the EDTA concentration increased, the proportions of Ca2+ and phosphate relative to protein in the micelles remaining intact decreased. However, the composition of the intact micelles, with respect to the different caseins, and the number-frequency size distribution were essentially unchanged.  相似文献   

15.
Caseins are among cardinal proteins that evolved in the lineage leading to mammals. In milk, caseins and calcium phosphate (CaP) form a huge complex called casein micelle. By forming the micelle, milk maintains high CaP concentrations, which help altricial mammalian neonates to grow bone and teeth. Two types of caseins are known. Ca-sensitive caseins (α(s)- and β-caseins) bind Ca but precipitate at high Ca concentrations, whereas Ca-insensitive casein (κ-casein) does not usually interact with Ca but instead stabilizes the micelle. Thus, it is thought that these two types of caseins are both necessary for stable micelle formation. Both types of caseins show high substitution rates, which make it difficult to elucidate the evolution of caseins. Yet, recent studies have revealed that all casein genes belong to the secretory calcium-binding phosphoprotein (SCPP) gene family that arose by gene duplication. In the present study, we investigated exon-intron structures and phylogenetic distributions of casein and other SCPP genes, particularly the odontogenic ameloblast-associated (ODAM) gene, the SCPP-Pro-Gln-rich 1 (SCPPPQ1) gene, and the follicular dendritic cell secreted peptide (FDCSP) gene. The results suggest that contemporary Ca-sensitive casein genes arose from a putative common ancestor, which we refer to as CSN1/2. The six putative exons comprising CSN1/2 are all found in SCPPPQ1, although ODAM also shares four of these exons. By contrast, the five exons of the Ca-insensitive casein gene are all reminiscent of FDCSP. The phylogenetic distribution of these genes suggests that both SCPPPQ1 and FDCSP arose from ODAM. We thus argue that all casein genes evolved from ODAM via two different pathways; Ca-sensitive casein genes likely originated directly from SCPPPQ1, whereas the Ca-insensitive casein genes directly differentiated from FDCSP. Further, expression of ODAM, SCPPPQ1, and FDCSP was detected in dental tissues, supporting the idea that both types of caseins evolved as Ca-binding proteins. Based on these findings, we propose two alternative hypotheses for micelle formation in primitive milk. The conserved biochemical characteristics in caseins and their immediate ancestors also suggest that many slight genetic modifications have created modern caseins, proteins vital to the sustained success of mammals.  相似文献   

16.
Du JZ  Chen DP  Wang YC  Xiao CS  Lu YJ  Wang J  Zhang GZ 《Biomacromolecules》2006,7(6):1898-1903
A novel biodegradable amphiphilic brush-coil block copolymer consisting of poly(epsilon-caprolactone) and PEGylated polyphosphoester was synthesized by ring opening polymerization. The composition and structure of the copolymer were characterized by 1H NMR, 13C NMR, and FT-IR, and the molecular weight and molecular weight distribution were analyzed by gel permeation chromatograph (GPC) measurements to confirm the diblock structure. These amphiphilic copolymers formed micellar structures in water, and the critical micelle concentrations (CMCs) were around 10(-3) mg/mL, which was determined using pyrene as a fluorescence probe. Transmission electron microscopy (TEM) images showed that the micelles took an approximately spherical shape with core-shell structure, which was further demonstrated by laser light scattering (LLS) technique. The degradation behavior of the polymeric micelle was also investigated in the presence of Pseudomonas lipase and characterized by GPC measurement. Such polymer micelles from brush-coil block copolymers are expected to have wide utility in the field of drug delivery.  相似文献   

17.
《Biophysical journal》2021,120(23):5408-5420
β-casein undergoes a reversible endothermic self-association, forming protein micelles of limited size. In its functional state, a single β-casein monomer is unfolded, which creates a high structural flexibility, which is supposed to play a major role in preventing the precipitation of calcium phosphate particles. We characterize the structural flexibility in terms of nanosecond molecular motions, depending on the temperature by quasielastic neutron scattering. Our major questions are: Does the self-association reduce the chain flexibility? How does the dynamic spectrum of disordered caseins differ from a compactly globular protein? How does the dynamic spectrum of β-casein in solution differ from that of a protein in hydrated powder states? We report on two relaxation processes on a nanosecond and a sub-nanosecond timescale for β-casein in solution. Both processes are analyzed by Brownian oscillator model, by which the spring constant can be defined in the isotropic parabolic potential. The slower process, which is analyzed by neutron spin echo, seems a characteristic feature of the unfolded structure. It requires bulk solvent and is not seen in hydrated protein powders. The faster process, which is analyzed by neutron backscattering, has a smaller amplitude and requires hydration water, which is also observed with folded proteins in the hydrated state. The self-association had no significant influence on internal relaxation, and thus, a β-casein protein monomer flexibility is preserved in the micelle. We derive spring constants of the faster and slower motions of β-caseins in solution and compared them with those of some proteins in various states (folded or hydrated powder).  相似文献   

18.
The solution structure of ganglioside G(M1) carbohydrate moiety at the surface of a 102-kDa lipid-modified-G(M1) micelle is investigated by high-resolution 1H-NMR in H2O. The micellar surface can be considered a cluster-like lateral distribution of the gangliosides, each single monomer being anchored in a carbohydrate-enriched model membrane matrix. 1H NOESY measurements at short mixing times reveal a rigid trisaccharide core -beta-GalNAc-(1-4)-[alpha-Neu5Ac-(2-3)]-beta-Gal- and a more flexible beta-Gal-(1-3)-beta-GalNAc- terminal glycosidic bond. In the lipid-modified G(M1) ganglioside micellar system, there is no evidence that intermolecular side-by-side carbohydrate interactions modulate, or alter in any way, the head-group spatial arrangement. Possible intermonomer interactions at the level of the branched trisaccharide portion were further investigated on mixed micelles of natural N-glycolyl- and N-acetylneuraminic acid containing G(M1) in D2O, taking advantage of the different NMR features of N-glycolyl- and N-acetylneuraminic acids, which allow discrimination between sialic acid ring proton signals. Measurements of the water/ganglioside-OH proton chemical exchange rates suggest hydroxyl group involvement at position 8 of sialic acid in strong intramolecular interaction processes.  相似文献   

19.
Mammary epithelial cells synthesised and secreted caseins, the major milk proteins in most mammals, as large aggregates called micelles into the alveolar lumen they surround. We investigated the implication of the highly conserved cysteine(s) of kappa-casein in disulphide bond formation in casein micelles from several species. Dimers were found in all milks studied, confirming previous observation in ruminants. More importantly, the study of interchain disulphide bridges in mouse and rat casein micelles revealed that any casein possessing a cysteine is engaged in disulphide bond interchange; these species express four or five cysteine-containing caseins, respectively. We found that the main rodent caseins form both homo- and heterodimers. Additionally, disulphide bond formation among milk proteins was specific since the interaction of the caseins with cysteine-containing whey proteins was not observed in native casein micelles.  相似文献   

20.
Anema SG  de Kruif CG 《Biomacromolecules》2011,12(11):3970-3976
On addition of lactoferrin (LF) to skim milk, the turbidity decreases. The basic protein binds to the caseins in the casein micelles, which is then followed by a (partial) disintegration of the casein micelles. The amount of LF initially binding to casein micelles follows a Langmuir adsorption isotherm. The kinetics of the binding of LF could be described by first-order kinetics and similarly the disintegration kinetics. The disintegration was, however, about 10 times slower than the initial adsorption, which allowed investigating both phenomena. Kinetic data were also obtained from turbidity measurements, and all data could be described with one equation. The disintegration of the casein micelles was further characterized by an activation energy of 52 kJ/mol. The initial increase in hydrodynamic size of the casein micelles could be accounted for by assuming that it would go as the cube root of the mass using the adsorption and disintegration kinetics as determined from gel electrophoresis. The results show that LF binds to casein micelles and that subsequently the casein micelles partly disintegrate. All micelles behave in a similar manner as average particle size decreases. Lysozyme also bound to the casein micelles, and this binding followed a Langmuir adsorption isotherm. However, lysozyme did not cause the disintegration of the casein micelles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号